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We consider criteria for local and convective stability of equilibrium plasma configurations of arbitrary 
geometry. We study on the basis of these criteria the stability of axially symmetric plasma configura­
tions in the form of a toroid with a longitudinal current, without making the usual restrictions of small 
toroidality and low plasma pressure. We discuss the problem of the influence of the shape of the cross­
section of the plasma torus on the stability. 

1. GENERAL CRITERIA FOR LOCAL AND 
CONVECTIVE STABILITY 

CoNDITIONS for magnetohydrodynamic stability of an 
arbitrary equilibrium configuration with respect to lo­
cal perturbations have been obtained in a number of 
papers. [l-sJ Local perturbations were taken to mean 
small displacements of the plasma with respect to its 
equilibrium position which had an arbitrary shape on 
the magnetic surface considered and involved a small 
region of localization in the direction of the normal to 
the magnetic surface. As another limiting form of per­
turbation, one can consider perturbations that are con­
stant on each magnetic surface. A derivation of the 
corresponding criterion for "convective" stability is 
given in the Appendix. The condition for local stability 
obtained in [l-4 J has a form that is difficult to visualize. 
It turns out, however, that we can transform it to a 
much more convenient form which is close to the con­
dition for convective stability, and this enables us to 
analyze from a single point of view the well-known cri­
teria of Rosenbluth-Longmire, Kadomtsev, Kruskal­
Shafranov, and Suydem. It turns out that all those cri­
teria are limiting cases of a general criterion of local 
stability although, as far as the physical meaning of 
their original derivation is concerned, the first two 
criteria are not connected with any assumption about 
a local nature. 

Using the notation of Greene and Johnson[ 4 J we can 
write the equations for the equilibrium of the plasma in 
the form 

Vp = [jB], i = rotB, divB = 0. (1.1)* 

The general criteria for local and convective stability 
derived in the Appendix have in this notation the form 

1 <jB) <B') 
4S2+S jVVf2· c-Q IVVI 2 c 

( j 2 < B 2 jB ' - < I VVI'> c I VVI') c-< I VVI') J > o, 
(1.2) 

~ ((j2) (B2)- (jB)2) + 2S(jB)- Q (B2)- fi' 
p 

+ y~((Sj-QB)'+p'Q)>O. (1.3) 
p 

Here y = %, V is the moving volume of the system en­
closed by closed magnetic surfaces. The quantities p, 

*[jB] =JX B. 
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n, and S are so-called surface functions, depending 
solely on v. They are defined by the equations 

p = jdJ_jx, g = jcjj_h.·. s = xdl-<Dx, (1.4) 

where the dots indicate differentiation with respect to 
V. The functions <I> and x describe the longitudinal and 
azimuthal magnetic currents, and the functions J and I 
the longitudinal and azimuthal currents inside the mag­
netic surfaces bounding the volume V: 

<D=~Baa..L, x=SBaan, l=Sjaa..L. l=Siaau. (1.5) 

The angle brackets indicate averages over the volume 
included between two neighboring magnetic surfaces, 
and angle brackets with an index c averages over a 
closed magnetic line of force lying on a "rational" mag­
netic surface: 

(f . d s ) = dV jdr:, 
,.\:_ dl/,.1:_ dl 

(/)c= 'j' j- 'j'-B B. (1.6) 

The function 

. a dx 
S = -<D' dV d<D 

characterizes the tilting (shear) of the magnetic lines 
of force. The function n, which for S = 0 is equal to 
n = p¥/<i> = px"!x, is a characteristic of the "minimum 
B." 

Let us analyze the criteria (1.2) and (1.3). 
1. In the case of a cylindrical geometry of the plas­

ma, (1.2) goes over into Suydem's[6 J well-known neces­
sary stability condition 

pB,'(f.l'lf.l)'+8p'>O (1.7) 

( Jl (p) = BwiPBs, Bw and Bs are the azimuthal and 
longitudinal magnetic field), which clearly imposes very 
narrow requirements upon the pressure distribution 
p(p) over the radius p of the plasma cylinder. When 
Jl '(p) = 0, the criterion (1.3) leads in the case consid­
ered to the inequality 

p'- ypB,' /B.> 0, (1. 8) 

so that for stability a "maximum B" is necessary. 
2. For configurations with closed magnetic lines of 

force, when S = 0, the stability conditions (1.2) and 
(1.3) take the form 

< B' ) (( i2 
) < B' ) < iB )') (1 9) 

-Q IVV'I c- IVVI' c IVVI 2 c- IVVI 2 _ >O, • 
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- Q(B2)- ft'+yp((B2 )Q2/Ji2 + Q)> 0. (1.10) 

As the quantity in the round brackets in inequality (1.9) 
is positive, it is necessary for s!_ability that n < 0. The 
condition n < 0 is a "minimum B" requirement, first 
obtained in the papers of Rosenbluth and Longmire[71 
and Kadomtsev.[81 Equation (1.9) shows that for small 
plasma pressures when we can neglect the quantity 
within the round brackets, the condition n < 0 is a suf­
ficient condition for local stability when S = 0. 

The condition (1.10) for convective stability was ob­
tained by Kadomtsev[91 when considering configurations 
with closed lines of B assuming a constant displace­
ment ~1 along the lines of force. He showed in [BJ that 
the condition close to n < 0 and weaker than n < o, 

Q(p2-ypQ)< 0, (1.11) 

is a necessary and sufficient condition for arbitrary 
perturbations in a low pressure plasma with closed 
magnetic lines of force. 

5. The remaining terms on the left-hand side of in­
equality (1.2) can be interpreted as follows. The first 
term describes the stabilizing action of the shear of the 
lines of force. The term proportional to n _character­
izes the stabilizing action of the minimum B. The term 
within the round brackets describes the destabilization 
connected with the finite pressure of the plasma. The 
second term expresses the simultaneous action of the 
shear and a longitudinal current flowing in the plasma. 

In the case of a plasma configuration with a longitu­
dinal current, the term proportional to n becomes of 
the same order of magnitude as the last term within the 
round brackets of inequality (1.2) even for vanishingly 
small pressures, and may prove to be insufficient for 
stabilization. For instance, in the case of a cylindrical 
geometry with S = 0 we obtain the requirement p > 0. 
The stabilizing action of the shear described by the 
first term in (1.2) is negligibly small for configurations 
with a weakly inhomogeneous longitudinal current. The 
main stabilizing effect for such systems is determined 
by the second and third terms of expression (1.2). The 
minimum :B principle determining the stability of 
Stellarator-type configurations, where the magnetic 
surfaces are formed by the external magnetic fields, 
thus turns out to be insufficient for the stabilization of 
Tokamak-type systems, the magnetic surfaces of which 
are produced by the current in the plasma. 

The insufficiency of only the single condition of min­
imum :B for configurations with a longitudinal current 
agrees with the fact that there exists yet another, addi­
tional stability condition-the Shafranov-Kruskal cri­
terion[10 •111 which was first obtained for the case of 
a cylindrical geometry of the plasma and afterwards 
extended to the case of a torus of sufficiently large ra­
dius R. This condition has the form 

p~B./RBw>1. (1.12) 

Here PL, is the radius of the plasma filament, . Bw. and 
Bs are, as in Eq. (1. 7), the azimuthal and long1tu_dm~l 
magnetic fields. It was further shown that the cntena 
(1.2) and (1.3) applied to a toroidal configuration lead to 
a restriction on a longitudinal current of the same type 
as condition (1.12). 

The criteria (1.2) and (1.3) are only necessary con­
ditions for the stability of the plasma since in their 

derivation we considered perturbations of a special 
form. However, they lead to sufficiently narrow re­
strictions and contain as particular cases all hydro­
magnetic stability criteria obtained under different as­
sumptions which are known at the present time. We 
note in conclusion that the criterion (1.2), which for a 
cylindrical plasma gives Suydem 's condition ( 1. 7) for a 
toroidal plasma, leads to an appreciably weaker re­
striction on the magnitude of the longitudinal current of 
the kind (1.12) (see Sec. 3). 

2. TOROIDAL EQUILIBRIUM CONFIGURATIONS FOR 
THE CASE OF AXIAL SYMMETRY 

1. General Relations 

It is convenient to describe axially symmetric con­
figurations in a cylindrical system of coordinates r, cp, 
z by means of the functions 1/J = rA'/!, lA = rBcp, and p 
which depending solely on q;, i.e., which are surface 
functions. The components of the vectors B and j are 
then determined by the relations[121 

B, = o¢/ror, B, =- 8-¢/roz, B~ = IA/r, (2.1) 

j, = f.t' 0¢/r Or, j, = -]A' O'f!/r Oz, j~ = rp' + JAJA' /r.\ (2. 2) 

The prime denotes here and henceforth differentiation 
with respect to q;. 

The function lj!(r, z) satisfies the equation 

o"¢ +r~~o1jl =-r2p'-IAIA', 
oz' or r or 

(2.3) 

where p and lA are arbitrary functions of 1/J which de­
termine the distribution of the longitudinal field Bcp and 
the longitudinal current density jcp along the cross sec­
tion of the plasma. 

The main surface functions <I>, x, J, and I, which 
occur in the stability theory, can in the case of an axi­
ally symmetric problem be written in the form 

x = -2n) B,rdr = -2n1jl, 

<l> =) IAdzdr/r, J= 

I= -2n) j,r dr = -2nlA 

~( JAJA') J rp' + -r- dz dr. 

(2.4) 

(2.5) 

If we introduce, apart from the volume V bounded by 
the closed magnetic surface 1/J = const, a function U 
such that 

V = 2n) rdz dr, U = 2n ~ (1/r)dz dr, (2.6) 

then the differentials of <I> and J can be expressed in 
terms of the differentials of V and U: 

2nd<l> =]A dU, 2nd!= p'dV +]A] A' dU. (2. 7) 

To find the surface quantities determined by Eqs. (1.4) 
as functions of q; for given p(lj!) and lA (1/J) it is thus suf­
ficient to evaluate the integrals (2. 6). The expressions 
for S and n can then be written in the form 

V'3S=-(IAU')', V'3Q=-1A'(IAU')'-p'V". (2.8) 

2. The Solution in the Vicinity of the Magnetic 
Axis 

We expand -p' and -!AlA in a power series in q;: 
-p'=a+a'¢+ ... , -JA[A'jR2=b+b'1Jl+ ... , (2.9) 
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and look for a solution of the equilibrium equation (2.3) 
near the magnetic axis (r = R, z = 0) as a power series 
in z and r 2 - R2 • Imposing the requirement of symme­
try with respect to the z = 0 plane we get, up to and in­
cluding cubic terms 

AR• ( r2-R•) a+b-A 
ljl=-2- 1+C---w-- z•+ 8 (r2-R•)• 

b-(1-C)A 
- 24R• (r2- R•)' + ... (2.10) 

We see that in our approximation the terms in the ex­
pansion (2.9) which are linear in 1/J do not influence the 
equilibrium configuration. The cross sections of the 
magnetic surfaces 1jJ = const near the magnetic axis 
are ellipses and the ratio of their semi-axes lz/lr = E 

determines the constant A = (a + b)/(1 + E 2). The sec­
ond arbitrary constant C depends on the situatio~ of the 
separatrix of the magnetic surfaces; the coordinates rs 
and zs of its edges are given by the formulae 

rEf 1 zFf 1 [ e2 - ajb J ( ) 
W-1=-c, Ji2= 4C, (1+2e2)C- i+a/b , 2.11 

rs• -1 = 2e2 ' zs= 0. (2.12) 
R 2 C+(e2 -a/b)/(1+a/b) 

The form of the magnetic surfaces of the equilibrium 
configuration (2.10) depends thus on the three constant 
parameters E, C, and b/a. The ratio b/a is determined 
by the current distribution in the plasma. In particular, 
the position of the maximum of the current density jcp 
as function of r depends according to (2.2) on b/a: 
r 0 = R -lfi/'a. 

One verifies easily that if one chooses the constants 
specially such that the coefficient of (r2 - R 2) 3 vanishes, 
Eq. (2.10) solves Eq. (2.3) exactly with p' = -a' and 
IAIA = -bR2• Putting b = (1- C)A, Co= AC, we get the 
exact solution 

ljJ = (bR• + c0r2)z2/2 +(a- c0) (r2- R2) 2/8. (2.18) 

We note two particular cases. 
1) When b = 0 both edges of the separatrix contract 

r 

d 

FIG. I. Cross-sections of the magnetic surfaces of the configuration 
(2.10): a) C = I, b/a = I; b) C = 4/3, b/a = I; c) C = -4/5, b/a = I; 
d) C = -8/3, b/a = I. 

FIG. 2. Cross-sections of the magnetic surfaces of the configuration 
(2.13): a)b=O;b)b/a=-1/7;c)b/a=-7;dlb/a= L 

to the z axis. The corresponding equilibrium configu­
ration, which was considered in [l3 J, is described by 
the function 

ljJ = cor2z2/2 +(a- c0) (r2- R2)2/8. (2.14) 

2) In the case co = 0, the separatrix has only one 
edge situated at the origin r = 0, z = 0, and then 

'ljJ = bR2 z2/2 + a(r2- R•) 2/8. (2.15) 

The equilibrium configuration (2.15) is remarkable in 
that one can evaluate for it relatively simply all sur­
face functions occurring in the stability criteria, (1.2) 
and (1.3). 

The cross sections of the magnetic surfaces of the 
equilibrium configurations (2.10) and (2.13) are shown 
in Figs. 1 and 2 for E = 1. The magnetic surfaces of 
configuration (2.13) differ from the magnetic surfaces 
of the general case (2.10) in that the edge of the sepa­
ratrix (2.12) which lies at z = 0 is absent. 

In "polar" coordinates (R - r = p cos w, z = p sin w) 
connected with the magnetic axis r = R, the solution 
(2.10) can be written, up to terms of order p3 , in the 
form 

ljJ =(At sin2 w + A. 2 cos2 w) p2 + (Aa sin2 w + A4 cos2 w)cos rop3 + ... , 
(2.16) 

where tne parameters .\i can be expressed in terms of 
the parameters of the configuration (2.10) by the for­
mulae 

A.t=AR2/2, A•=(a+b-A)R2/2, A.a=ACR, 

A. 4 = (3a + b- A- 2AC)R/6. 

3, Expressions for the Surface Functions in a 
System of Coordinates Connected with the 
Magnetic Axis 

(2.17) 

For the calculation of the surface functions of an 
axially symmetric equilibrium configuration we can use 
a polar system of coordinates p, w, cp which is con­
nected with the magnetic axis, R- r = p cos w, 
z = p sin w, in which the components of the magnetic 
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field can be expressed in terms of z/J through the for­
mulae BP = ozfJ/priJw and Bw = -azp/rap. Integrating 
over a layer between two neighboring magnetic surfaces 
61/J = 6pozfJ/op we get the following expressions for V' 
and U': 

"' rp dw "' p dw 
V' = 2:rt ~ if¢/ilp , U' = 2:rt ~ ro'¢/op . (2.18) 

Apart from V' and U' the surface quantities indi­
cated by angle brackets enter into tire stability condi­
tions (1.2}(1.3). One checks easily that in the case con­
sidered where there is axial symmetry (f)c =(f). In­
deed, 

~ fdl/B= ~ fpdw/Boo=-~ frpdw/(o'¢/op), (2.19) 

and we get from (2. 18) 

2:rt 2f' rpdw 
<t> = V' ·~ t o'¢/op . (2.20) 

From this it follows in particular that ( 1/r2 ) = U' /V'. 
For a known function zfJ one can thus express the sur­
face quantities (f), similarly to V' and U', in terms 
of a single integral taken with the limits from 0 to 27T. 

4. Expressions for the Surface Functions in Cylindrical 
Coordinates 

It is more convenient to calculate the surface func­
tions for the exact solution (2.13) directly in a cylin­
drical system of coordinates r, t:p, z. If we know the 
expression for z as function of r and z/J, we can ob­
tain, by taking r as the independent variable, the single 
integrals 

r, rl dr 
V=4:rt~ z(r,'ljl)rdr, U=4:rt ~z(r,'¢)--;;, (2.21) 

TL T1 

where the integration is taken between points where 
z(r, zfJ) vanishes. The derivatives V' and U' can simi­
larly to the preceding be written in the form 

? rdr I 'c dr 
V' = 4:rt J if¢/oz ' U = 4:rt J ro'¢/oz. 

r1 n 

(2.22) 

The surface functions denoted by angle brackets are 
then expressed in terms of the integrals 

4:rt ·r rdr 
(f) = V' J 1 it¢/oz · 

r, 

(2.23) 

5. The Surface Functions V and U for the Equilibrium 
Configuration (2.13) 

Using the substitution r 2 = R 2(1 + ~ cos J), where 
'.(! = 8 zfJ 2/R 4 (a- co), we can write the expressions for 
the functions V and U for the configuration (2.13) in 
the form 

V = 8:rt'¢ f sin2 ti d'(} '·• 
Ry(a- c0) (b + c0 ) 0 ·l'1 + k0 costt 

(2.24) 

U= 8~ f ~~'(}~ . 
R3 y(a- c0) (b + c0 ) 0 (1 + xk0 cos tt)l'1 + ko cos ti 

Here ko = ..fK and K = 1 + b/co. The integrals obtained 
reduce to elliptic ones: ll4 J 

v- 64:rt'IJ [(2_2.) K-E _ _!_._] (2•25) 
- Ry(a- c0) (b +eo) (1 + k0 ) - k2 3k2 3k2 • 

u = -=~==::;:;64:=:rt~1jl::::::::;:::;:;==;:::::;;.= 
R3 y(a- co) (b +eo) (1 + ko) 1 + xko 

X [-K_-_E__ KE(a,k)-EF(a,k) ] 
k' sin' a -:k:-:-,-:si:--n::-3 a-'-c-'o-s "-a/-;l'r:;1=_==;:k~' s:¢in=;;2=a ' 

(2.26) 

where the modulus k and sin a are defined by the ex­
pressions k2 = 2ko/(1 + ko), sin2 a = (K + Kko)/(1 + Kko). 

By differentiating the integrals (2. 24) with respect to 
the parameter, we find easily the expansion of V and 
U in the vicinity of the magnetic axis: 

4:rt2¢ [ 3 ] V= 1+-ko'+··· , 
Ry(a- co) (b +co) 32 

(2.27) 

U= 4:rt2¢ [1+('~+~+ x')ko'+'···J. 
R3 y(a-co)(b+co) 32 8 4 

When E = 1, it follows from this, when co = (a - b)/2 
that 

8:rt'1jl { 3 (a-b) 2 21jl } 
V= R(a+b) 1 + 4 (a+b) 3 R,+···' 

U= 8:rt2¢ { 1 +[~(a-b)'+' 3a + b ·] 21jl/R• ... } (2.28) 
R3 (a+b) 4 a+b ' a+b a+b + · 

In the case of circular near-axis cross-sections of 
the magnetic surfaces both functions V and U can for 
the configuration (2.14) be expressed in terms of com­
plete elliptical integrals: 

8:rtR3ll' [ 2k2 - 2 2 - k2 J 
V= --K+--E, 

( 1 + l''I') '" 3k' 3k' 
8:rtR'I' [2-k2 2] U= --K-'-E 

(1 + l"lf)'" k' k' 
(2.29) 

Here b = 0, a= 2co, '.(! = 16zp/aR4, k2 = 2#/(1 +~). 
For the case of the equilibrium configuration (2.15), 

V and U are elementary functions for any eccentricity 
of the near-axis cross-sections of the magnetic sur­
faces: 

4:rt' 
V=--=-'IJ, 

yabR (2.30} 

3. STABILITY OF AXIALLY SYMMETRIC TOROIDAL 
CONFIGURATIONS 

Taking into account the expressions obtained in the 
above for the surface functions we can write the criteria 
for local and convective stability (1.2) and (1.3) for axi­
ally symmetric configurations in the form1 > 

!/, V'6 S'-p' {l2 {U"Q1- V"Qz+P'(QzQa-Q!2)} 

+ U'(II'Q1 + p'Qa- V")} > 0, 

U' 1' Q ) 
s•[J2(U'Q,- V'') + Q,Q.] + SI ( 2p' +II' V +I V~ 

p'V" p'2 I 2V" I' 
+.-y;< (l2U' + Q.)- V'2 + 'YP { S 2V'Q. + SI v + T) 

(3.1) 

V" [ V" ]} ) + V'3 (l'U' + Q5) V'"- p' > 0. (3.2 

In accordance with relations (2. 8) we have here 
S = -(IU')'/V' 3 , 0 = I'S- p'V"/V'3 and we have denoted 
by Qi the following quantities: 

Q1 < 1 ) Qz < 1 ) Qa < r' ) 
V'== IV'lll'' -y;= r'IV'i'l 2 ' V'= IV'IJI' ' 

Q.=(r') Qs=<IV'¢1'.). (3.3) 
V' ' V' r' 

1>In the following we drop for the sake of simplicity the index A of 
the function lA ('I') = rB.,. 
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For given functions p(l/J) and I(lj;) the function lj! is de­
termined by the solution of the equilibrium Eqs. (2.3) 
and the functions V(lj;), U(lj;), and Qi(l/J) are expressed 
by the integrals (2.18) to (2.23). 

1. Stability of Toroidal Configurations Near the 
Magnetic Axis 

To study the stability near the magnetic axis by ex­
panding in powers of lj! it is expedient to write the func­
tions V and Qi in the form 

Q1 V'<l'l-R2> V=R2U-W, Qa= W- R• 1'1-IV~PI• , 

Q8 =R2Q1 + V' <~:.;.). Q,= R2V' + V'(l'l-R2), 

separating explicitly their main part and the correc­
tions which can easily be evaluated by the well-known 
expansion of lj! in powers of the displacement p from 
the magnetic axis. 

Retaining in the inequalities (3.1) and (3.2) only the 
main terms, we obtain the following stability conditions 
near the magnetic axis r = R: 

II' J2 W" q )] 
p' [p' + R2 + R2 ( V' + p' V' > O, 

Jf'z [p'W" II')U"] 
- ( p' + na ) - J2 na V' + ( p' + nz V' 

[ P. W" ll' 'Jf" ( , II') V",l 
+YP (nay;-+ Il2fVi- P + R•JV' J> O. 

(3.4) 

(3.5) 

Here W and q are surface functions defined by the re-
lations 

an (Ra 1'1-) rkl 
W' = R2U'- V' =enS - p , 

0 rOijlfiip 

< (1'1-- R2)a) r (1'1-- R2)2pdoo . 
q = V' I'll V1PI 2 = Zn ~ ~I VIP l2ii1jl/iip. (3' 6) 

Expressions (3.4) to (3.6) show that for evaluating all 
quantities occurring in the condition for local stability 
(3.4) it is sufficient to know the expansion of the func­
tion lj! up to terms of order p3 • However, for the con­
dition of convective stability it is necessary to evaluate 
apart from W" also separately either V" or U" and 
this requires taking into account in the function lj! 
quantities of order p 4, 

A. We consider first the condition of local stability 
(3.4). The current function lj! is for an equilibrium con­
figuration which is symmetric with respect to the z = 0 
plane given by Eq. (2.16): 

.p = /t(oo) p2 + /2(oo)cos oop3 + ... 

In the approximation considered p = ..fW7fJ 
x (1 - ,f(1f7fJ f2/2), and the functions V', W", and q oc­
curring in (3.4) can be written in the form 

~rkl n~ f rkl 
V' = nR ) -, W" =- ~ ( 4R _=. + 1) cos2 oo -1 2 , 

0 It R 0 It I 

an cos2 oo doo 
q = 4nR ~ 4ft'+ ft'Zft. (3. 7) 

Evaluation of these integrals gives 

2n2R (1 + e2} 3 

q= (J.t+"-:!)3 (1+e)e•' 
(3.8) 

W"= n:•(1+e•)•{1+ R (1+e•>arJ.a+3J.. 
R(J.t + J.a) 2e3 At+"-:! 482 L 

+ 6J., ~ ~ :: - (J.a- 3J.,) ( ~ ~ ~2 YJ} • (3.9) 

where E = lzllr = v'(A2/Ad is the ratio of the semi-axes 
of the elliptical cross sections of the magnetic surfaces 
near the magnetic axis. Expressing the coefficients Ai 
in terms of the parameters a, b, and C of the equilib­
rium configuration (2.10), we get 

4n2 1+82 16n2 (1+e2) 3 (3.10) 
V'= R(a+b) 8 ' q= R5(a+b) 3 (1+e)84 ' 

W" 4n•(1+82)3[3a+b _1-82 ( 1+ 2C)}. (3.11) 
R5(a+b) 2e5 a+b 1+e2 

Substituting these expressions into inequality (3.4) 
we get the following condition for local stability near 
the magnetic axis: 

R2j02 { 1 ~)2[~ 1-ea-b _1-e2 ( 1+ZC)].(3.12) 
Bo• < 1 + 82 1 + 8 + 1 + e a + b 1 + e2 

where the values of j 2 and B2 are chosen on the mag­
netic axis itself, r = R. According to (3.12), the limit­
ing current density near the magnetic axis depends on 
the parameters E, b/a, and C. The quantity E is de­
termined -by the eccentricity of the near-axis cross 
sections of the magnetic surfaces, the ratio b/a de­
pends on the current distribution along the cross sec­
tion of the plasma, and the constant C characterizes 
the third harmonic of the function lj!, determining the 
position of the separatrix. 

In the case of circular near-axis cross-sections of 
the magnetic surfaces, E = 1, the dependence on the pa­
rameters b/a and C disappears, and the stability con­
dition (3.12) takes the very simple form R2jg;sg < 4. 
Assuming small toroidality and uniformity of the longi­
tudinal current and of the longitudinal magnetic field, 
this condition is exactly the same as the restriction 
(1.12). 

To elucidate the dependence of the limiting current 
on the eccentricity of the near-axis cross-sections of 
the magnetic surfaces we choose the constant C such 
that the expansion of lj! near the magnetic axis (2.10) is 
the same as the exact solution (2.13), and then 
C = (a/b - E2)/(a/b + 1). 

We consider particular cases for different ratios 
b/a. 

1. H a = 0, i.e., the magnetic configuration near the 
axis is force-free, 

R2j02/Bo2 < 2(1 + e2) (2- Pl-)/e2, 

and for stability it is necessary that E < ..f2. 
2. For a= b, when the maximum longitudinal cur­

rent density as function of r occurs at r = R, we have 

R2j02/B02 < (5 + 3e- 2/e- e2 - e3) (1 + e2)/Pl-(1 +e). 

The first factor on the right-hand side has here a max­
imum when E = 1 and goes through zero near E = Y2 
and E = % so that stability occurs only for magnetic 
surface cross sections which are sufficiently close to 
circular. 

3. In the case b = 0 (we have (for the equilibrium 
configuration (2.14)) 

R2 j 02/B02 < 2·(e• + 3e- 2) (1 + e2)/e3 (1 +e). 
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For stability it is then necessary that E > 0.56. 
4. When a/b = E2 (for the equilibrium configuration 

(2.15)), we get 

J12 iNBo2 < 4(1 + e2)/e2(1+ e). 

In that case there is on the right-hand side of the in­
equality a monotonically decreasing function of E which 
does not tend to zero. 

Let us now assume that the plasma pressure van­
ishes on some magnetic surface 1/JL, which has a mini­
mum distance from the z axis equal to R1; then 

p = po(i- ..P/'1>:.:), J2 = Ie2 + 2Il'(..p- "ljl:.:), (3.13) 
e•R~ a+ b ~ R12 )z _ 1- R12/R2 ( e2- a/b ) 

ljl:.:=-8- 1 + e2 \ 11 -Jii 8• 8 - 1 + 3e2 1 +alb +C · 
(3.14) 

These equations enable us to obtain the condition for 
local stability in terms of the ratio of the plasma to the 
magnetic pressure (3o = 2po/Bg on the magnetic axis: 

(1+e2)(1-RNR2)•[ 2 1-e 1-b/a 
~o< 4e2 (1+b/a) 1+e + 1+e 1+b/a 

(3.15) 
- 1 - 82 

( 1 + 2C) J 8. 
1 +e2 

When the stability condition has this form, the depend­
ence on the parameters b/a and C remains even in the 
case of circular near-axis magnetic surface cross­
sections, E = 1, in which case for stability it is neces­
sary that 

1 (1-Rt"/R•)•[ (1-b/a )1-Rt"/R2 ] 

~a< 2 1+b/a 1 - 1+b/a -C 3 · (3.16) 

The parameter C depends on the distance from the 
edge of the separatrix. If both edges of the separatrix 
(2.11) are inside the torus, C > 0 and stability is im­
proved. However, if both edges of the separatrix (2.11) 
are outside the torus this has a destabilizing influence. 

It follows from (3.13) that the ratio b/a can be in­
terpreted as a characteristic for the degree of diamag­
netism of the plasma 

b I2(0)-I2 (1jl:.:) Bo2 -B/ 
a 2R•p(O) = -2-p;- (3.17) 

Here Be is the longitudinal field Bcp on the boundary 
of the plasma 1/J = ifJL when r = R. 

For small toroidality when 1- RUR2 « 1 there re­
mains a strong dependence of (3o on the parameters 
RdR and b/a: 

1' (1- Rt"/R2) 2 

~o < 2 1 + b/a . (3.18) 

For the equilibrium configurations described by the 
exact solution (2.13) e = 1, and in the case E = 1 we 
get a condition for local stability which is the same as 
(3.18). 

To estimate separately the influence of the shear 
and the minimum B we consider the local stability of 
the configuration (2.13) for E = 1. In the case of con­
figuration (2.15) when V" = 0 we get a = b, and condi­
tion (3.18) gives (3o < (1-RUR2) 2/4. In the case when 
S = 0 it follows from (2.8) and (2.28) that 

J12 jo2/Bo2 = [7 + 10a/b + 15(a/b)•J/ (1 +a/b). (3.19) 

The right-hand side of Eq. (3.19) has a minimum ex­
ceeding 4 for a/b ~ 0.1, and this contradicts the condi­
tion for local stability R2jg/Bg < 4. In the case of closed 

lines of force of B the configuration (2.13) with E = 1 
thus turns out to be unstable. 

B. Let us now consider the condition for convective 
stability (3.5). In those cases when V" = 0 or S = 0, 
the functions V" and U" occurring in (3.5) can be ex­
pressed in terms of the function W" and to evaluate that 
function it is sufficient to know the expansion of 1/J up to 
terms ~ p3 • Using Eq. (2.8) we get condition (3.5) for 
the cases V" = 0 and S = 0, respectively, in the form 

II' 2 J2 f II' I2 W" II' W" 
-( p' +Jii) - [ R2\, 2p' +[ii )-vp( R2 V' +y.) J y> O, 

(3.20) 

(3.21) 

We turn further to the equilibrium configuration 
(2.13) and limit ourselves here to circular near-axis 
magnetic surface cross sections E = 1. In the case 
V" = 0, from (2.28) we have a= b, and condition (3.20) 
with E = 1 gives R2 jg/Bg < 12. The condition for con­
vective stability near the magnetic axis has thus the 
same form as the condition for local stability and in 
the case considered turns out to be weaker. In the case 
S = 0 it follows from Eqs. (3.19) and (3.21) that the 
configuration considered turns out to be also unstable 
with respect to convective perturbations when f3o « 1 
and 1 + b/a > 0. 

2. Stability of the Equilibrium Configuration (2.15) 

In conclusion we shall consider in more detail the 
configuration (2.15), the stability of which can be eval­
uated most simply. Since for the given configuration 
the volume V is proportional to 1/J, we can write Eqs. 
(3.13) and (3.14) in the form 

p = p0 (1- V/V:.:), 2V:.: = n2eR3(1-Rt'/R•)•. (3.22) 

Here VL is the volume bounded by the magnetic sur­
face wL on which p = 0. 

Putting C = 0, a/b = e2 we get from (3.15) the con­
dition for local stability in the vicinity of r = R: 

~0 < (1 +e) (1 + e2) 
(3.23) 

For fixed VL and R the expression on the right­
hand side of inequality (3.23) is a maximum for 
E = lz/lr = 0.66. In practice the optimum E can most 
expediently be looked for taking into account the given 
VL and R. If we write the limiting value of f3o deter­
mined by the inequality (3.23) as {3 0 max 
= E2(1- RUR2) 2/(1 + e )(1 + E2) and put equal to zero 
the variation of VL and {3 0 max with respect to E and 
R(E) for fixed R1 we find that the optimum value of E 
is determined by the equation 

Rt'/3R2 = (2 + e- e•)/ (2 + 3e + 4e2 + 5e3) 

and depends on the ratio R1 /R. In the case of small 
toroidality (RdR- 1) the optimum is E = 0.66 
= 1/1.52. In the case of limitingly large toroidality 
(RdR- 0) the optimum is E = 1.52. The value e = 1 
becomes optimum for R/(R - R1) = 2.9. We must note, 
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however, that the optimum value {3 0 max differs little 
from the corresponding value for e = 1. 

The quantities Q4 and Qs occurring in the criterion 
(3.2) for convective stability can, similar to V and U, 
be expressed as elementary functions: 

Q.= 4r!__R, Q.=n'R•Ya[4'1l+b(1-V1-~)J. (3.24) 
1ab b R• aR• 

As we noted earlier, the condition for convective stabil­
ity near the magnetic axis turns out to be weaker than 
the condition for local stability. 

Bearing in mind that for the configuration considered 
V" = 0, we can write the criteria (3.1) and (3.2) in the 
form 

V'&S2- 4p' {J2[U"Q1 + p'(Q2Q3 - Q1')} + U' (Il'Q1 + p'Q3)} > 0, 

(3.25) 

82[/2( U'Q,- V'2) + Q,Q,] 

( U' I' Q ,, 
+ SI 2p' +II' V' +I V~)- ;,, + yp (SW'Q, + SI') > 0. 

(3. 26) 

If we restrict ourselves to the case of circular near­
axis magnetic surface cross-sections, e = 1, we obtain 
easily for the quantities Q1, Q2, and Qs 

(3.27) 

2n2 --

Qa= 3a'R1Jl [11-a+(1+a)g1 -ag,;1 

2n2 [ 1 Q,=---
3a2R51jJ (1- a)'f, 

__ 3_a_3 _+ g, + ag2 ] (3.28) 
( 1 - a3)'1i 1 + a + a2 • 

Here a 3 = 81j!/aR4 and g1 and g2 denote the following 
functions of a: 

g, = [ 2 + 2 +a ]';,, 
11+a+a2 1+a+a2 

[ 2 1+2a r (3.29) 
g, = 11 +a+ a2 - 1 +a+ a2~ • 

We have thus for the configuration (2.15) considered 
here for E = 1 the exact expressions (2.30), (3.24), and 
(3.27) to (3.29) in terms of elementary functions for all 
quantities occurring in the stability conditions (3.25) 
and (3.26). These expressions show that the ratio 1/!11/!s, 
with 1/!s the value of 1j! on the separatrix, is the expan­
sion parameter in the vicinity of the magnetic axis. In 
the given case 1/!11/!s = 81j!/aR 4• When e = v'\a7b) = 1, we 
have from (2.30) and (3.24) 

4n2 
V'=-, 

aR 

4n2R 
Q,=--, 

a 

( a• -) Q.=n2R3a T+1-11-a3 • (3.30) 

Substituting the functions (3.27) to (3.30) into the stabil­
ity criteria (3.25) and (3.26), we can check that the sta­
bility condition near the magnetic axis considered in 
the above is the most stringent one. In the case of lim­
itingly large toroidality the main stabilizing factor for 
a plasma on magnetic surfaces near the separatrix 
(a "'=' 1) is the shear described by the term propor­
tional to S2. 

The author is very grateful to academician M. A. 
Leontovich and to V. D. Shafranov for useful discus­
sions and also to T. D. Kuznetsova for calculating and 

constructing the cross-sections of the magnetic sur­
faces given in this paper. 

APPENDIX 

One can obtain the condition for hydromagnetic sta­
bility of a plasma from a variational principlel15 J 

6w = '/, ~ { (rot[sB)) 2 + yp (divs)' + (sVp)divs + Uslrot[sB]}d't' > 0 

(1) 

for arbitrary displacement ~. If we introduce a system 
of coordinates e, t, and V which are connected with the 
magnetic surfaces such that e and t are cylindrical 
coordinates on the magnetic surfaces with periods of 
unity and while we choose as third coordinate the vol­
ume V and require that [ \78\7 t] 'VV = 1, we can write 
the expression for 6w in the forml 4 J 

6w = + S { (rot [sBJ+ sv ii:-0,)' + yp(divs) 2 

-2sv ~j;.n,(BV)VV}ded~dV. (2) 

The vectors B, j, and ~ are then defined by the expres­
sions 

B = $[VVV8] + x[nVV], i = j[VVV8] +i[V~VV], 

s = sa[V~V V] + t;,[VVV8] + sv[VSn], 
(3) 

so that the contravariant components of these vectors 
are respectively equal to 

Bi = {;(, $, 0}, ji = {i,i, 0}, 51= {sa,(;,, sv}. (4) 

If we introduce the notation 

f.L = <Dsa - ;(t;,, rJ = l~a - I~,, (5) 

we get 

[VVVS] = iB-:- Xi, 
p 

(6) 
. B 

s = ILl --:b'rJ + sv[VSVS]. 
p 

One checks easily that the expressions for div ~·and 
curl[~ xB] will be 

. 1 . iisv 
dlvs=]l(JV~t-BVrJHar, (7) 

( ii~t iisvcil \ 
rot[sB] = as +ay- ;[VSVV] 

+r~_ iisvx)!v~vVJ+(asv<i> + iisvx)rvev~J. (8) 
\ at av a~ ae 

1. To obtain the criterion for convective stability we 
put ~ = ~(V). The potential energy (2) then becomes 

6w = + ~ { g~ (yp + B')- 2svgvB (Sj ~ QB + I[~V~!) 
s' [( Sj- QB [jVV))' [jVV) ]} (9) + v p + IVVI" -2 fVVj• (BV)VV d8d~dV. 

We transform the last term of that expression. As 
B'VV = 0, we can use the vector identity (B • 'V)'VV 
+ ('VVV)B = [j xvv] to obtain 

2 . [iVV] . (10) 
A== I VVj•IJVV](BV) vv = I VVj• ({JVV] + K), 

where K = (B · 'V)'VV- (VVV)B. From the definition of 
the coordinate V we have 
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VVi={0,0,1}, VVi=gi3, IVVI 2 =g"". 

Hence we have, since Ki = (B • v)vvi- (VVV)Bi, 

and hence 

[iVV]K=IVVI"(Q-BV ig23;jgt")=IVVI"(Q-BV ~~Vv~)· 
(11) 

Substituting this relation into (10) we find 

[jV V]• [jV VJa j• . [jV lC]. 
A= IVVI'+Q-BV IVVI·=JVVTZ+Q-dlVIVVI•B. (12) 

When ~v = ~v(V) the last term in (12) does not contri­
bute to the integral (9) and therefore 

1 r {. 26;6v 
llw= 2 J sv2 (yp+B2)-~P-. -[B(Sj-QB)- p.;_j 

+ ~:2 [(Sj-QB)•+]i'Q]}ded?;dV. (13) 

The quantity ow will be positive if the integral over the 
volume ov included between two neighboring magnetic 
surfaces is positive. If we indicate the average over the 
volume ov of the layer by angle brackets, the condition 
that (13) be positive definite is thus 

-(B(Sj- QB)- p•)•+ (yp + B2) ((Sj- QB) 2 + pZQ) >0. (14) 

Expanding the brackets we get from this the criterion 
for convective stability in the form 

~ ((j•)(B•)- (j8)2) + 2S(jB)- Q(B2) 

p 

<(iS-BQ\2 ) (15) -ft•+vP \-p-. - 1 +Q >0. 

2. The condition for local stability, obtained in [1 - 43 

has the form 

( S ~ dl ~ jB dl )• ~ B2 dl~ [jVv:)(BV)VV dl 
T'r1f+'r IVVI•B - 2 'j'IVVIiB'j' IVVI• B>O, 

(16) 

where the integration is along closed lines of force on 
rational magnetic surfaces. According to Eqs. (10) and 
(12) we can, as the last term in (12) vanishes when in­
tegrated along the line of force, write condition (16) in 
the form 

( S~dl ~ jB dl)• 
T'j' B+ 'j' IVVI 2 B 

~ B• dl(~ j• dl ~dll 
- '3'lVVf•B 'j' IVVI 2B-Q'j' B! >O. 

(17) 

In the expression obtained the invariant surface func­
tion n determining stabilization by a minimum 13 is 
clearly separated off, and it is also clear that the pos­
itive square of the second term in the first bracket to a 
large extent compensates the first term in the second 
bracket in (17). Introducing the notation 

~ dl 1 ~ dl 
(f)c= 'j' /- 'j'-

B B 

we are led to the condition for local stability in the 
form 

1 jiB) <B•) 
4 82 + 8 \i IVVI 2 c-Q IVVI 2 c 

1( j• < B• ~ < jB '/ ) 
- \ IVVI 2 ) c IVVI•I' c- IVVI 2' c 

>0. (18) 

The criteria for convective stability (15) and local 
stability (18) were used earlier in the text of the pres­
ent paper. 
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