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The quasiclassical formula for the barrier penetration is extended to include the case of time­
dependent potentials. Calculation of the penetration reduces to a determination of the sub­
barrier "trajectory" which formally satisfies the equations of classical mechanics and the 
complex initial condition (the "time" t for subbarrier motion is imaginary). It is shown that 
the calculations can be considerably simplified by applying the general formulas to the prob­
lem of ionization of atoms in the field of a strong light wave. Formula (47) is obtained for the 
probability of ionization of a bound level with an orbital angular momentum l in the field of a 
wave with an arbitrary elliptic polarization. Some qualitative features of subbarrier motion 
of a particle in a rapidly varying field are considered in Sec. 4 ( w » Wt where w is the 
barrier oscillation frequency and Wt is the frequency for tunneling through the fixed barrier). 
In contrast to the case of a stationary field the tunneling probability for w » Wt is mainly 
determined by that part of the subbarrier trajectory which is adjacent to the exit point of the 
particle from the barrier. In this case the effective width of the barrier decreases with in­
creasing frequency w, and consequently the penetration increases. 

1. INTRODUCTION 

THE probability that a particle will pass through 
a potential barrier is usually calculated in the 
quasiclassical approximation (under the condition 
that the penetrability of the barrier is small and 
the well known conditions under which the semi­
classical approach is valid are satisfied). Prob­
lems with time-varying barriers, in which the 
barrier can change while the particle passes 
through it, have recently become important. An 
example of such a problem is that of ionization of 
an atom by the field of a strong light wave (laser 
pulse focused with the aid of a lens). The theory 
of this process was considered by a number of 
workers [i-5J, who used rather complicated com­
putation methods. Yet the "insinuation" of an 
electron through a sufficiently broad and smooth 
barrier has a quasiclassical character in both a 
constant and an alternating field, and the lack of 
a convenient method for calculating the tunneling 
probability is due only the fact that no quasiclas­
sical approximation has been developed for alter­
nating fields. 

The purpose of the present paper is to extent 
the quasiclassical method to include the nonsta­
tionary case. In Sec. 2 we derive formulas (7) and 

(24) for the probability w of tunneling through a 
periodic potential barrier V ( x, t) of arbitrary 
form and of frequency w, and for the momentum 
spectrum of the emitted particles. The probability 
w is determined by a function W which is calcu­
lated along the complex subbarrier particle 
"trajectory". W is closely related here to the 
classical action (see (19)). In Sec. 3 we consider 
the application of these formulas to the problem 
of level ionization in an alternating electric field. 
We derive formula (47) for the most general case 
(level with orbital angular momentum l in the 
field of an elliptically polarized wave), a case not 
considered in earlier papers [4, 51 • It turns out 
here that formula (24) gives not only the correct 
exponential for the ionization probability, but also 
the exact form of the pre-exponential factor. A 
qualitative description of the tunnel effect in a 
homogeneous field V ( x, t) = - Fx cos wt is the 
subject of Sec. 4. It is shown that a transition to 
an imaginary "time" explains many features of 
the subbarrier motion in an alternating field, such 
as the narrowing of the barrier with increasing 
frequency w, which was observed in [5J. It is 
shown that when w » Wt the tunneling probability 
is determined essentially by a small section of 
the subbarrier trajectory near the point of 
emergence. 
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2. TUNNEL EFFECT IN THE QUASICLASSICAL 
APPROXIMATION 

The penetrability of a time-varying barrier can 
be obtained in principle by solving the Schrodinger 
equation 

i8~/ot = {Ho (x) + V (x, t)} ~ (x, t) ( 1) 

with the specified initial condition 

~(x, t}j t=to = cpo(x)e-iEoto, Eo= -x2 /2, HoqJo = Eocpo.(2) 

Here H0 ( x) = - Y2 D. + V0 ( x) is the unperturbed 
Hamiltonian°, and V ( x, t) is the oscillating po­
tential causing the tunnel transition from the 
bound state cp 0 ( x) to the continuous spectrum 
state. The following assumptions are made with 
respect to V 0 ( x, t) : 2> 1) V ( x, t) varies period­
ically, V(x,t+T)=V(x,t), where T=27r/w; 
2) the potential V ( x, t) is a weak perturbation 
in the region K r :S 1 in which the wave function 
cp 0 ( x) is essentially concentrated, I V ( x, t) l 
« K 2 for K r :S 1; 3) the turning points of the 
potential V 0 ( x) + V ( x, t) lie in the region K r 
» 1 (for all t). 

Under these conditions, the tunneling probability 
is determined by the remote "tail" of the wave 
function ljJ ( x, t), and there is a broad region in 
which the motion is quasiclassical. The perturba­
tion V ( x, t) causes the bound level to be trans­
formed into a quasistationary state, the average 
lifetime of which is much longer than the atomic 
times ( ~K-2 ). Let us transform (1) into an equa­
tion for the quasistationary state. To this end we 
arbitrarily divide the potential V 0 ( x) into two 
parts 3>: 

Vo(x)= Vsh(x)+ Vcoul(x), 

where V sh ( x) is the short-range part of the 
potential and V Coul is the Coulomb "tail." 
Introducing the Green's function G ( x 2t2; X1 t1 ) , 
which describes the motion of the electron when 
r > a, 

1lwe use the atomic system of units: e ~ ti ~ m ~ 1. 
2) An example of a perturbation V(x,t) satisfying the condi­

tions (1) - (3) may be the potential (26) with F « F 0 ~ K 3 • 

3 lFor example, we can put: 
V sh (x) = e-•I•Vo(x), 

Vcout(x) = (1- e-•J•)Vo(x) ~ -Xcr-1(1- e-•i•). 

Here Ka » 1; a plays the role of the continuity point and drops 
out from the final formulas. It is necessary to separate V Coul 
because the Coulomb interaction distorts the asymptotic form 
of the wave function at arbitrarily small distances from the 
atom, and must be taken into account when subbarrier motion 
is considered. 

{ i~ +~~2- Vcout(xz)- V (xz,tz) }G(xz tz; Xt t!) 
at2 2 

= i6 ( X2 - Xt) 0 (t2 - ft) , (3) 

we rewrite Eq. (1) with initial condition (2) in the 
form of an integral equation: 

tz 

~ (x2, t2) = - i ~ dtt S dx1G(x2t2; Xttt) Vsh (xt) ~ (x~, t1) 

to 

The last term in (4) describes the smearing of 
the initial state and attenuates in proportion to 
[K2( t- to)]-3/2, 

The usual procedure of switching V (x, t) on 
adiabatically at t 0 - - oo leads to the following 
equation for the quasistationary state 

t. 

(4) 

~(x2, t2) =- i ~ dtt ~ dxtG(xztz;•xtt!) Vsh (x!)~(xb t1). (5) 

The factor V sh ( x1) cuts off this integral at 
K I x1 I :S 1, so that 1/! (xi> t1) can be replaced by 
the wave function of the unperturbed atom4> 

t. 

~(x2,tz) =- i J dt!e-iEot 1 ~ dx1G(x2t2; x1t1) Vsh (xt)cp(Xt). - (~ 

With the aid of calculations similar to those made 
in [4] we obtain the flux of particles going off to 
infinity, and obtain the tunneling probability w in 
the form of a sum of the probabilities of the multi­
photon processes: 

where Pn = ../ 2 ( n - v) w, and 

F() .1 . . ~(Pn,t) 
Pn = L liD. • 

t-+oo t- to ( 8) 

The quantity v in (7) yields the tunneling 
threshold (the minimum number of quanta that 
must be absorbed in order for an electron to be­
come detached from the atom). To determine v, 
we take account of the fact that the electron 
emerging from under the barrier is under the in­
fluence of the field 

V(x, t) = ~ Vn(x) cos (nwt +an) 
n=1 

(the atomic potential V 0 ( x) can be neglected as 
r - oo ) • Treating the influence of V ( x, t) by the 

4 ) A rigorous justification for this substitution is given in 
the appendix. 
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Kapitza method [S, 7 J, we replace V ( x, t) by an 
effective time-independent potential: 

1 00 /n 2 (x) ' 8Vn 
Veff (x)=-4. 2 ~-2-, fn(x)= --8-. (9) 

w n x 
n=i 

Since V eff ( x) > 0, the electron can go off to in­
finity only if V eff ( x) is bounded when I x j - co • 

In this case 

Wo[ 1 ;fn2 ] • v=- 1+--LJ- , fn=hmfn(x) 
w 2 ( WX) 2n=l n2 x->·oo 

(10) 

(we have confined ourselves here for simplicity to 
one-dimensional motion). This leads to a limita­
tion on the potential V ( x, t): 

jV(x, t) I < Cr for r-oo. (11) 

If V ( x, t) contains terms that are linear in xi as 
r-oo (see, e.g., (26)), this will affect the values 
of v and Pn. The increase of v is proportional 
to the kinetic energy, averaged over the period, 
of an electron moving to infinity in a potential 
V (x, t). 

The partial probability Wn of tunneling with 
absorption of n quanta of energy fiw is deter­
mined, in accordance with ( 8) by the quantities 
F ( Pn). It is possible to derive for them simple 
quasiclassical formulas. The wave function 
1/J ( Pn• t) corresponding to a state with a definite 
average momentum Pn at infinity, satisfies an 
equation similar to (6), in which G(x2t2; x1tt) 
must be replaced by the Green's function in the 
mixed ( p, x) representation: 

G (p2 ~; x1 t1) = -1--~ e-ip,x, G (x2 t2; X1 tt) dx2.. ( 12) 
(2n)'f, 

Using for G ( x2tl; x1t1) the quasiclassical ap­
proximation [a-toJ 

e (t2- tt) . 
G (x2t2· Xtt!) ~ e~B(x,t,; xt,) ( 13) 

' (2:rti(t2- tt)fi· ' 

t. 1 
S(x2t2;x1t!)= ~ ( 2 x2-Vcou1(x)-V(x.t))dt (14) 

t, 

and calculating the integral in (12) by the saddle­
point method, we obtain the quasiclassical asymp­
totic expression for G(p2t2; x1tt): 

G(p2 ~· x1t1) ~ __ 1_ eiW(p,t,;x1t,) {15) 
' (2n) 'h ' 

where 

w (P2t2; Xdt) = s (P2t2; Xtlt) - P2X2. 

The action S in (15) is calculated along the 
classical trajectory defined by the conditions 
x ( t1) = x1 and p ( t2) = p2. The quantities x2 and 
p1 are not independent variables and are deter-

mined from (16). By varying W at fixed values of 
t1 and t2 we obtain5) oW = -x2 6p2 - Pt OXt, whence 

fJW/fJp2 =- x2, fJWjfJx1 =-Pt. (16) 

For the total derivative dW/dt, taken along 
the trajectory, we get from (15): dW I dt1 = dS/ dt1 
= - L ( t1); on the other hand, 

dW fJW fJW. fJW . 
-=- +-x1=--p1x1. 

dt1 fJt1 fJx1 fJt1 
Comparing these expressions, we get 

fJW jfJt1 = PtXt- L(t1) = H (t!). (17) 

Substituting formula (15) for G in (6), wear­
rive at an integral containing a rapidly oscillating 
exponential: 

e-iE,t, 1• _ 

¢ (P2, t2) = (Zn) 'l•i j""dt1 S dxteiW(p,t,; x.t,>V sh (xi) !po (xt), ( 18) 

where 
t, 

W (p2t2; x1t1) = S (p2t2; Xttt}- P2X2 = ~ [L (t) +Eo] dt- P2X2 
t, 

(19) 

( S is the so-called reduced action [ 7 J. The main 
contribution to the integral (18) is made by the 
saddle point. The saddle-point conditions with 
respect to the variables t1 and x1 have, with 
allowance for (16) and (17), the form 

H(t1°) =Eo= -x2 /2, p(t1°) = 0. {20) 

Among all the paths that contribute, according 
to Feynman [B, 9], to if! ( p2, t 2 ), the only ones that 
"survive" in the quasiclassical case are those 
lying in the vicinity of the classical trajectory. 
The specific feature of our problem is that there 
exists no real trajectory satisfying Newton's 
equations, the initial conditions (20), and the con­
dition p ( t2) = p 2, since the passage of the parti­
cle through the potential barrier is impossible in 
classical mechanics. This causes the "initial 
instant" tf to go off to the complex plane. [s] 

Nonetheless, the formal apparatus of classical 
mechanics continues to operate. 

The saddle point x1°> = x ( tf) lies in the region 
K r » 1 (see [4]), making it possible to substitute 
in (18) cp 0 (x) in the form 

cp0 (r) = C"'1x'h(xr)"'-1e-><rYzm(r/r), 'A= xc/x. (21) 

The factor (Kr)A is thecontribution oftheCoulomb 
"tail" to the action S at the point r. Indeed, 

S)With allowance for the well known formula oS = p2ox2 -

- p,ox, (see [7]). 
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S(r)= L;2(t)dt=ix f (1- :0 fdr=ix(1'r(r-ro) 
to To 

- r0 Arch1/ !__)~ i(xr- A.lnxr+ const)for r~ro. (22) 
ro 

Here 

ro=2A/x, {j)o(r).-..11 exp[iS(r)] for xr';>1. 

We shall combine the term ( Kr- A ln Kr) in the 
argument of the exponenti~ with the correspond­
ing terms in the function W, after which the ac­
tion S in (14) should be calculated with the exact 
atomic potential V 0 ( x), and the continuity 
parameter a drops out. As a result we get 

. ~·· (pz, t2) w C [ x ]'/, hm---=-- xz 
~,-... "" t2 - to 2n . i ( azw I at2) o 

(23) 

(only the zeroth harmonic of (18), which increases 
linearly with t 2, is of importance in the calcula­
tion of this limit). 

All the saddle points lying in the strip 0 :S Re t 
:S T ( T = 2n I w) contribute to (23). Let us con­
sider those saddle points with the smallest values 
of Im W and denote their number by g (thus, 
g = 2 for the field (26)). Assuming that we can 
neglect the interference between the individual 
terms of (23) when we calculate the tunneling 
probability (see expression (53) for I F n ( p) 12 

in [4\ we get: 

IF(p) 12 = g(2:)21Cxzl 2 1 :;:)21-!IYzm(no) 12 

Vi (!l xexp{-21roW(pt2;x1 ·t1 )}, (24) 

where n0 is a (complex) unit vector specifying the 
direction of the classical trajectory at the turning 
point (20). 

Formulas 7 and (24) determine the tunneling 
probability Wn and the momentum spectrum of 
the emerging particles. We emphasize that (24) 
contains only quantities pertaining to the classical 
trajectory of the particle, and the value of I F ( p) 12 

depends only on the subbarrier section of the tra­
jectory. A highly illustrative description of the 
subbarrier motion is obtained by going over to 
imaginary time (see Sec. 4). For subb_erri~r motion 
in a constant field we have p 2 = 0 and W = S; in ad­
dition, by virtue of the energy conservation law, we 
haveS= f x2dt. Replacing in (7) the summation over 
n by integration, we obtain the penetrability of the 
static barrier 

D.-..exp{-2i1'pdxl}, p2=2(E-V(x))<O. (25) 
x, 

Here Xt and x 2 are the classical turning points, 
and the integral is taken over the extremal tra­
jectory that minimizes Im S ( x 2, Xt ) . In the one­
dimensional case, the question of finding the ex­
tremal trajectory drops out, and (25) goes over 
into the well known formula [ttl for the coefficient 
of transmission through the barrier. 

In the adiabatic case ( w « wt), the extremal 
trajectory x ( t) is close to the corresponding 
trajectory x 0 ( t) in a constant field. Therefore 
we can easily get with the aid of (19) and (24) the 
general form of the adiabatic correction to the 
tunneling probability (see [tz]). 

3. IONIZATION OF ATOMS BY AN ELECTRIC 
FIELD 

To calculate with the aid of (7) and (24), it is 
necessary to specify more concretely the pertur­
bation V ( x, t) that causes the tunneling. We put 

V(x,t}= -F(t)x, F(t)= {Fcoswt,eFsinwt,O}, (26) 

which corresponds to the problem in which the 
atom is ionized by the field of a light wave with 
ellipticity E ( -1 :S E :S 1). Using the equation of 
motion X: = - VV 0 ( x) + F ( t) and the condition (20), 
we transform formula (19) into 

0 1 
W(p, 0; x1, ti) =- ~ { 2 (x2 + x2) + U0(x) )at. (27) 

t, 

where U0 (x) = V0 - XioV 0/oxi. In (27) we put 
t2 = 0, so that Im W does not change after the 
particle emerges from under the barrier. Let us 
find the most probable value of the momentum 
p = p 0 on emerging from under the barrier, and 
the form of W ( p) near p = p 0• Going over to the 
dimensionless variables6> 

(!) s = -x, ,; = iwt, k = (p- Po)/x, 
X 

we write out the expansion 

s('t')=so(,;)+si(,;)+s2(,;)+ ... , 'Sn.-..kn. (28) 

Here ~ 0 ( T ) is the extremal trajectory that mini­
mizes Im W, and ~ n ( T ) are the corrections for 
it ( k is assumed to be a small parameter). Using 
the equations of motion and formula (27), we ob­
tain a chain of equations for the determination of 
~n ( T). Cutting this chain off at n = 2, we arrive 
at the following results: [tz] 

6 )The "time" to for the sub barrier trajectory is pure imag­
inary, and therefore r takes on real values. 
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1) The most probable momentum Po is given 
by the condition 

Re (so~!),=o .:....__ 0 or Im so(O) = 0. 

2) The expansion of W ( p) in the vicinity of 
the minimum point p = p 0 is 

(29) 

Wo 
W(p)=i-ff(Po)+a;Jkiki+ ... ], (30) 

(I) 

where 

(the tensor aij does not depend on k) (31a) 
a;jk;kj = -s; St I t=O 

Owing to the factor w0/w » 1, the momentum 
distribution is narrow, so that the retention in (30) 
of only terms quadratic in ki is justified. 

(3) ( 72W) =(~~-Fxo)t=to· (32) 
fJtZ t=lo 

Thus, to determine the ionization probability it 
is sufficient to find the extremal trajectory ~ 0 ( T) 
and the quantities aij connected with the correc­
tion ~ 1 ( T). They satisfy the following equations: 

.. 1 
so('t) = --f(T)- VU(s), so(-To) = 0, 

r 
· Po 
so(O)= -i-, 

X 
(33) 

.. (1J a2U (1l 

£; = - fJ£<o> fJ£<o> £i , ~~ (0) = - ik. (34) 
' J 

where 

f(T) = {chT, -iesh-t-,0}, U(£) = -x-2 V0 (£/w). 

The trajectory ~ 0 ( T) can be obtained for an 
arbitrary atomic potential V 0 ( r) only by numeri­
cal calculation. We confine ourselves here to the 
simplest case of a 6-potential ( V 0 ( r) = 0 with 
r > 0 ), which was already considered earlier [3- 4] 

In this case the condition (20) is somewhat modi­
fied: 

x(to) = 0, p2 (to) = - x2 or 62(- To)= 1. (35) 

The extremal trajectory ~ 0 ( T) is determined 
from (33) and (26): 7> 

7ln satisfies the equation to= -f(r)/y. If the i-th component 
of the force fi(r) is real, then we get from the conditions (29), 
(33), and (35) that pf 0 l = 0; on the other hand if fi(r) is pure 
imaginary, then ~( 0 > (0) = 0. For the field (26) of elliptically 
polarized light is follows therefore that the momentum Po is 
directed along the y axis, with ~;0 )(0) = 0. The condition leads 
directly to expression (45) for Po· 

i ~ ( sh To _ sh T ) T, ol' 
V 'to T . f 

where To = T 0 ( y, E) is the positive root of the 
equation 

( sh 'to ) 2 2 
sh2 To - e2 ch 'to-~ = V · 

The solution of Eq. (34) for ~<l>(T) is 

sfil (-r)= -i(a;iki+k;T), 

(36) 

(37) 

and the initial condition at T = -To assumes in 
the case of a O-potential the form 

(!) · (1) ~ · (0) · (O) • " 
[£; -A.;;s; h=-'to = 0, A.;i = [£; si (soso)-1h=-'to· (38) 

From this we get aij =Aij + ToOij· Formula (32) 
for the pre-exponential factor simplifies, when 
account is taken of the condition (35), to 

( fJ2W ) . sh 2To ( th To ) 
-- = Fxl t=to = i'XY--- \1- e2 + e2 -. - • 

fJt2 t=to 2y To ' 

(39) 

Substituting expression (36) for .; 0 ( T), we 
arrive at the following formula for the momentum 
spectrum of the electrons emitted upon ionization 
of a bound level with orbital angular momentum l: 

2 { 2wo[ IF (p) I P=P n = 4nD ( V • e) I Yzm (no) 12 exp - --;- f ( V, e) 

3 (0) 

. ( Pi - p; )2]} + ""c, ' ' L.J \' X 
i=! 

(40) 

where 

( 1 + e2 ) ( th To ) sh 2To f(y,e)= 1+--- To- 1-e2 +2e2-- --; 
2y2 To 4y2 

(1- e2 ) (To- tb To) 
Cx =To !:1 

_ {i + e2 (1-thTo/To) 2 } 

Cy - To /:1 th To ' 

Cz =To, !:1 = (1- e2)To + e2 th To; 

D(y, e)= IC,.zl2 wy2 ~. 
8:rt3 x/:1 sh 2To 

(41) 

(42) 

(43) 

The unit vector n0 ( n~ = 1) gives the direction 
of the initial velocity. Since .; ~o> is imaginary, 
this vector is complex. Putting n0 = n0 ( &, cp) and 
(} = i</!, we get from (36) 

th 'ljJ = (I ~Y I t'sx) 't=-'<• = e (cth To- 1 I To). ( 44) 

The most probable momentum of the emitted 
electrons differs from zero when 0 < l E l < 1 
and is directed along the y axis: 
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ko = "~ ~h 'to Po ={0, + ko,O}, "' (45) 
'Y 'to 

(see Fig. 2 of[5l). This causes the most probable 
number of absorbed photons n 0 ( y, E) (with 
E "" 0) to exceed the ionization threshold 
v = ( w 0/ w) [ 1 + ( 1 + E 2 )/ 2 i]: 

n, e2 ( sh 'to ) 2 

~ - 1 = 1 + ( 1 + e2 ) /2y2 v-ro 

=1 82 
for JeJ~1 (1 + 1/2y2) (Arshy)z 

(2-rocth-ro-1)-1 for JeJ = 1 

(46) 

(see Fig. 1). 

Greatest interest attaches to the average ioni­
zation probability for unpolarized atoms. The 
corresponding averaging is effected with the aid 
of the formula Yzm*(n) ~ Yt,-m(n*) and the 
addition theorem for spherical functions: 

1 l 1 
--- ~ JYzm(no)J 2 =-Pz(ch2'1jJ), 
2l + 1 4Jt 

m=-l 

'ljJ = Arth { e ( cth 'to - -r: ) }. 

The parameter </! increases monotonically with 
increasing y; when y » 1 we have 

h 2 1 + e2 
c '¢~~--~~~~-

1- e2 + 2e2/ln 2v 

When l = 0, formulas ( 40) -( 43) coincide with the 
corresponding expressions (23) -(28) from [5J, 
where, however, less convenient variables were 
used. a> As seen from the foregoing, all the quan­
tities in the formulas for the ionization probability 

no--v 
-v 

azno.-,-~,--,-.-,-,-,--, 

0.1 

FIG. 1. (n 0 - v)/v as a function of y. The numbers of the 
curves indicate the values of the ellipticity f of the light. 

8 )The parameter s 0 used in the formulas of [5 ] is given in 
terms of r 0 by s 0 = f(l - tanh r ol r 0). 

0.1 

0 20 40 60 so toor 

FIG. 2. The dependence of the time of subbarrier motion on 
the ellipticity f. The ordinates represent the difference L'l.t 
= ro(y,f)- r0(y,O). 

can be expressed in simple fashion in terms of 
T 0• The dependence of T 0 on the ellipticity E of 
the light, obtained by numerically solving Eq. 
(37), is shown in Fig. 2 (To= sinh-1y when 
E = 0). We note that the variable T 0 has a simple 
physical meaning: T 0 / w is the total time of mo­
tion of the particle under the barrier. 

Substituting (40)-(43) into (7) and integrating 
in the ( Px· Pz) plane, we obtain the partial prob­
ability of ionization with absorption of n photons: 

_ J C,.zl 2 ( w h )'!. 'to Pz ( ch 2'\jl) R 
Wn - W -- --t 'to -- n 

:rt 2wo ~ ch2 '1jl 

X exp {- 2: 0 f ( y, e)} , (47) 

where 
. [ (n- v)th 'to J'i• 
Rn = 2 · ln, 

i 

ln = ~ dxexp {-[a(1-x2)+ b(x-x0 ) 2}]/o(c(1-x2)). 

-i 
(48) 

The dimensionless constant CKl is defined in (21), 
10 ( z) is a Bessel function of imaginary argument, 
and 

[ (1-e2)(-ro-th-ro)J 
a = ( n - v) 1 + ~ To, 

[ e2 ( 1 - th -ro/-ro) 2 J 
b = 2 ( n - v) 1 + ~ h 'to, 

t 'to 

c = (n- v)-ro~-1 th 'to, Xo ={(no-v)/ (n- vH'1•. (49) 

In the case when E = 0 (linear polarization), 
the integral Jn can be determined exactly: 
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tially on going deeper into the barrier Rn = e-a<n-v>w("f~(n -v)), a= 2('to-th'to), 
~ = 2 th To, 'to= Arsh y, (50) (F(-t0)/F(O) =-fl+Y2). Thegrowthof F(t) 

X 

where w ( x) = exp ( -x2 ) J [ exp ( t2 ) ] dt (a plot of 
0 

w (x) is given in [41 ). Formula (47) then takes a 
simpler form 

I C,.zl 2 I (J) \ ,,, 

Wn=ffi--\ -thTo) w(y~(n-v)) 
:n: , 2ffio 

X exp{ -[ 2: 0 f(y) + a(n- v)]}, (51) 

which coincides with formula (61) of[41 • We note 
that expression (51) for Wn is more convenient 
when the frequency w is fixed and y » 1 (tanh 
To~ 1). When E,.; 0 andy~ 30-50 the deter­
mination of the pre-exponential factor Rn calls 
for numerical calculations 9>. The dependence of 
Wn on the orbital angular momentum l is given by 
the factor I CKz I 2Pz (cosh 2a ) , which increases 
when E- 1. 

4. SOME FEATURES OF SUBBARRIER MOTION 
IN AN ALTERNATING FIELD 

The probability of tunneling through a nons!_a­
tionary barrier is determined by the function W cal­
culated along the classical-particle trajectory (see 
formulas (19) and (24)). Inthis case the "time" t' 
during which the subbarrier motion effected is pure 
imaginary for the extremal trajectory that mini­
mizes lm W.[sJ We shall show that a consistent 
transition to a real variable t = it' in the equa­
tions for the subbarrier motion leads to a clear 
picture of the passage of the particle through the 
barrier. We confine ourselves below to the case 
of a homogeneous field, V ( x, t') = - F ( t') x, but 
the results are more general. 

We start with linear polarization. The extremal 
trajectory is one-dimensional and corresponds to 
a momentum Px = 0 at emergence: 

x(t) = Fffi-2 ( ch ffito- ch ffit), -to :::;;; t :::;;; 0, 
(52) 

x(-to)=O, i(-to)=x., ffito='to=Arshy. 

We see from the equation of motion X. =- F cosh 
wt that the oscillating external field F ( t') 
= F cos wt' is transformed in the case of the sub­
barrier motion into a decelerating force. When 
y » 1 the decelerating field increases exponen-

9 >we note in this connection that the asymptotic (for y» 1) 
formulas (32) and (33) for Wn given in [5] are still insuffici­
ently accurate when y - 30. 

with increasing frequency w leads to a reduction 
of the effective width of the barrier x ( 0): 

Fo ( 1 + y1 + y2 )-i 2ffio . y xx(O)=- = 
2F 2 (J) 1 + y1 + y2 

(53) 

In actual experiments, [13• 141 the laser frequency 
w is fixed, and y >> 1; under these conditions, the 
width of the barriers in units of K - 1 (the atomic 
radius) is simply 2w 0/w and does not depend on 
the field intensity F. 

Figure 3 gives an idea of the buildup of the re­
duced action S during the course of the subbar­
rier motion (for the extremal trajectory (36) the 
difference between W and S vanishes, since 
p ·xI t=o = 0). The difference between low fre-

-1 

s;s; 
fr---

b 

FIG. 3. Variation of the reduced action S during the course 
of subbarrier motion: a) as a function of t/t0 ; b) as a function 
of x/x0 • The ordinates are the values of S(t, -t0)/S(O, -t 0). At 
the instant t = 0 the particle goes out from under the barrier, 
and Im S no longer varies. Curves 1, 2, and 3 pertain to the 
case of linear polarization, and 4 and 5 to circular polariza­
tion. The adiabaticity parameter y has the values y = 0 (curve 
1), y = 30 (curves 2 and 4), and y = 100 (curves 3 and 5). 
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quencies ( y ~ 1 ) and high ones ( y » 1 ) can be 
seen most clearly _!n Fig. 3b, where the greater 
part of the action S builds up when y » 1 on the 
final section of the subbarrier trajectory. Of 
paramount importance in the calculation of the 
tunneling probability at y » 1 is therefore an ac­
curate calculation of the trajectory in the vicinity 
of the emergence point x ( 0), where the particle 
moves with low velocity. 

This property of the subbarrier motion in a 
rapidly alternating field can be explained as fol­
lows: On changing over to the variables ; = wxiK 
and T = wt, the action S takes the form 

(54) 

where 
. 1 E~~ 1 

H(E, E,tt)= 2E2+U(E)+ -'Y-, H(-~o) = 2' 

1 
U(E)=- 2 Vo(x). (55) 

X 

With the aid of the equation of motion 
•• 1 

(; = -aula; - y- cosh T) we get 

ImS(~) =1-a(v) 1/1- s +···· 
ImS(so) f Eo (56) 

Therefore (% -H) ::::: 0, and it follows from (54) 
that lm S(T, -To) is a monotonically increasing 
function of T. Since ; ( T ) = ; ( 0) - T % y when 
T-- 0, Im S has a root singularity as a function 
of ; at the final point: 

dB s:sh~ 
-=--<0 (-~o~~<O). 
d~ 'Y 

(57) 

where 

a =~sh~(th~)z ={a/sJ_ as v-+0 
('\') f(v) 2 2 l'2v/1nv forv~1· 

(58) 

The coefficient a ( y) increases together with y, 
and this explains the behavior of the curves in 
Fig. 3b. 

We proceed to the case of elliptic polarization. 
The extremal trajectory is determined by (36); 
; y is imaginary because the corresponding com­
ponent of the force f is imaginary: 

d26 1 
-d 2 = --f(~)~ f(~)= {ch't', -ish~.o}. (59) 

't' 'Y • 

At the instant of emergence from under the bar­
rier we have h( 0) = y-1 (cosh To- 1) and ;Y 
= ; z = 0; the width of the barrier h ( 0) increases 
also with increasing ellipticity t: (see formula 
( 63) of [5]), leading to a decrease in the ionization 

probability. To explain this phenomenon, we note 
that the motion along the x axis obeys the same 
law as in the case of linear polarization, but the 
initial ve.locity ~ (-To) increases (since ~ 2 ( -To) 
= 1 and ; } ( -T 0) < 0). This leads to a correspond­
ing increase of the time T 0 needed to stop the 
particle. 

The dependence of the subbarrier motion on 
the ellipticity of the light t: can be investigated 
with the aid of Eqs. (36) and (37). In the main, the 
influence of E leads to the appearance of a 
"transverse" coordinate ; y; although ; y = 0 at 
the ends of the trajectory, we have here in the 
intermediate region I ; y I ~ Eh. Figure 3b shows 
that when E ~ 0 the final section of the trajectory 
merely assumes a more important role in the 
buildup of the action 8.10) 

This property, which is characteristic of sub­
barrier motion in the antiadiabatic case y » 1, 
points to a way of taking Coulomb interaction into 
account (the Coulomb correction for the case 
y :S 1 was obtained earlier [151 ). Replacing the 
Coulomb term a-I y; 2 in the exact equation [15] 

~ = !__ (~- ch~ ), a=(.!__ Y = ')..~'\' (60) 
'Y E2 'Yc 2ooo 

by the constant force a-I y; 8. we obtain an equation 
that can be solved analytically. This question will 
be considered in greater detail in another paper. 

We have assumed so far that the particle 
emerges from under the barrier immediately upon 
reaching the turning point. In quantum mechanics, 
however, multiple reflections from the barrier 
boundary are also significant. This can be seen 
already in the simplest example: 

V x _ { Vo for 0 < x < a 
( ) - 0 for x < 0 andx > a 

(61) 

A particle with momentum k ( k < K = ...; 2m V 0) 

incident on the barrier from the left can emerge 
at the point x = a after ( 2n + 1) "to and fro" 
passages. The amplitude of such a process is 

A2n+1 = b(k, k') [a(k', k))2nb(k', k)e--(2n+t)ImS., (62) 
a 

where S0 = Jpdx = k'a, k' = iK = i...j K2- k2 is the 
0 

momentum of the particle under the barrier, and 
a and b are coefficients that take into account 
the reflection and refraction of the wave at the 

1 0 )The expansion (57) for the action S near the turning 
point ~0 = ~x(O) retairis the same form also when £ /o 0, and in 
this case a(y,£)- [exp(r0/2]r.-•, i.e., the coeffiCient a in­
creases together with \ £ \. 
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points where the potential changes jumpwise.w 
Summing the contributions of all the paths, we 
obtain the amplitude of the emerging wave: 

"" 2ikx 
A= ~A2n..1.1 = (63) 

n=O ' (k2 -X2)shxa+2ikxchxa 

The wave function of a particle passing through 
the barrier is of the form A exp [ ik ( x - a)]; the 
penetrability D of the barrier is equal to 

4k"'x2 
(64) 

Formulas (63) and (64) coincide with the result of 
the accurate solution of the Schrodinger equation 
(se~[11J, p. 104). In the quasiclassical case 
lm S0 = Ka » 1, and only the first term, corre­
sponding to a single passage, "survives" in the 
sum (63). A similar situation obtains for an arbi­
trary time-constant barrier. 

To assess the role of multiple reflections in 
an alternating field, we replace the short-range 
potential V 0 ( x) by a reflecting wall at the point 
x = 0. The subbarrier trajectory consists of n 
pieces ~k(T), 1::::: k::::: n (see Fig. 4). The growth 
of the decelerating force F ( T) = - F cosh T with 
increasing T causes the amplitudes of the maxima 
to decrease rapidly with increasing n when 
y » 1. The functions ~ k ( T ) satisfy the equations 

.. ch 't . 

Sk('t) =--(- 'tk < 't <- 'tk-1), Sn(- 't'n) = 1, 
y 

~t(O) = 0, 

(65) 

(the last condition corresponds to elastic reflec­
tion from the wall). The solution of these equa­
tions is of the form 

2::::.;; k::::.;; n, (66) 

ll)When a plane wave is incident on an infinite step, are­
flected and a refracted wave are produced: 

ljl(.x) = en•" + a(k1, k 2 )e-n•" for .x < 0, 
'lji(.x) = b (k~, kz) e1k•" for .x > 0. 

Here k, and k2 are the wave vectors on the left and on the 
right of the interface x = 0, and 

kt- kz 2kt 
a(k~, kz) == ---, b(kh kz) = ---. 

kt + kz kt + kz 

12 )It is seen from (55) that the sign of the potential V o(x) 
is reversed on going to the imaginary "time" r. 

the values of Tk being given by the system of 
equations 

ch 't'z - ch 't1 h 
~ = 2 s 't!, 

'tz- 'tt 

ch 't'k - ch 'tk-1 ch 't'k-1 - ch 'tk-z 
= 2:sh Tk-1- · 

(3::s;;k::s;;n-1), 

(67) 

ch 'tn - ch 't'n-1 h = S 't'n -y. 
Tn- 't'n-1 

The tunneling probability is Wn ~ exp (-21m Sn), 
where 

roo 
Sn = i-fn(y), 

(I) 

( 1 ) sh2,;,. 
/n(y)= 1+- 't'n---' 

2y2. 4y2 

1 ~ (ch Tk- ch 'tk-d 2 

+-Li ' 
'V2 k=Z 'fk - 'tk-1 

(68) 

To determine whether the contribution of the tra­
jectories with n > 1 can be discarded when 
·y » 1, we solved the equations in (67) numerically 
for y = 100. The result is shown in Fig. 6c. When 
w 0/w ~ 10 we have w2/w1 ~ 10- 7, i.e., also in the 
case of an alternating field satisfying the condi­
tions w « w 0 and F « F 0, it is sufficient to take 
into account a very simple subbarrier trajectory 
without reflections. 

In conclusion, we make one remark concerning 
the replacement of the field of the light wave by a 
homogeneous electric field F ( t') = F cos wt'. As 
proposed in [4•5], such a replacement is valid if 
i\. » K-l (i\. = 2rr/k is the wavelength of the light). 
It is now clear that this condition is too weak: the 
external field must be homogeneous not only 
within the confines of the atom, but at much 
larger distances on the order of the width of the 
barrier. The correct condition follows from (53): 

~(y) 
8 

L__...L_ _ __L__,__.. 5 
--ro 0 

~'~~ 
-1"0 O-r 0 5 tOn 

b c 

FIG. 4. Form of the subbarrier trajectory with n reflections: 
a) y -> 0, b) y » 1, c) the function fn(y), which determines the 
penetrability of the barrier, for y = 100. 
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Xo 1/ 21 'Y 
kxo=2n-= v- ~1, (69) 

'A mc2 1 + 1"1 + y2 

where I = Ko/2 is the ionization potential and m 
is the electron mass. For atoms ( 2I/mc2 )11 2 

~ 10-2 and condition (69) is satisfied. 

APPENDIX 

To justify the approximation made on going 
over from (5) and (6) ~a similar approximation was 
used in essence in [4•5 ), we determine the correc­
tion to 1/Jo ( x, t) = <p 0 ( x) exp ( iK 2 t/2) by perturba­
tion theory. We confine ourselves here to the 
particular case V ( x, t) =- Fz cos wt. Putting 
1/J = 1/Jo + I/J 1 + ... we get the following equation for 
the correction I/J 1: 

( i_!_- H0 )'ljl1 = V(x, t)'ljlo =- Frcose cos wt'ljl0 (x, t)o , at , 
(Aol) 

In the simplest case l = 0, (s-level), the vari­
ables in (A.l) separate, and the solution takes the 
form 

'ljJ (x, t) = 'ljlo(x, t) [ 1 + :Focos e f+(6) e-irot ~ t-m eirot], 

(A.2) 

where F 0 = K3 (field inside the atom), ; = Kr, and 
the functions f± (;) satisfy the equation 

dl'fct:. df± ( 2 ) (A ~2+2a(6) ~+, +'IJ -"12 f± = -460 .3) 

Here 11 = w/w 0 and a(;)= d ln ( r<p 0)/d(Kr); 
a (;) = -1 for the level in the 6-potential, and 
a (;) = -1 +; -t for the ground state of the hydro­
gen atom. Equation (A.3) can be readily solved if 
11 = 0 (case of constant field): 

_ { 62 for 6 -potential, 
f±(6) - 52+ 26 for hydrogen atom. (A.4) 

The difference between <p ( r) and the wave 
function cp 0 ( r) of the free atom becomes appreci­
able when r ~ r* = K - 1 ..; F 0 /F o This conclusion 
does not depend on the particular form of the 
potential V 0 ( r); it can be shown that 

when K-1 « r « r*, independently of V0 ( r) and 
of the orbital angular momentum l . We shall 
therefore confine ourselves to the case of the 
6-potential in our treatment of an alternating field. 

The exact solution of (A.3) takes the form 

FOR NONSTATIONARY PROBLEMS 

!±(6) = 2 r (1- n+ + 6-1) (en±§- 1) 
n±2(1- n±/2)2L -

231 

(A.6) 

where n± = 1-~- When w « w0, the ex­
pressions for f± (; ) simplify to: 

2 "" 2 
f±(6) ~-{en±~- (1 + n±6)J = 62 ~ (n.o :r:)" 

~2 1<=0 (k + 2)1 o-:'e • 

(A.7) 

From this we get 

( 
1

1+ 2FF62co:s8coswt+ .•. for6~TJ-1, 
'ljJ x, t) 0 

'ljlo(x t) = FeTJ~ (A.8) 
' 1 + 2Fo'l]2 cos8e-irot + 0 0 0 for 6TJ d: 1. 

The range of values of R for which the substi­
tion if; (x, t)- if; 0 (x, t) is valid is given by the 
inequality r « r*, where 

xr. = 2wo In ( 1 +...!. )={ 1/Fo/F for y ~ 'Y• 
w 'Y• 2w0/w for yd:y. (Ao 9) 

(here y = wK/F and y* = .JF0/F » 1). We note 
that r* assumes a value on the order of the 
atomic radius ( K - 1 ) only when w ~ w0, and 
therefore, for short-range potential, the substitu­
tion of 1/Jo for 1/J in (5) is valid if w « w0, as was 
proposed in [4•51 • It is also of interest to compare 
r* with the dynamic width of the barrier r 0 de­
fined by formula (53). In a constant field r 0 » r*; 
when y = y* the values of r 0 and r* become 
comparable in magnitude and become of equal 
order of magnitude when y is increased further. 
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