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The ultrasonic absorption coefficient is computed in the intermediate state of a type I superconductor 
at low temperatures. It is assumed that the length of the electron free path l and the Larmor radius 
in a critical magnetic field R significantly exceed the wavelength and the thickness of the normal 
layers. The absorption is proportional to the first power of the sound frequency if the wavelength is 
much less than the thickness of the layers, and is proportional to the square of the frequency in the 
opposite limiting case. For R « l, oscillations of the absorption should be observed for a change in 
the external magnetic field, while the period of oscillation depends on the thickness of the normal 
layers. It is shown that the measurements of the sound absorption make it possible to determine the 
period of the structure of the intermediate state as a function of the magnetic field. 

ONE of the most interesting quantities characterizing 
the intermediate state of a type I superconductor is the 
dimension of the period of the layer structure. Under 
equilibrium conditions, it is determined by the coeffi
cient of surface tension on the boundary separating the 
normal and superconducting phases (see [1 ' 21). Meas
urement of the period of the structure is therefore a 
method (and virtually the only method) for the determi
nation of the surface tension. 

Most of the properties of the intermediate state 
(thermodynamic and magnetic properties, electrical 
conductivity, and so forth) are practically independent 
of the period of the structure. For this reason, very 
complicated methods of direct observation of the layers 
on the surface of the sample have been used in the de
termination to date. [3 - 51 Inasmuch as the structure of 
the layers is generally distorted near the surface/51 

it is highly desirable to have the possibility of measur
ing the period of the structure in the depth of the speci
men. In the present work, it will be shown that for this 
purpose one can use in principle the measurements of 
the ultrasonic absorption coefficient. 

The problem of the sound absorption in the inter me
diate state has been considered earlier in a work of 
Bruk and the author, [71 where it was shown that there 
exists an absorption mechanism that is specific for the 
intermediate state. This mechanism is associated with 
the motion of the boundary of separation between the 
phases. From the results of [71 it is seen that this 
mechanism is important only for low-frequency sound 
and not too high a state of purity of the metal, when the 
skin depth in the normal phase is of the order of or 
greater than the period of the structure. Here we shall 
consider significantly higher frequencies, for Which the 
sound wavelength is the same in order of magnitude as 
the thickness of the layers, and pure metals with elec
tron free path of theorder of 10-2-10-1 em. We shall 
also assume that the temperature of the system is small 
in comparison with the temperature of the supercon
ducting transition. Under these conditions, one can as
sume, first, that the sound absorption takes place only 

in the normal phase, and second, that the thickness of 
the normal layers is much less than the free path length 
of the electrons and is smaller than the Larmor radius 
in the critical magnetic field. So far as the relations 
between the latter two parameters are concerned, we 
shall consider the two limiting cases. 

Keeping in mind the most convenient situation, from 
the experimental viewpoint, when the sound is propa
gated along the axis of a cylindrical sample located in 
the intermediate state in an external magnetic field 
perpendicular to the axis of the cylinder, we shall as
sume that the wave vector of the sound is perpendicular 
to the boundary separating the two phases. 

1. We select any layer occupied by the normal 
phase. If the thickness of the layer is a, then one can 
locate the set of coordinates so that the x axis is di
rected along the sound wave vector, while the boundary 
of the layer coincides with the planes x = 0 and x = a. 
The magnetic field, which is equal in magnitude to the 
critical field He, is assumed to be directed along the 
z axis. 

For a deformation Uik produced by the sound wave, 
the energy of the electron is equal to (see [81) 

(1) 
where f:o{p) is the energy in the absence of the sound, p 
is the quasimomentum, and ~ik(p) is the deformation 
potential. Furthermore, the sound propagation in the 
metal is accompanied by the generation of an electric 
field acting on the electron. Inasmuch as the sound 
wavelength is always greater than the Debye screening 
radius, the longitudinal part of the field is determined 
from the condition of electrical neutrality. The trans
verse electric field must satisfy the Maxwell equation 

4niro 
rotrOitE = --j, 

cz 
(2) 

where j is the current density produced under the ac
tion of the deformation and the electric field, and w is 
the sound frequency. 

Considering first the case R » l (R is the Larmor 
radius of the electron in the critical magnetic field, 
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is the free path length), when the magnetic field in the 
layer has no effect on the motion of the electrons, we 
can write the kinetic equation for 0 ~ x ~ a in the form 

{3) 

Here, as usual, [BJ the distribution function of the elec
trons is sought in the form f = fo + xofolo£ (fo is the 
equilibrium value of the function), v = o£ 0lop is the 
velocity of the electron, e is its charge, v the collision 
frequency, Aik(p) = Aik- ~ik, where the bar indicates 
averaging over the Fermi surface. In Eq. {3), we have 
neglected the arbitrary, time-dependent function x, in
asmuch as the sound velocity s is much less than the 
velocity of the electrons and the sound wave can there
fore be regarded as quasistatic. Moreover, the de
rivatives ax loy and ax loz are equal to zero, which is 
clear from symmetry consideration. 

We shall represent the function x in the form of a 
sum of two functions x = cp + 1/J, where cp and zjJ satisfy 
the Eq. (3) in the case in which the right-hand side of it 
contains only terms with Uik and E, respectively. The 
first of them is equal to 

1p = C(v) exp {- xv_}- A;• exp{-~} ~ zi;k(x') exp{ x'v }ax', (4) 
Vx Vx Vx 0 Vx 

where C(v) is an arbitrary function dependent on the 
character of the reflection of the electrons from the 
surface layer. For its determination, we need to write 
down the boundary conditions for x = 0. As is shown in 
[91 , these conditions in the low temperature case under 
study have the form 

x(v)+x(-v)=O for x=O,a. (5) 

The functions cp and zjJ must obviously satisfy the same 
boundary conditions, whence we find 

A a 

C(v)=· ik [~uik(x')exp{2..(a-x')}dx' 
2vx sh(avlvx) -u Vx 

- ~ zi;k(x')exP{~(x'-a) }dx'] 
0 Vx 

and thus 

A;• { vx } [ C { v } c:p=-2 h( I )exp -- JUik(x')exp -(a-x') dx' 
Vx S av Vx Vx O Vx 

- ~ zi;•(x')exp{~ (x' +a) }dx'- ~ zi;k(x')exp{~ (x'- a)}dx'],. 
0 Vx X Vx 

For what follows, it is convenient to extend the func
tion tiik(x) to the region -a~ x ~ 0, so that 

(6) 

We then have 

c:p=--2 h~ikl )exp{-2:.}[~- zi;k(x')exp{~(x'+a)}dx' {7) 
Vx S av Vx Dx -41 Vx 

+ ~ zi;k(x')exp {~ (x'- a) }dx'] .. 
Vx 

X 

For vx > 0, using the obvious identity 

{ va } I va ~ { 2avn } 
exp ~ 2 sh--;;:; = n":o exp - ----;;:- , 

we can rewrite Eq. (7) in the form 

A;k { vx } ~ r r I cp(vx>O)=--exp -- ~LJ zi;k(x) 
Vx Vx ·n=O X 

{ x'-2a(n+1)} C { x'-2an} J 
X,exp v Vx dx' +~a zi;k(x')exp v-V-x-- dx' 

If we now continue uik(x) periodically for all values of 
X 

(8) 

we then obtain 

A,. { vx } ": x-Can { vx' \ 
c:p(vx>O)=--exp -- -~ J zi;k(x')exp ~fdx' 

V~ Vx n=O x-2a(n+1) . Vx 

A;, { vx } c . , { vx'} , = --exp - - J Uik ( x ) exp - dx . 
Vx Vx _ 00 - Vx 

(9) 

For vx < 0, use of the identity 

{ va } I av ~ { 2avn } exp -- 2sh-=- LJ'exp --
Vx Vx n=O Vx 

gives 

A;k { XV } C , 1 { VX1 
} 1 c:p(vx<O)=-exp -- J U;k(x)exp- dx. 

Vx Vx x Vx 
{10) 

It is easy to obtain similar formulas for the function 
zjJ if we continue in accord with the formulas 

E(-x)=E(x), E(x+.2a)=E(x) (11) 

the electric field for all values of the parameter x: 

ev; { vx } ( , { vx' } , 'ljl(vx>O)=-exp -- J E;(x)exp - dx, 
Vx Vx _ 00 Vx 

(12) 

ev; { vx } r ' { vx' } ' 'ljl(vx<O)==--exp -- JE;(x)exp- dx. 
Vx Vx x Dx 

It is interesting to note that Eqs. (9), {10), and {12) 
are formally identical to the solutions of Eq. {3) for an 
infinite normal metal. This fact is a characteristic 
mark of the law of reflection of the electrons from the 
boundary separating the phases, which is described by 
the boundary conditions (5). 

As is seen from (8) and (11), the electric field and 
the deformation tensor 1 > are periodic functions of the 
coordinate x. Thus the functions cp and zjJ will possess 
the same property if we so continue them that Eqs. (9), 
{10), and {12) remain in force for all values of x. Then, 
transforming to the Fourier components in accord with 
the formulas -F(x)= ~ Fneiqnx, 

we get, for all values of v 

nn 
qn=-, 

a 

eviEi,n 

iqnVx +v 

(13) 

{14) 

!)We emphasize that we are concerned with the functions u;k (z) and 
E(z), which have been introduced in purely formal fashion, and which 
are identical with the deformation tensor and the electric field actually 
present in the sample for 0 < z <a only. 
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With the help of these latter relations, we can easily 
calculate the electric current density: 

i='4e'} v:xdS, 
n v 

where dS is an element of the Fermi surface. Then, 
substituting (14), we get 

j = j<~l + jNl, 

. (~) e . i dS Vii\tm 

]i, n = - 4n3 Ulm, n J V iqnVx. + V ' 

. Nl e E i dS evivk 
]i, n = 4n3 k, n J V iqnVx + V ' 

For small v and n * 0, we can assume that 

where P is the symbol for the principal value of the 
integral. From (15) we then get for n * 0 

(15) 

. <~> ie . 
]a, n = -----.4 3 DazmUlm, n"" 

n qn 

-<~> .NJ e2 .Nl 
]x, n = 0, ]a, n = 4n 2 l qn I BapE:p, n, ]x, n = 0. 

(16) 
Here 

•dSna i 
Dalm= --Alm, B"ap= J dSnanpli(nx), 

v nx 

n = v /v, the indices a and {3 run over the values y and 
z. We have taken it into account that the tensor Aik 
satisfies the condition 

i dS 
JA;,-=0, 

v 

as is seen from the definition of this tensor. 
For the determination of the electric field, we shall 

begin with the Maxwell equations (2), which, in our ge
ometry, can be written in the form 

{J2Ea 4niw 
-;;;2 + ---;;2 i• = 0. 

Transforming to the Fourier components in these equa
tions, we get 

( ne n•c2qn• ) 
-

1
-

1
Bap--,--liap Ep,n 

qn rew 
n2c2 4n3 (~) (17) 

+-. -[Ea'(+ 0)-(-1)nEa'(a -0)] =- -ja,n• 
~= e 

The presence of terms in the square brackets of Eq. 
(17) is associated with the discontinuity in the functions 
E~(x) dEa dx for x = 0, ±a, ± 2a, ... 

It is easy to see that in the frequency range of in
terest, when s/w ~a, the term with q~ in the left-hand 
side of (17) can be neglected. Actually, its ratio to the 
first term is, in order of magnitude, equal to (6/a)3 , 

where o ~ (c2/e2plcw) 1/3 is the skin depth. This ratio is 
small for all reasonable values of the layer thickness a. 

We now estimate the magnitude of the E~. This can 
be done if we note that the magnetic field on the bound
ary between phases should be equal to the critical value. 
Under the action of the deformation brought about by 
the sound wave, the critical field changes by an amount 
UikilHc/iluik ~ HcUik· It is therefore clear that the os-· 
cillating part of the magnetic field on the boundary is 
of the order of HfUik• whence (using the Maxwell equa
tion curl E = -c- ilH/ilt) we find E~ ~ Hcuikfc. The 
ratio of the terms with E~ to the right-hand side of 

(17) is equal in magnitude to the value of cHc/asepF 
~ (Tc/wn)(iJr../a), where T is the critical temperature, 
w is the Debye frequency of the phonons, and ilL is the 
London penetration depth of the magnetic field in the 
superconductor. Thus we can also neglect these terms. 

Taking all the above into account, we find from (17) 

(18) 

In writing down (18), we hav,e us~d the explicit depend
ence of the tensor Uik(x) = Uik e1kx on the coordinates 
(Uik does not depend on x) for 0 < x <a and Eqs. (6), 
(8), and (13), according to which 

(19) 

We shall be interested in the time average of the 
energy absorbed in a unit volume in the intermediate 
state, 

where b is the thickness of the superconducting layer, 

1 1 dS 
Q(x)=-- J -vl:xl 2 

(2n) 3 v 

is the energy absorbed in a unit volume of normal phase 
(see [S, lOJ ). Expressing it in terms of the Fourier com
ponents of the function x , we obtain 

_ 1 1 vdS[ +oo , (-f)n+m-1 J 
Q=(2n)'(a+b)J-; a~IXni2+~XnXm i( -m) . 

n=-oo m,Cn qn q (20) 

As is seen from (14), (18), and (19), the function Xn(v) 
satisfies the condition x -n< -v) = Xn (v). Here the sec
ond term in (20) is equal to zero, since the expression 
under the summation and integral signs changes sign 
for the simultaneous substitution n- -n, m- -m, 
v- -v. We thus have 

-=_'11_1 vas~l 12 __ 1!_1 vdS"' I 12 I 12} (21) 
Q (2n)' J v LJ Xn - (2n) 3 J v LJ { !jln + 1Jln ' 

n n 

where 1J = a/(a +b) is the concentration of the normal 
phase. In writing down the last expression, it was taken 
into account that the expressions CfJnl/!n* and 1/Jnf/Jn *are 
odd in n. 

The sound absorption coefficient r is equal to the 
energy Q multiplied by the reciprocal of the energy 
flux in the sound wave 2/pSw2 luol2 (p is the density of 
the metal, u0 the displacement vector). Substituting in 
(21) the expression for the sum which follows from 
(14), (18), and (19), 

2 lqnl I'Pni 2 +11Jlnl 2=--2 (k2 2)2[1-(-1)"coska] 
vva - qn 

. [ . 1 . J 
X n IA;kUiol 2 +-;I Va(B-1 )apD~lmUlml 2 .s (nx), 

we get 
f/f'<N> = 'l]ll>(ka/n), 

where 

r (N) = 1 } dS [ · --:--:--::cl,---;l7' -v2 .S ( nx) I Aik U;, 12 
4n2pw3 no 2 

+ :2 lva(B-1)apDPlmUlml 2 ] 
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IP{x) 

1,0 

is the sound absorption coefficient in the normal phase 
(see l 101 ), 

4x ~ n 
<D(x) == ~ LJ ---[1-(-t)n cosnx] 

n2 n~< (n2 - x2 ) 2 

~' 1 
= n2 -~-2¢'(1+x) 

n x 2 

cosnx[ '( (1+x)) '( 1 x) 2 ]} _-2-"' --2- -.p +2 -~ . 

(23) 

Here ~' (x) is the second derivative of the logarithm of 
the r function. The graph of the function <l? (x) obtained 
as the result of numerical computation is shown in the 
drawing. 

When the sound wavelength is much less than the 
thickness of the normal layers ka » 1, the natural re
sult r ;r<N> = 17 is obtained from (22), inasmuch as 
<l? ( oo) = 1. In this case, the coefficient r, as also r<N >, 
is proportional to the first power of the frequency. 

In the opposite limiting case, one can set <l?(x) 
= 7?;(3)x/7T 2 ( ?;(x) is the Riemann zeta function) and thus 

__!'_ = n(3) t]ka. 
I'(N) na 

i.e., the absorption is proportional to the square of the 
sound frequency and is the same in order of magnitude 
as the absorption in the normal metal with electron 
free path length equal to the thickness of the layers a 
(see lBJ ). 

2. Now let R « l. In place of (3) we should consider 
the kinetic equation with account of the magnetic field: 

(24) 

where n is the cyclotron frequency in the field He, T is 
the dimensionless time of rotation of the electron in the 
magnetic field. Just as in the case above, we continue 
the functions x , uik• and Ei periodically over all x so 
that the conditions (6), (8), and (11) are satisfied; we 
also rewrite Eq. (24) in terms of the Fourier compo
nents: 

f:Wxn / ih + (iqnVx + 'V)zn =leu;E;, n- A;kUik, n· (25) 

The latter equation is identical with the kinetic equation 
for the bulk of the normal metal. Using the results of 
the work of Gurevich, l 101 we can immediately write 
down the solution: 

Q eiq.B(t) [ (i) ( 2n )'/, { ( :n; qn )} 
Xn = 2nv ---rqy, A,. Uik, n Vx.' exp - i . B,qn + 4~ 

(2) ( 2n \'h { ( n qn ) 1 J (26) 
+A;kUik,n lvx2'l/ exp -i B2qn-4~ J. 

Here B(T) = c[py(T) -py(O)]/eHc, the prime denotes 
time differentiation, the indices 1 and 2 show that the 
value of the corresponding quantities is taken at points 

Tt and Tz such that vx(Tt,z) = 0. For simplicity, it is 
assumed that there are two such points, and v~1 > 0, 
vi2 < 0. Noting that in the substitution v - -v the 
points 1 and 2 change places, it is easy to show by 
means of (19) that the solution (26) satisfies the rela
tion Xn(v) = x -n(-v). It then follows that the boundary 
conditions (5) for the function x are satisfied automati
cally. 

By means of (26), we easily find 

0 [ I A(!) • I' I A (2) . I' vlxnl'= " ik Uik,n + ik Uik,n J 
2n'VIqnl IVxt'l lvx,'l 

Q A<t>A<'>. .• sin[(E,-B,)Iq,.IJ 
- ~Q:'"f ik lm Uik.,nUlm,n I Vx/Vx2, I 112 

Substituting this in (21), we can express the absorption 
coefficient r in the form of a sum ro + ar' where ro 
corresponds to the first two terms on the right side of 
the last equation and is a monotonic function of the ex
ternal magnetic field, ar is an oscillating addition. We 
have for 

(27) 

where 
(1) • (2) • 

2 ~ as r Q )[ IAik uikl' + IAik u,kl.' J rt> (H")= I 
(2n)'kpsw2 !ttol' --;-\--:; lux,' I ~T 

is the monotonic part of the sound absorption in the 
normal metal, <l?(x) is a function defined by Eq. (23) and 
shown in the drawing. 

The oscillating part of the absorption is equal to 
(see l 101 ) 

(N) (a)'h~ n'h[1-(-1)ncoska]. [nRext n] 
~r~ro (H")11ka R ,:::

1 
(n'-k'a'/n')' sm -a-n±4. 

(28) 

Here Rext = c(py>- p)/>)o/eHc, the index 0 indicating 
that the value of py> - p< 1 > should be taken at the ex
tremal value of pz, i.e., lor Pz satisfying the equation 

_!!_ ( (2) - (!) ) - 0· 
dp, Py py - , 

the sign + or - in (28) depends on the sign of the de
rivative of Pz from the left side of the latter equation. 

It is seen from (28) that for ka ~ 1 the oscillating 
part of the absorption is smaller than the monotonic 
part by the factor (R/a)112• The quantity ar, consid
ered as a function of the external field H is an almost 
periodic function with a slowly changing period 

I fJa 
6H = 2a2 fJH Rext· (29) 

3. In conclusion, we shall discuss the possibility of 
the use of the sound absorption measurements for the 
determination of the period of the structure. 

If R « l, then Eq. (22) offers the possibility (from 
the measured ratio r;r<N>, and with the help of the ex
plicit form of the function <l? (ka/7T) and the relation 
TJ = 2H/Hc - 1 (for a cylinder in a perpendicular field) 
of determining the thickness of the normal layers a as 
a function of the external magnetic field. The period of 
the structure d(H) = a(H)/TJ (H) is then easily deter
mined. 

In the case R « Z, measurement of the monotonic 
part of the absorption gives the same information, as 
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is seen from (27 ). Moreover, there is an additional pos
sibility here, associated with the presence of oscilla
tions in the absorption. Use of the relation (29) for the 
period of oscillation also permits us to determine the 
function d(H). The quantity Rext entering into (29) can 
be found from measurement of the absorption oscilla
tions in the region H >He, where the period of the os
cillations is determined by the ratio of Rext to the 
sound wavelength (see l 101). 
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