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Fluctuations and scattering of electromagnetic waves in ferromagnets are studied. Expressions 
are obtained for the correlators of the fluctuations of quantities that describe the antiferromag­
net (the magnetic moment, the magnetic field, the density, the displacement vector), both far 
away from magnetoacoustic resonance and close to resonance. 

It is shown that the correlation functions have sharp maxima near the frequencies of 
characteristic oscillations of the crystal-spin and acoustic waves. Far from magnetoacous­
tic resonance, there are on spin waves large fluctuations of magnetic quantities (the mag­
netic field, the magnetic moment), and on acoustic waves large fluctuations of nonmagnetic 
quantities (the density, the displacement vector); near magnetoacoustic resonance, there 
are large fluctuations both of magnetic and of nonmagnetic quantities. Scattering of electro­
magnetic waves in antiferromagnets is studied, with allowance for the coupling between elas­
tic waves and oscillations of the magnetic moment. It is shown that far from magnetoacous­
tic resonance, there appear in the spectrum of the scattered radiation four pairs of lines: 
longitudinal and transverse sound satellites, caused by scattering of the electromagnetic 
wave on elastic oscillations, and two pairs of magnon satellites, caused by scattering of the 
electromagnetic wave on the two branches of the spin waves. An appreciable contribution to 
the intensity of the magnon satellites comes from interaction of the electromagnetic wave with 
the fluctuations of elastic quantities that accompany the spin wave. It is shown that in the vi­
cinity of magnetoacoustic resonance, there appears in the spectrum of the scattered radiation, 
instead of the pair of weak lines, an additional pair of bright lines; but the total intensity of 
the scattered radiation does not change. 

INTRODUCTION 

IN this paper, a study is made of combinational 
scattering of electromagnetic waves in antiferro­
magnetic crystals. In such crystals, along with 
sound waves, still another type of weakly attenuated 
oscillations is possible-spin waves (magnons). 
Hence in the spectrum of radiation scattered in an 
antiferromagnet, along with sound satellites, there 
occur also magnon satellites, distant from the fun­
damental line by the spin-wave frequency. 1> 

In studying the scattering of electromagnetic 
waves in magnetically ordered crystals, it is nec­
essary to take account of the coupling between elas­
tic waves and oscillations of the magnetic moment, 

1 )A qualitative treatment of combinational scattering of 
light in magnetically ordered crystals was given by Shen and 
Bloembergen ['). 

by virtue of which a spin wave is always accompa­
nied by oscillations of the elastic quantities and, 
conversely, a sound wave is accompanied by oscil­
lations of the magnetic moment. 2> This is due pri­
marily to the fact that two processes contribute to 
the scattering cross section of electromagnetic 
waves in magnetically ordered crystals: interac­
tion of these waves with oscillations of the defor­
mation tensor and interaction of the electromag­
netic waves with oscillations of the magnetic mo­
ment; and an electromagnetic wave interacts more 
strongly with elastic oscillations than with oscilla­
tions of the magnetic moment. Consequently, as is 
shown in the present paper, the intensity of the 
magnon satellites is in many cases determined by 

2 )Coupled magnetoelastic waves and magnetoacoustic reso­
nance in antiferromagnets were treated by Peletminskil:' [2) and 
by Savchenko [']. 
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the scattering of the electromagnetic waves on the 
elastic oscillations that accompany the spin wave 
(and not on the oscillations of magnetic moment 
themselves). 

The coupling between elastic waves and oscilla­
tions of the magnetic moment manifests itself par­
ticularly strongly in the vicinity of magnetoacous­
tic resonance. Thanks to this, as we show, the char­
acter of the distribution of scattered radiation 
changes appreciably on approach to the resonance 
point. Specifically, instead of a pair of bright lines 
(sound satellites) and a pair of weak lines (magnon 
satellites), there appear in the spectrum of the 
scattered radiation two (or three) pairs of bright 
lines, caused by scattering of the electromagnetic 
wave on coupled magnetoelastic oscillations. What 
changes, however, is the distribution of the scat­
tered radiation, not its total intensity. 

The intensity of scattering of electromagnetic 
waves in crystals is determined, as is known, by 
the level of fluctuations in them. In this paper, 
therefore, along with the scattering of electromag­
netic waves, we study the fluctuations of the quanti­
ties that describe the antiferromagnet, with allow­
ance for the coupling between elastic waves and 
oscillations of the magnetic moment. 

1. DETERMINATION OF THE CORRELATION 
FUNCTIONS 

The scattering cross section of electromagnetic 
waves in magnetically ordered crystals is ex­
pressed, as is known (see [ 41 ), in terms of the cor­
relators of the fluctuations of the permittivity of the 
crystal and of the magnetic-moment density. There­
fore we shall determine, first of all, the correlators 
of the fluctuations of the quantities that describe the 
antiferromagnet. In accordance with the general 
method of fluctuation theory, based on the fluctua­
tion-dissipation theorem, it is necessary for this 
purpose to introduce into the equations that de­
scribe the system under consideration additional 
auxiliary quantities-the so-called ''random forces'' 
(Landau and Lifshitz [ 5• 61 ). On introducing random 
forces w and y into the equations of motion of the 
magnetic moments of the sublattices and into the 
equation of elasticity, we get 

B~tv I at = g(JlvH•] - (prf.1o2Tm) - 1 (Jlv(~tvHv•]] + Wv, (1)* 
82ujBt2 = f- u/Ts +Yo (u = Bu/Bt), 

where p. v is the magnetic moment per unit mass 
associated with the v-th sublattice (v = 1, 2), H~ is 
the effective field, u is the displacement vector, 

f is the force acting on unit mass, g is the gyro­
magnetic ratio, J..!~ and Po are the equilibrium val­
ues of the square of the magnetic moment associ­
ated with each of the sublattices and of the density 
of the crystal, and T m and T s are relaxation con­
stants (a more exact form of the relaxation terms 
is not important for us, since in the final results 
the limiting process Tm- Ts- oo will be carried 
out). On taking into account that the square of the 
magnetic moment per unit mass of each of the sub­
lattices is an integral of the motion, J..!~ = J..!~ = J..!~, we 
can express the random force wv in terms of the 
transverse random force y v: w v = J..!i/ [IJv x Y vl· 

The expressions for the effective fields and the 
force f, with allowance for the coupling between the 
oscillations of the magnetic moments of the sublat­

tices and the elastic oscillations, have the form 
(Bar'yakhtar and Gann[ 71 ) 

H1• = H + apoi1111 + a'poi1112 + ~pon(111n) 
+ ~'pon(112n) - '11Pof.12 + 1/2h, 

H2• = H + apol1112 + a' pol1111 + ~Poll ( 112n) 
+ WPoll(Jl:!ll) - '11PoJ11 - 1/2h, 

/i = A;~t,i'k'B2u;/Bx"Bxh' + f;M, 

h = - fpo{V (J..Ou) + (J,0V)u} 

+ (~- W)Po(nV){n(J.,Ou) + u(J.,On)}, 
fM = 1/zfpo{l..odivl., + (1v0V)1v} 

- 1/2(~- ~')Po(nV){1v0 (1vn) + 1v(1v0n)}, 

(2) 

where H is the magnetic field, satisfying the equa­
tions of magnetostatics 

div (H + 4npoJ!) = 0, rotH= 0; (3) 

1J = p.1 + p. 2 is the magnetic moment of unit mass; 
;\ = p.1 - p. 2; ;\0 is the equilibrium value of the vec­
tor ;\; a, a', and 17 are exchange-interaction con­
stants; {3 and {3 1 are magnetic anisotropy constants; 
n is a unit vector along the anisotropy axis (the z 
axis); f is a magnetostriction constant; and A is 
the elastic-constant tensor, which we shall here­
after choose in the simplest form 

A;h,i'h' = (s12- 2st2 ) b;h{ii'h' + sl (6wb;·h + b;;•bhh') 

where s z and St are the velocities of longitudinal 
and of transverse sound (the external constant mag­
netic field is supposed to be zero). 

Following the general method of fluctuation the­
ory, we must now determine the time derivative of 
the internal energy of the system and express it in 
the form 

U= ~ ~xv(r,t)Xv(rt)dr, 
V=0,1,2 

where x are the ''generalized thermodynamic ve­
locities" and X are the corresponding "generalized 
thermodynamic forces" (the index v = 0 refers to 
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elastic quantities, the indices v = 1 and 2 to mag­
netic quantities connected respectively with the first 
and second sublattices). On differentiating with re­
spect to time the expression for the internal energy 
of an antiferromagnet, [ 71 

(4) 

using equations (1)-(3), and taking into account that 
because of the closed character of the system the 
energy flow across the surface vanishes, we get 

(J =- ~ { ~ L} {J~vHve] (-1-[J.tvHve]- Yv) 
f,lo v=1,2 Po'tml-'o 

+ pou(~-y )} dr. ... ' 

We choose as "generalized thermodynamic 
forces and velocities'' the quantities 

(5) 

x, = - (pof,lo'tm) -1[J~vH,e] + y,, X,= Pof.lo-1{PvBve] (v =1, 2), 
:Xo = - ,..-1u +Yo, Xo = poti, (6) 

and put x into the form 

X~ = - yvXv + Yv ('V = 0, 1, 2), '\'1 = '\'2 = po~2-cm-1, 

The "kinetic coefficients" 'Yv directly determine, 
as is known, the normalization of the random forces. 
Allowing for the connection between the quantities 
Wv and Yv, we get 

( W;"wi"')q, 00 = 2( c'lij - 'A;0'Al/4f,lo2) Ow,fiw (N., + 1) Po-2-:rm -t, 

(y;yj)q,oo = 2/l;iliw (Noo + 1) (po'ts)-1; 
(7) 

where Nw = (ehw/T- 1)-1 is the Planck distribu­
tion function. 

To find the correlation functions, we must now 
express the magnetic moment vectors, the dis­
placement vector, the density, and the other quan­
tities that describe the crystal in terms of the ran­
dom forces and then carry out an averaging over 
the random forces with the aid of formulas (7). 
Without quoting the complicated general expres­
sions for the correlation functions, we shall dis-

cuss only the most interesting cases of fluctuations 
near magnetoacoustic resonance and fluctuations in 
the nonresonant range. 

2. FLUCTUATIONS AND SCATTERING OF 
ELECTROMAGNETIC WAVES FAR FROM 
MAGNETOACOUSTIC RESONANCE 

The correlators of the fluctuations of quantities 
describing the system have, as is known, sharp 
maxima for values of the frequency and of the wave 
vector that satisfy the dispersion equation of the 
characteristic oscillations of the system. For this 
reason sharp maxima, due to the possibility of 
propagation of characteristic oscillations in the 
system, occur also in the scattering cross sec­
tion for electromagnetic waves. 

In antiferromagnets, far from magnetoacoustic 
resonance, characteristic oscillations of two types 
can be propagated: spin waves and sound waves. 
We consider first the fluctuations and scattering of 
electromagnetic waves on spin waves. 

Spin waves in a crystal with anisotropy of the 
easy-axis type. In an antiferromagnet with aniso­
tropy of the easy-axis type, there can be propagated 
two branches of spin waves, with dispersion laws 
Wt(q) and w2(q), where 

Wt2(q) = (gMo)2{(~-~') + (a-a')q2}. 
X {2YJ + (~ + W) + (a+ a')q2 + 811: sin2 x}, 

w~(q) = (gMo) 2{(~-~') + (a-a')q2} 
(8) 

X {2YJ+ (~+~') + (a+a')q2}, 

where Mo = p0p, 0 and X is the angle between the 
wave vector q and the anisotropy axis. On these 
waves the large fluctuations are those of the mag­
netic quantities (the magnetic moment, the vector 
A, the magnetic field). The nonvanishing compo­
nents of the tensors (fJ.ifJ.j) and (ll.illj) have the 
form 

(f..t,,2)q,., = ('Ay2)q,oo( 2g~oT} y 
= 2n1iiNoo + 1lp0-~w~-1('1 (ro2 - oo12), 

(f,ly2)q,ro = ('A,,2)q,oo ( 2g;ofJ y 
= 2n1i:J N., + 11 po-~w~-1('1 ( oo2 - oo22), 

where the y axis is chosen perpendicular to the 
(n, q) plane. (We have taken into account that 

(9) 

TJ » {3, {3 1 and aq2 ,.., a'q2 ,.., TJ(aq)2 « TJ, where a is 
the lattice constant.) The fluctuations of the mag­
netic field are connected with the fluctuations of 
the magnetic moment by the obvious relation 

<HiHi \ . ., = (4npo) 2qiqiq-2 sin2 x<~-t,2)q, 01• ( 10) 
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The correlators of the crystal density and of the 
displacement vector ut = u- q-2 q(q · u) have the 
form 

(p2)q,ro = 2nli/Nro + 1/ (gMo)1JM02q4 (w2- s12q2)-2 
X sin2 2x {2/- ~ + ~') 26 ( w2- w22), -

(uy2)q,ro = 8nli /Nro + 1/ (gMo)1JMo2q2po-2{w2- St2q2)-2 

X cos~ (f- ~ + ~') 26 ( w2 - w12), 
<{ui) 2)q, ro = tg2 x( {ux1)2)q,ro =- tg X (ux1Uz1 )q,ro (ll) 

= 8nh/Nro + 1/ (gMo)2'1']Mo2q2po-2(w2- St2q2)-2sin2x 

X [! sin2 x- (f- ~ + W) cos2x)26 (w2 - w22), 

where sz and st are the velocities of longitudinal 
and transverse sound (the remaining components of 
the tensor ( ut uj) vanish). 

We see that the quantities J-l.x• A.y, H, and uy 
fluctuate on a spin wave of frequency w1(q), whereas 
the quantities J-l.y, Ax, p, ut and ut fluctuate on a 
spin wave of frequency w2(q). On both spin waves, 
the correlators of the elastic quantities contain (in 
comparison with the correlator of the magnetic mo­
ment) the small parameter t 2ry, where t"" M~ p01 s - 2 

(s is the velocity of sound). 
We now estimate the contribution of the fluctua­

tions of the magnetic moment and of the fluctuations 
of elastic quantities to the cross section for scatter­
ing of electromagnetic waves on spin waves. As has 
already been mentioned, the correlators of the fluc­
tuations of elastic quantities are proportional to the 
small parameter t 2ry; on the other hand, the contri­
bution of magnetic fluctuations to the scattering 
cross section contains, as was shown earlier, [ 41 

the additional small parameter (gM0 /w) 2, where w 
is the frequency of the incident electromagnetic 
wave. Therefore in the low-frequency region 
(w< gM0 ry-112 t-1) the chief contribution to the 
cross section for scattering of electromagnetic 
waves on spin waves comes from the interaction of 
the electromagnetic wave with the fluctuations of 
the magnetic moment; in the high-frequency region 
w > gM0 ry-1/ 2 t -1, the scattering of electromagnetic 
waves originates chiefly on the fluctuations of elas­
tic quantities that accompany the spin wave. 

To determine the cross section for scattering of 
electromagnetic waves on spin waves in the low­
frequency region (w < gM0 ry-112 t-1), we substitute 
(9) into the known expression for the differential 
cross section for scattering of electromagnetic 
waves on fluctuations of magnetic moment:[ 4l 

d1:m = g2c-2epo2{sin2 ftk2 (J12)q, L\ro 
do'dw' 

+ 2 cos fJkik/ Re (JliJ.tj)q, L\ro} ~·· (12) 

where k is the wave vector of the incident wave, 
k' and w' are the wave vector and frequency of the 
scattered wave, .6.w = w- w', q = k- k', e is the 

angle of scattering (the angle between the vectors k 
and k'), do' is an element of solid angle of the vec­
tor k', and E is the permittivity of the crystal. We 
get as the result 

dl:.m =llVL\ro + 11( g: )~n (gMo) 2 ~- ~'+ 4(a -a') k2 sin2 ~] 
(13) 

Where 1J1 = Sin2 e + 2 COS ek -1 k' - 1 kxk~ ; Vz = Sin2 e 
+ 2 cos e k-2k~. 

For w > gM0 ry-1 /Z t -1 we must use the expres­
sion for the cross section for scattering of electro­
magnetic waves on elastic fluctuations:[ 41 

dl:.e = dl:.c + dl:.s, 

dl:.c = (: r {[ ;i (1 +COS fJ) + 0'2COS fJ r + 0'22 }po-2(p2)q, 

do'dw' 
L\ro ( 4n)3 ' 

where a1 and a2 are quantities that describe the 
connection between fluctuations of the permittivity 
and fluctuations of the deformation tensor Uij , 

6Bij = O'tUij + CJ'26;jUn, 

(in order of magnitude, a1 ~ a2 ~ 1). On introducing 
the notation 

Ro = 2 {[ ; O't(1 +cos fJ) + 0'2COS fJ r+ 0'22 }<1- cos fJ) 

x sin22x(2/- ~ + ~')2, 
Rt = aNsin2 fJ- 2(1 -cos fJ)k-2ki] cos2 xU- ~ + W)2, 
R2 = crt2[sin2 fJ- 2 (1- cosfJ)k-2 (kx cos X- kz sin x) 2] 

X[jsin2x-(f- ~·+ ~')cos2 x], 

we find 

dl:.e = jNL\ro + 1/ ( ~ Yeh(gMo)~Mo2q2po-2{(w1 - s12q2)-2 

XRt6 ( ,1 w2- Wt2) + [ ( ffi22- sfq2) -2Ro + ( W22- St2q2) -2R2] 

do'dw' 
X6(.1w2-w22)}-- (15) 

(4n) 2 · 

In this expression (as in all other expressions for 
a scattering cross section), q and X are to be re­
placed by their values 

q = 2k sin :, x =arccos {( 2 sin ~ f(cos 9- cos 9')} ~ 16 ) 
where e ( e') is the angle between the vector k (k') 
and the anisotropy axis. 
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In the intermediate frequency range 
w ~ gM0ry-112 t-1, the scattering cross section sep­
arates into the sum of three terms: 

d'J:. = d'J:.m + d'J:.e + d'J:.em. 

The terms d'J:.m and d~ , describing the scattering 
of electromagnetic waves on magnetic and on elas­
tic fluctuations, are determined by formulas (13) 
and (15), whereas the interference term d~em has 
the form 

d'J:.em = INa01 + 11 .ll: ( : )\n(gM0)2p0-tkZ{ (w12- s12q2)-1 

X Rt' 6 ( ~ w2 - wt2) + [ ( w22 - s1q2 ) -tRo' 

+ ( (!)22- St2q2) -1R2'] 

do'dw' 
X6(~w2 -w22)}~, 

(17) 

where RQ, Rl, and R2 are functions of the angle 
variables and are of order of magnitude unity (we 
shall not present here the complicated expressions 
for the functions R' ). 

We remark that the expressions given above for 
the scattering cross section (and also for the cor­
relation functions) do not take account of the atten­
uation of spin waves. In order to take account of the 
attenuation of the spin waves, it is sufficient in 
these expressions to make the substitutions 

6(~w2 - w})_.n-12-y;w;{(~w2 - wl) 2 +(2v;w;)2}-1, (18) 

where 'Yj is the damping decrement of the spin­
wave (j = 1, 2). 

We shall discuss briefly the relation between the 
frequency and the direction of propagation of the 
scattered wave. The a-functions contained in ex­
pressions (13), (15), and (17) enable us to find the 
frequencies of the radiation scattered in a definite 
direction, if we know the frequency and direction of 
propagation of the incident wave. By use of (8) and 
(16) we get for the frequencies w' 

{ {} }''• w' = w ± gMo (P- ~') + 4(a- a')k2sin2-z 
X { 211 + (~ + ~') + 8n + 4 (a + a') k2 sin2 ~ 

-& }''• - 2n sin-2 2 (cos a- cos 9') 2 
(19) 

or 

' .{ 'fr}'" w'=w+gMo (p-~')+4(a-a')k2 sin2 -z 

{ 'fr }'" X 211 +(P + ~')+ 4(a + a')k2sin2-z . (19') 

We see that in the spectrum of the scattered radia­
tion there occur two pairs of sharp maxima (mag­
non satellites); the two Stokes satellites (and the 
two anti-Stokes) are separated by a narrow gap with 
width of order gM0 17-t/2 (and also if the resolution 

with respect to frequency or scattering angle is 
low), then one pair of satellites is superposed on 
the other. 

We remark that because of the factor [Nt,w + 1] 
that occurs in the expression for the scattering 
cross section, at low temperatures (T « n I t>w I) 
scattering occurs only with diminution of frequency; 
if T ;::, nl t>w I, the intensities of the Stokes and anti­
Stokes satellites are of the same order of magni­
tude. 

Spin waves in a crystal with anisotropy of the 
easy-plane type. In an antiferromagnet with aniso­
tropy of the easy-plane type, two branches of spin 
waves can be propagated, with frequencies 
w = ws (q) and w = Vq, where 

Ws2 (q) = roo2 + V2q2, <Do= gM()I ~- P'I'1•(2'YJ)'1•, 

V = gMo(2'l}) 'l•(a- a') ''•. (20) 

We shall give the expressions for the nonvanishing 
components of the tensors (J.Ii~Lj) and (A.iA.j): 

<~t.z>I(.Ol = <A...~.2)q,Ol( 2g;o'l}r 

= 2nhiN01 + 1lp0-2w211-1~(w- f'2q2), 

(J.t..L2)q,"' = (A./)q,"' (-(!)- )2 
2gMo'l} 

= 2nn IN Q) + 11 po-2w2'l}-f6 ( w2-w.2)' 

(21) 

where r1 = (A.0)-1 r[n xA.0 ]. For the correlator of 
the fluctuations of the magnetic field we have 

where cp0 is the angle between the vector "A.0 and 
the x axis (the y axis, as before, is chosen per­
pendicular to the (n, q) plane). 

The correlators of the crystal density and of the 
displacement vector are determined by the for­
mulas 

(p2)q, m = 8nh IN"'+ 11 (gM0)2TJM02q•(w2- sfq2)-2sin2x 

X {cos2 'X cos2 rp0 (2/- ~ + f3') 26 ( w2 - w.2) 

+ sin2 'X sin2 2<pof26 ( w2- V2q2)} 

(u;tu/)q,"' = 8nn,!Nw + 11 (gMo)2'Y]Mo2q2po-2(w2- St2q2)-2 

X {x;x;6 (w2 - w.2) + sin2xx/x/6 (w2- VZq2) }, (23) 
Xy = (f- ~ + [3') cos 'X sin !Jlo, xy' = f cos 2!po, 
xz = - tg 'JCXx = sin 'X cos !Jlo [j sin2x - (f- p + J:3') cos2 x], 

xz' = -tg xxx' = 1/2/ sin 2x sin 2<po. 

We see that on both spin waves, the correlators 
of the elastic quantities contain (by comparison 
with the correlators of the magnetic moment) the 
small parameter d ~ t 2 w - 2 (gM0 7J )2• In the case of 
a wave with frequency ws(q), the parameter d is 
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of order e1); but in the case of a wave with a lin­
ear dispersion law, the parameter d is appreciably 
larger, and equal in order of magnitude to 
tinin {11 jJ J:1 ; (aq) - 2 }, where JJ1 is a constant that 
describes the anisotropy of different directions ly­
ing in the easy plane, and a is the lattice constant. 

We shall now consider the scattering of electro­
magnetic waves on spin waves. In the case of a spin 
wave with a linear dispersion law, the chief contri­
bution to the scattering cross section comes from 
the interaction of the electromagnetic wave with the 
fluctuations of density and of the displacement vec­
tor that accompany the spin wave. On substituting 

(26) 

where 

We shall discuss briefly the relation between the 
frequency and the direction of the scattered wave. 
The 6-functions contained in expressions (24), (25), 
and (26) enable us to find the frequencies of the ra-
diation scattered in a definite direction, if we know 
the frequency and the direction of propagation of 
the incident wave. By use of (20) and (16), we get 
for the frequencies w' 

(23) into (14) and introducing the notation { 'fr }'" 
w'=ul+gill0 (2YJ)'/, ~~-~'l+4(a-a')k2 sin2 z 27) 

lJ/ = 2 {[ ()i (1 +cosO)+ a2 cosuJ+ a2" }sin2 :x;sin~2rpof2, or 

X. ~in' x, 

we get 

d'' ., V + 11 ( w \)6cfz (g,Uo)2qMo2tF 29o 2 ""= 1 ~"' \ c-

do' dw' 
X--. 

( rlJt )2 
(24) 

In the case of a spin wave with frequency ws(q), 
the fluctuations of elastic quantities that accompany 
the spin wave make the principal contribution to the 
scattering cross section in the high-frequency re­
gion w > gM0 1)-1/ 2 t-1• On substituting (23) into (14), 
we find for the value of di: in this range 

di;, ~= IN a'"+ 11( :l Yeli (gMo)2Y)ll1o2q2po-2 · { ( Ws2 - St~IJ2 ) - 2Dt 

do'dw' + ~Wsz- St2q2)-2Dt}l'l (i1w2- w,2) -(:1~)2 

where 

(25) 

D1 = a12 {sin2'frx2 - sin2 : k-1k'-1(k; + k;')(ki + k/)x;xi}· 

In the low-frequency region w < gM0 1J-112 t-1, 

the scattering of an electromagnetic wave on a spin 
wave with frequency Ws(q) is determined chiefly by 
the interaction of the electromagnetic wave with the 
fluctuations of magnetic moment. On using (21) and 
(12), we get for the value of di: in this range 

d~ = I N "'"' + 11 ( g: Y eli ( g 111 o) 2 [ I ~ - ~' I 

v - {} 
w' = w + 2-w,1c,sin-

- c r 2 · (27') 

We see that in the spectrum of the scattered radia­
tion there appear two pairs of sharp maxima (mag­
netic satellites). 

Sound waves. The correlators of the fluctuations 
of the crystal density and of the components of the 
displacement vector on sound waves are determined 
by the formulas 

(p 2)q, "' = 2nli I Nco+ 11 poq26 (w2 - slq2), (28) 
(u/u/><r.co = 2nli I Nw + 11 po-1 ( l'lu- q-~q;qi) 6 (w2- St2q2). 

The correlator of the fluctuations of the magnetic 
moment of unit mass has the form 

where the nonvanishing components of the tensor R 
are determined in the case of anisotropy of the 
easy-axis type by the formulas 

Ryyl = (w2- Wzz) -2 (f- 1fz~ + 1(!~') z sin22:x;, 
Rxxt = (w2- Wi2)-2(f- ~ + W)2 cos2 X, 

Ry/ = ( w2 - wz2)-2 (f sin2 x- (f- ~ + ~') cos2 xP. 
and in the case of anisotropy of the easy-plane type 
by the formulas 

Rj_j_l = (w2- w82)-2(f- 1/z13 + 1/z13') 2sin22:x;cos2<p0, 
Rzj_l = Rj_/ =- (w2- w.2)-1(w2 -V2q2)-lf(!- tfza + 1/za') 

X sin2 x sin 2x cos qJo sin 2<po, 
Rzzl = ( w2 - V 2q2 ) - 2j2 sin4 X sin2 2<po, 
Rj_j_t = ( w2 - w.2) -Z{ (f- a + 13')2 sin2 qJo cos2 X 

+ [f sin2 X - (f- a + f.l') cos2 :x:]2 cos2 <po}, 
Rzj_t = Rj_zt = ( w2-w,2 ) - 1 ( w2 - V2q2) -lj sin 2x sin 

X <po{1/z(f-f.l+l3')cos 2<po 
+ [! sin2 X - (f- ~ + ~') cos2 x] cos2 (jlo}, 

Rzz1 = (w2 - V2q2)-2f sin2x (cos2 2<po + cos2 X sin2 2<po). 

We see that the relative fluctuations of the magnetic 
moment on sound waves are in order of magnitude 
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smaller by a factor 1J 112 than the relative fluctua­
tions of the nonmagnetic quantities, 6p./p.0 

~f1J-1/2 opfPo· 
By substituting (28) and (29) into (12) and (14), 

it is easy to satisfy oneself that the scattering of 
electromagnetic waves on sound is caused chiefly 
by interaction of the electromagnetic wave with 
fluctuations of the density and of the displacement 
vector. Therefore the scattering cross section of 
electromagnetic waves on sound in antiferromag­
nets is determined by the same formula as in the 
case of ordinary (not magnetically ordered) crys­
tals, 

d~ = IN .1.., + 11 ( : Yen po-1 { ( [ cr; ( 1 + cos -6-) + cr2 cos ,')J 
+'122 )<1-costt)6(L\w2-s12q2)+! <1t2 sin2 ·M(~w2 

} do' dw' (30) _ 81zq2) -~ 
( 4n) 2 

In closing this section, we remark that in the 
high-frequency range, the sound satellites surpass 
the magnon satellites in brightness. The intensities 
of the magnon satellites distant from the principal 
line by frequency w11 w2, or Ws are comparable 
with the intensities of sound satellites at w2 

~ (gM0)2 (1Jt)-1; the intensities of the satellites 
with D.w = ± 2Vk sin (8/2) are comparable with the 
intensities of sound satellites at w2 ~ 1J -1 tc2a -2 
(a is the lattice constant). In the lower-frequency 
range, the magnon satellites surpass the sound 
satellites in brightness. 

3. FLUCTUATIONS AND SCATTERING OF 
ELECTROMAGNETIC WAVES IN THE 
VICINITY OF MAGNETOACOUSTIC 
RESONANCE 

As was shown in the previous section, far from 
magnetoacoustic resonance, on one set of branches 
of the oscillations of an antiferromagnet-the spin 
waves-there are large fluctuations of the magnetic 
moment and magnetic field and small fluctuations 
of the density and the displacement vector; on the 
other hand, on the other branches of the oscilla­
tions-longitudinal and transverse sound-there are 
large fluctuations of the displacement vector and 
comparatively small fluctuations of the magnetic 
quantities. The situation is otherwise near mag­
netoacoustic resonance, when the frequency of one 
of the spin waves is close to the frequency of one of 
the sound waves. In the vicinity of resonance, in­
stead of sound and spin waves, there are propagated 
in the antiferromagnet coupled magnetoelastic 
waves, on which there are large fluctuations both 

of the magnetic and of the nonmagnetic quantities. 
Because of this, on approach to a resonance point 
there is a change of character of the distribution of 
the radiation scattered in the antiferromagnet (but 
not of its total intensity). 

Longitudinal magnetoacoustic resonance. The 
dispersion equation of coupled spin and longitudinal­
sound waves has, near resonance, the form 

( w2 _ w+l2) 2 ( w2 _ w_12) 2 + ( w+z2 _ w_12) 2 (2vw) 2 = o., 

where in the case of anisotropy of the easy-axis 
type 

W±/2 = 1/2 ( w22 + 812q2) ± 1/2{ ( w22 _ 812q2) 2 

+ 4'1'} (gM0)2p0- 1M02q2(2/- B + ~') 2 sin2 2x}'/, (31) 

and in the case of anisotropy of the easy-plane type 

w±l2 = lfz (ws2 + s(!q2) + lfz{(Ws2- sz2q2)2 (31') 
+ 4'1'} (gM0) 2p0-1M02q2(2/- B + B') 2 sin2 2:x: cos2 <po}'l•, 

in both cases, y = (2Ts) - 1 + 1JT ~- This equation has 
two solutions, corresponding to the two branches of 
the magnetoelastic waves with frequencies w~ and 
w~ and with damping decrement y. 

We give the expression for the correlator of the 
fluctuations of density near the point of longitudinal 
resonance (I w~ - q2si I < t 1 / 2 w~ or lw~ - sz q2l 
< tl/2w~): 

(pz)q;ro = 2/iw (N., + 1) p0q2v{((w2- w+l2)2 
+ (2vw) 21-1 + [ ( ro2 _ (!)_12) 2 + (2vro) 2)-1}. 

If the damping of the waves is small, y < t 112 w, 
then this expression takes the form 

(32) 

< p2)q, ro = nli INw + ij poq2{6 (ro2- w+l2) + 6 (ro2- w_l2) }. 
(33) 

But if the damping is not small (w » y > t 112 w), 
then (32) reduces to the first of the relations (28), 
describing the fluctuations of density on a sound 
wave far from resonance. 

In the case of a crystal with anisotropy of the 
easy-axis type, near resonance, we have 

( (i) \2 
(J..t·yz)q,"' = (A . .,z)q, "'\ -2gMo'l'J = nli IN.,+ 11 po-2ro2'l'J-1 

X {6(ro2-rof)+6(ro2-,ro-12)}; <34) 

in the case of a crystal with anisotropy of the easy­
plane type, 

(J..1.J..2)q,"' = ("A.z)q,"' ( 2;Mo'l'] y nli IN.,+ 11 po-2(J)2'l'}-1 

x {6 (w2- ro+12) + 6 (ro2 _ ffi_IZ)}. (34') 

As for the remaining components of the tensors 
(JJ.iJJ.j) and (?.i ll.j), and also the components of the 
correlator of the displacement vector, ( ui ul ), 
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these quantities near a point of longitudinal magne­
toacoustic resonance are determined by the same 
formulas as in the nonresonant range. 

Passing to the study of the scattering of electro­
magnetic waves near a resonance point, we remark 
first of all that magnetoacoustic resonance can 
manifest itself in the scattering of electromagnetic 
waves only in the high -frequency region. In fact, 
from the condition for resonance it follows that 
q > s-1 gM071 1/ 2, and therefore the frequency of the 

ble: resonance between a spin wave with frequency 
w1(q) and transverse sound polarized perpendicular 
to the (n, q) plane, and resonance between a spin 
wave with frequency w2(q) and transverse sound 
polarized in the (n, q) plane. In the first case, the 
frequencies of coupled magnetoelastic waves are 
determined by the expression 

001±12 = 1/2( 0012 + 81zq2) ± 1/2{ ( 0012- s12q2)2 

+ TJ (4gMo)2Po-1Mo2q2 cos2 xU- {3 + {3') 2} '/, 
(37) 

incident wave must satisfy the inequality w in the second case, by the expression 
> gM0 71 1/ 2 c/s. By using relations (12) and (14) and 
by taking into account that, in accordance with (33) 
and (34), near magnetoacoustic resonance OiJ./iJ.o 
"'(71t)-112 opjp0, it is easy to see that in the fre­
quency range w > gM0 77 1/ 2 c/s the principal contri­
bution to the scattering cross section of electro­
magnetic waves comes from the interaction of these 
waves with the fluctuations of the elastic quantities; 
this interaction is characterized by the scattering 
cross section (14). On substituting (32) into (14) and 
on taking into account that the fluctuations of the 
displacement vector near longitudinal resonance 

W2±t2 = 1f2(ro22 + St2q2) + 1J2{ (roz2- St2q2)2 (37') 

+ TJ (4gillo)2Po-1Mo2q2[f sin2 X - (!- {3 + {3') cos2 x)2} 'h. 

We give the formulas for the correlators of the 
fluctuations of the magnetic moment and of the dis­
placement vector near the first of the resonances 
(I wt- s~q3 l < t 112wt ): 

(f.!:~.2)q, m = (A.y2)q, m( 2g~oTj y 

are small, we get (uyz)q,w = nliiNw + 11 Po-1{6(ro2- 001+t2)+ 6(ro2 _ 001_t2)}. 

d~ = n-1(Nw + 1)/iArov( : Yepo-1 (1- cos e>{(~i (1+cos 9) (3S) 
Near the second resonance <I w~- s~q2 l < t 112 w~ ), 
we have +crzcos'l't r+crz2 }H<.1ro2 -ro~)2+(2v.1ro) 2]-1 

do'dro' + [(8ro2 _ 00 c2)2 + (2v.1ro)2)-1} __ 
- (4n) 2 " 

(35) 

If the damping of magnetoelastic waves is small 
( y « t 112 ~w), then this formula takes the form 

d~ = ~-IN am+ 11 (: Yelipo-1 {[ 0'~ (1 +cos 'l't) 

+ 0'2COS 1) r+ cri} (1- COS tJ') • {6(L\ro2- oo't) 

12 . do'dro' + 0(8ro2- ro-)} (4:n:) 2 • (36) 

On comparing this formula with the relation (30), 
we see that each of the longitudinal-sound satellites 
splits, on approach to the longitudinal-resonance 
point, into two lines of equal intensity. 

If, however, y ~ t 112 ~w. then the satellites with 
frequencies w + w! and w + w ~ (and likewise the 
satellites with frequencies w- w] and w- w!_) 
are superposed on one another. The scattering 
cross section of electromagnetic waves is then de­
termined by the same formula (30) as in the non-

tz tz 
= nli INm + 11 po-2ro2TJ-1{6(8 ro2- roz+) + 6(8ro2- 002-) }, 

((uzt)2)q,m = tg2x((u.,t)2)q,m = -tgx(u.,tuz')q,m (38') 

= nliiNm + 11 p0-1sin2x{6(ro2- roz+t2)+ 6(ro2- ro2_t2)}. 

(The remainin~ components of the tensors (!lillj ), 
( Ai A.j ) , and ( ui uJ) , and also the cor relator 
(p2) , are determmed near the resonance points by 
the same formulas as in the nonresonant range.) 

In crystals with anisotropy of the easy-plane 
type, a single transverse magnetoacoustic reso­
nance is possible. Near a resonance point 
(I w~ - s~q2 l < t 112 w~), the frequencies of coupled 
magnetoelastic waves are determined by the for­
mula 

Ws±12 = 1/z ( OOs2 + St2q2) + 1/z 
X{ (ros2- St2q2)2 + TJ (4gMo)2po-1Mo2q2'l'}'" 

'I' = (/- B + fi') 2 cos2 x + F sin2 x cos2<po 

- (/- 1/zfl + 1/zf3')2 sin2 2x cos2 <flo. 
(39) 

resonant range. We give the expressions for the correlators of the 
Transverse magnetoacoustic resonance. In crys- fluctuations of the magnetic moment and of the dis-

tals with anisotropy of the easy-axis type, two placement vector in the vicinity of transverse res-
transverse magnetoacoustic resonances are possi- onance: 
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(u; 1u/ )q,ro = 1/2n;h IN.,+ 11 po-i ( llij- q-2q;qj) {6 (w2- Ws+f2) 

+ ll(w2 - Ws-12) +26(w2 -s12q2)} (40) 

(the remaining components of the tensors (J..Lif..Lj) 
and (A.iA.j) are small near resonance). 

The differential cross section for scattering of 
electromagnetic waves near transverse magneto­
acoustic resonance can be determined by substitut­
ing (38), (38 1), and (39) into (14). In the case of ani­
sotropy of the easy-plane type we get 

d'i. =~-INt..,+ 11 (~ )"enpo-1crhin2 tt{o(llw2 - w!~) 
16 c. 

t2 do' dw' (41) 
+ 6(1lw2 - Ws-) + 26(Llw2 - St2q2)} ( 4n) 2 • 

In the case of anisotropy of the easy-axis type, for 
t::.w ~ w1 (q) ""' stq we have 

1 
d'i. = g INt.ro + 11 

X(: )~npo- 1 crt2 {[sin2 tt-2(1-cost})k-2ky2]· 

do'dw' (42) + 4 ( 1 - cos {}) k-2ki6 ( Ll w2 - s t 2q2) } ( 4n) 2 ; 

for t::.w""' w2(q) "'Stq we find 

1 
d'i. = 4INt.ro + 11 

X ( we r ehpo-1ui2 {[sin2 {}- 2 ( 1- cos tt) k-2ky2] 

On comparing these formulas with (30), we see that 
each of the transverse-sound satellites splits into 
three lines upon approach to a point of transverse 
resonance. 

We remark that the relations (41) and (42) are 
correct if the damping of the magnetoelastic waves 
is small (y < t; 112t::.w). If y.:;: t; 112t::.w, then the 

value of d~ is determined by the same formula 
(30) as in the nonresonant range. 

We shall now discuss briefly the conditions for 
observation of magnetoacoustic resonance through 
the angular and spectral distribution of radiation 
scattered in the antiferromagnet. In order that the 
phenomenon of magnetoacoustic resonance should 
manifest itself in the scattering of electromagnetic 
waves, it is necessary that the angle of scattering 
-8 be close to the angle -80 determined from the 
equation w(q) = sq (w(q) = w1o w2, ws>· The change 
of character of the distribution of the scattered ra­
diation occurs in a narrow range of angles 
-8 = -80 { 1 + O(t; 1 / 2)} and of frequency changes 

ws - {} l£\w I= 2-l'e sin- {1 + O(s''•)}; 
c 2 

detection of this effect therefore requires a reso­
lution in scattering angle of order -.J0t;112 , and in 
frequency of order lt::.w I t;112 • 

In closing, the authors express their thanks to 
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