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A classification of inversion-vibrational levels in weakly distorted molecular systems of tetrahedral or 
octahedral symmetry is presented. The magnitude of the vibrational level splitting is determined in the 
quasiclassical approximation. Numerical estimates of the splitting are given for manganese and cobalt 
complexes. 

1. Much progress has been made recently in the study 
of the geometric structure of molecules. Resonance 
methods (EPR, NMR, NQR, NGR), capable of resolving 
process times from 10-s to 10-10 sec, have been success
fully employed, as well as classical methods (electron, 
neutron, or x-ray diffraction and spectrometric 
methods). The resolution time of the latter is from 
10-10 to 10-aJ sec. Naturally, some distortions of the 
geometric structure of the molecules are observed in 
some methods and not in others. One of the main causes 
of the "increase" of the symmetry of the geometric con
figuration of molecules in resonance methods is the in
version effect. The inversion effect was first observed 
in the ammonium molecule NH3• [1J An experimental in
vestigation of even NH3-like molecules entails consider
able difficulties. There are definite indications, how
ever, that the effect is present also in complex mole
cular systems. 

The frequencies of the inversion oscillations were 
calculated for the NH3 molecule by Hund [2] and also by 
Dennison and Uhlenbeck[3J. In this case, the problem of 
the spectrum of the inversion oscillation reduces to a 
one-dimensional Schr6dinger equation. 

We determine in this paper the classification and the 
spectrum of the inversion oscillations for more general 
cases that can be observed in practice. 

2. If the nuclei are symmetrically arranged, the 
electronic term of the molecule may turn out to be de
generate, and in this case the lowering of the molecule 
symmetry leads to a decrease in the energy. However, 
this gives rise to several equivalent positions of the 
system. This means that the Hamiltonian is invariant 
with respect to a certain point symmetry group. 
Neglecting the possibility of transition from one equiva
lent state to the other, each level turns out to be degen
erate. Allowance for such transitions (inversion oscilla
tions) lifts the degeneracy. The character of the split
ting, that is, the number of sublevels and their degener
acy multiplicity, is determined by the point group of the 
system. 

To find the distance between the levels we shall use 
the following consideration. Let Xi be the normal vibra
tional coordinates, motion along which can let the sys
tem go into all stable states. Let us assume that it is 
precisely these normal coordinates which are significant 
in the level-splitting problem. Then the determination 
of the spectrum reduces to a solution of the Schr6dinger 
equation 
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when 11. *is the effective mass. 
We now consider molecular systems with coordina

tion numbers 4 and 6. 
The maximum symmetries in this case are Td and 

Oh. In real systems, however, such high symmetries 
may not be realized, owing to distortion of individual 
valence angles or the nonequivalence of equilibrium 
internuclear distances. Lowering of the symmetry can 
occur, for example, when the ground state of the high
symmetry system is degenerate and the system tends to 
go over into an energetically more favored state (Jahn
Teller effect). For the most frequently encountered 
cases of lowering of the symmetry of the groups Td and 
oh, the table lists a classification of the inversion 
vibrational levels of the "ground" state. 

Let us consider the case of lowering of the symme
try from Td to C3v· Three vibrational coordinates are 
significant, J 1, J 2, and J-3 ; they form a representation T2 
of group Td. Therefore the index i in (1) runs through 
the values 1, 2, and 3. The potential V has four wells, 
located at the vertices of a tetrahedron with distance d 
from the center to the vertex (see the appendix). 

Let lf;o be a scalar on the group Td, and I/J1 the~ 
component of a vector; 

[p2/2~-t' + V]1jJ; = E;1jJ; (i = 0,1). (2). 

Multiplying the first equation by I/J1 and the second by 1/Jo, 
subtracting one from the other, and integrating over a 
certain domain D, we get 

(E1 - E0 ) S 1JJ01jl,d-r = ~ S ('i't V1jlo -1jlo V¢t) dS. (3) 
D 2~-t S 

It is convenient to choose as the domain D that part of 
space which is bounded by three planes passing through 
the center of the tetrahedron perpendicular to the three 
edges in Fig. 1. 

Recognizing that 1/Jo is a scalar on a group, and 1f;1 
transforms like a ~ component of a vector, we get 

FIG. I. 
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~ (..p, V..Po- 'l'oV'I!J,)dS =- 3 ~ '¢0 V'IjJ1dS. (4) 
s r 

If the transparency of the barrier is small, we get in 
the zeroth approximation 

1 
..Po= 1/ 2 (a, + a2 +a,+ a4), 'ljJ1 = --'--=(a1 + a2 + a3- 3a4 j.(5} 

2)'3 

Here a4 is the solution of (2) for V(r) with one well, and 
the functions ai (i = 1, 2, 3) are naturally defined as 

Here T ci is the operator of rotation about a twofold 
2 

axis, whereby the point 4 goes over into the point i. 

(6) 

From (4)-(6), neglecting the overlap integrals, we 
get 

(7) 

Inasmuch as the potential V is unknown, certain as
sumptions on the relation V = V(r) must be made in 
order to calculate the splitting with the aid of formula 
(7). In particular, if each well can be regarded as 
spherically symmetrical, then the main contribution is 
made by a narrow region on a plane near the point of its 
intersection with the line (3-4), and in this case 

E1 -E0 = 4nl a,2 (l), l = ~, (8) 
fL. . l'3 . 

where d is given by formula (21) of the Appendix. 
In the oscillator approximation 

4nl ( fL0
(1) )''' E,-Eo=-;o----;- exp(-fL'wl2). (9) 

we note that the parameters w and l can be determined 
experimentally. 

We can consider analogously the lowering of the sym·
metry from oh to nl (a rectangle with the angle O!o 

between diagonals is located in the equatorial plane). 
Such distortions are obtained in motion along three 
normal coordinates which give the representation T~ of 
the group oh. If we put xl = d(1T/2) - 0!) (d-distance 
between the central atom and the ligand), then JJ. * = m li , 
and the potential V has six minima located at the ver- g 
tices of an octahedron, with distances from the center 

P = d(n/2- a0). 

We now draw planes through the center and the four 
edges of the cube (14, 43, 32, 21). The region D lies 
above these planes (Fig. 2). Let if's be the solution of 
(1) if only one well is retained in V. We put Cf'1 = Tc <I>if'6 
and analogously for the remaining if'i (i = 2, 3, 4, 5}.4 

The wave functions Cf'1- C{Js form a representation of the 
group Oh, which is expanded into A1, E, and T1. By way 
of the basis of these representations we can choose the 
following: 

Classification of inversion vibrations 
Ta 

I D;h I D.a I 
oh 

c,v I s, I c,v v;~ I c, 

AI. T, I AI. E IAJ. E, T, I AT,E, I A, E I A, A,, 2E I A~, A~. 
T~, T~ 

Note: A rectangle(*) or a rhombus(**) lies in the equatorial plane of the dis
torted octahedron. 

E: 

1 • 
'l!lo = f6 1~1 <p,, 

{
'1'1 = 2 ~ [(<rt + <p, + <p, + <p4)- 2 (<p6 + <p6)], 

'I'• = 1/. [(<pl + <ra)- (<p, + <p,)], 

- 1 - 1 
T 1: 1Jl1 = {:2 (<p6 - <p6), ljl, = {2 ('l't- <ra), 

From (3) and (10) we get 

In the oscillator approximation 

3 6nl ( fL ',w )'I' E,-E0 = 2 (E1 -E0)= 7 n exp(- ~t'wl2), 

where 

l= :2 (~-ao). 

(10) 

(11) 

(12) 

We can regard analogously the lowering symmetry 
from Oh to D4d· [4J In this case there are two essential 
normal coordinates, " 1 and , 2, giving the representation 
Eg of the Oh group. The potential V has three wells 
located at the vertices of a regular triangle (Fig. 3). 

We shall reckon the distance along the normal coor
dinates in real atomic displacements. Then JJ. * = 12m 
(m-mass of ligand), and the distance of the vertex to 
the center of the regular triangle is 

d=(b-a)/3, 

where a and b--the half-diagonals in the distorted mole
cule. 

For the "ground" state we obtain by the method 
described above 

I 
IJlo = ¥3 (<pt + <pz + <pa), 

liJll = ; 3_ ( <p1 + e""il3rp2 + e-2~il'rpa), 
E: 

1 
'¢2 = 13_ ( <Jlt + e-2>1i/3rp2 + e2ni/3rp,), 

(13) 

where cp1 is the solution of (1) for the case of one well 
at the point 1, and C{J2 = T21T/3Cf'l, C{J3 = T21;3Cf'2· 

Choosing the domain Din a manner shown in Fig. 3, 
and using the customary reasoning, we obtain 

E,- Eo = - _2_ ~ .Po Oljl, dl 
2fL' L On ' (14) 

where a;an is the derivative along the normal to the 
line L. 

In the oscillator approximation we have 

where l = (b- a)/2{3. 

(15) 

For the first excited state (the potential has one well 

FIG. 2. 
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FIG. 3. 

at the point 1), two modes of oscillations are possible. 
The wave functi.on of one of them { q;1} is multiplied~by 
+ 1 upon reflectiOn about the x axis, and the other { <p1} 
by -1. Just as in the case of the ground state, we find 
that the functions <p1, Ta1r; 3<p1, and T;~; 3 <p1 form a 
representation of the group c3V which breaks up into A1 
and E. The distance between leuls is given by formu
las (13) and (14). On the other hand in the case of the 
function (/)1, there arise the repres~ntations A2 and E 
and the distance between the levels is given by the ' 
formula 

"' 3('-ihPo 
.c.t-Eo=-J'(lt-dl (16} 

2[-1' L iJn ' 

where the functions ';fare determined by formula (13) 
except that <fJ1 is replaced by (/)1 • ' 

In the oscillator approximation we have 
31 I f-1' w \';, [ 5 J 

Et-Eo=~,\- exp(- [-l'wl2 ) 3u'wl'--
2[-1 n I · 2 ' 

(17) 31 ( [-1' (!) \ 'J, [ 1 J 
Et-Eo=-·~. -) exp(-f.l'wl'). [-l'wl'+-

2[-1 Jt . 2 . 

We note that the inversion oscillations go over into 
ordinary oscillations when the barrier between "wells" 
is lowered, and the distance between levels become ex
ponentially small when it is raised. The quasiclassical 
approximation is valid if the splitting t..v satisfies the 
condition t..v /11 « 1. On the other hand, for an experi
mental observation it is usually necessary to satisfy the 
condition t>.v/v ~ exp(-10). Using formulas (12) and (15) 
we can estimate the region 1 « 11. * wl2 ~ 10 of molecule 
distortion, in which it is simplest to observe the inver
sion oscillations. 

Formulas (12) and (15) make it easy to obtain an es
timate of the frequency of the inversion oscillations. 
For example, in the case of the octahedral complexes 
Mn(Hao)r and Co(Hao)r, using the well known values of 
the frequencies of the valence oscillations (v ~ 2 50 em -1) 
and values a- b = 0.325 and 0.068 A respectively[4l, we 
get t>.v/v ~ 10-7 for the manganese complex and t..v/ 11 
~ 0.1 for the cobalt complex. 

We note that even the harmonic-oscillator approxi
mation (formulas (12) and (15)) yields a satisfactory ex
pression for the frequency of the inversion oscillations. 
For example, in the case of the NH3 molecule we get for 
the splitting [3J 

2 
!:>E = .-'¢(a)'(l'"(a). (18) 

[-1 

Formula (18) is similar to expressions (11) and (16). 
Using for 1/J the wave function of the harmonic oscilla
tor, we get 

(19) 

Here M is the mass of the nitrogen atom, m the mass of 
the hydrogen atom, a the height of the pyramid of the 
NH3 molecule. Substituting in (19) the known values 
w = 1. 75 X 1014 sec -1 and a = 3.46 X 10-9 em, we obtain 
the magnitude of the splitting in the "ground" state 
t>.E = 0.44 cm-1 (t>.Eexp = 0.79 cm-1). Such a difference 
is connected with the fact that in the case of the NH3 
molecule the distance between wells is not small 
(2a/ro ~ 1). 

The possibility of inversion in complex molecules 
(SF3, ClF3) was first pointed out by Muetterties and 
Phillips [5J and also by Liehr [6J. 

Recently, Atkins and Symons [7J investigated the EPR 
spectrum of the radical · PF 4· In analogy with the mole
cules SF4 and PF~, this radical should have a distorted 
tetrahedral configuration with symmetry Cav. In this 
case (see the table) there exist six equivalent positions 
and a one-dimensional approach [al is evidently not cor-' 
rect. The presence of six equivalE{'j positions explains 
the temperature variation of the EPR spectrum. 

At low temperatures (winv. eff « wEPR) the spec
trum is anisotropic. A rise in temperature leads to an 
increase of Winv. eff, and when Winv. eff >> WEPR the 
spectrum becomes isotropic. 

Distortion of the tetrahedral symmetry was observed 
also in compounds of the A04 type. According to 
Morton's data [9J, the radicals Cl04 and SO~ have low 
symmetry (C3v or Cs). 

The inversion vibrations are possible also in com
pounds with higher coordination numbers. Berry[10J 
considered the regrouping of atoms in PF5 compounds 
(~ ~ 105 sec-1) and PC15 (~ ~ 10-4 sec-1). 

Electron diffraction methods have demonstrated the 
presence of distortions in the XeF6[uJ molecule. 

The distortion of the molecule (one of the FXeF val
ence angles increases) is the result of an unshared 
pair located on the shell 5s of the Xe atom [12l. In this 
case there arise eight equivalent positions (see the 
table), and the spectrum of the inversion vibrations for 
the "ground" state consists of two triplets and two 
single lines. However, no such distortion is observed 
in the NMR spectrum [13l. This apparently means that 
Winv » wNMR· 

Inversion vibrations can also occur in an octahedron 
as a result of nonequivalent bond lengths [4, 14l. 

The experimental data point to the presence of dis
tortions in the molecular systems with coordination 
numbers larger than 6 [15l: 

Mo(CN)s'-, JF,, ReHg2-, PF4N(CH3)2, B2Cl4• 

Inverse regrouping is of great interest in biochem
ical objects (DNA, RNA), in which collective proton 
transitions, such as occur in dimers of carboxylic 
acids [16], can occur. 

In conclusion, the authors are sincerely grateful to 
A. I. Larkin for continuous interest in the work and 
valuable remarks. 

APPENDIX 

The effective mass 11. * can be represented in the 
form 

(20) 
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where M is the mass of the central atom, m the mass of 
the ligand, and li the real displacement of the atom when 
the molecule goes from one equivalent state to the other. 

The displacements li can be readily related to the 
structural parameters of the molecule: 

l 2 =~d2=~m2(b-3acosa)2 
M 3 3 (M+4m)2 ' 

(21) 

lt2 = {[M(3b- a cos a- 2l'2 a sin a)+ m(10a cos a+. 10b 

+ Bl'Za~in a))2 + [Ma(sin a- 2l'Z cos a) 

+ m(4a sin a- 2f'Z cos a- 2l'Zb)]2}[9(M + 4m)2]-t, (22) 

{Ma(sin a- 2f'Z cos a)+ m[4a sin a- 2f'2(a cos a+ b)]}2 (23) 
lz2= 3(M+4m)2 

Here b is the distance to the "singled-out" ligand from 
the central atom, a-distance to the remaining three 
ligands, cos a-modulus of the cosine of the angle be
tween the directions to the singled-out ligand and the 
direction to one of the remaining three ligands. 
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