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The current flowing in a short-circuited capacitor subjected to shock compression is deter
mined (approximately and exactly) by assuming that a surface charge exists on the wave front 
when the shock wave passes through the dielectric and electric. The matter in front of the 
shock wave is assumed to be an insulator and that behind the wave front a conductor. The 
exact solution is obtained on the assumption that the matter is not compressed and no changes 
of the dielectric constant occur behind the shock wave front. 

STUDIES of the current flowing in a short-circuited 
solid-dielectric capacitor subjected to shock com
pression have been reported in a number of recent 
papers. 1> We determine here the emf in such a cir
cuit (both approximately and exactly) for a dielec
tric that behaves as an insulator prior to compres
sion and becomes a conductor after compression. 
The dielectric is assumed to be isotropic. 

We assume that a surface charge with density u 

exists on the shock wave front (SWF) as a result of 
the instantaneous compression and asymmetry (un
compressed matter ahead of the SWF and com
pressed behind it). The value of u depends on the 
material and on the amplitude of the wave, but is 
constant during the propagation of the SWF through 
the dielectric. This is equivalent to the same as
sumption as was made in[1•2] concerning the polar
ization of the dielectric by the SWF, where it was 
found that in insulators, in the absence of relaxa
tion processes behind the SWF, the density of the 
polarization current i in the circuit of Fig. 1 is 

i = C1'ii.T[xT +(1- x)t]-2, ( 1) 

where K = E2o/ E1, E1 and E2 are the dielectric con
stants of the substance ahead and behind the SWF, 
o is the compression, and T = a/D is the time of 
travel of the SWF with velocity D through the initial 
thickness of the dielectric a. 

Approximate solution. The qualitative differen
ces resulting from conductivity occur when ® « T, 
where ® is the characteristic time necessary for 
the charges to leak through the capacitor by con
duction: ® = pE2/4rr. (In our problem p is there
sistivity behind the SWF.) Then a layer of compen
sating charge, with volume density v, is produced 
behind the SWF. 

l)ln particular, we point to the paper by Ivanov et al. ['], 
in connection with which the present calculations were made. 

In a coordinate frame connected with the SWF, 
with the y coordinate representing the direction of 
material flow, the current i will contain, besides 
the term proportional to the field E, also a term 
describing the transport of charges with the mater
ial: 

i = Ejp +vD/fJ. (2) 

The stationarity conditions (i = 0) make it possible 
to relate E and v: 

v =- EfJ(Dp)-1• (3) 

Equation (3), in conjunction with the Poisson equa-
tion 

e2(dEjdy) = 4nv (4) 

yields 

dE/dy =- 4nfJ/Dpe2. (5) 

Integration of (5) under the condition Ely=o = E0 

= 4rrcrE21 makes it possible to determine 

formula 

that is, a jump of potential on the order of f.L takes 
place in a layer y0 behind the SWF, where 

00 

J..t = ~ Edy = EoYo = DpcrfJ-1• (6) 
0 

If the circuit is closed and p is small, then f.L 
falls on a layer a - x (x is the path covered by SWF 

FIG. 1. Circuit diagram of 
shorted capacitor with dielec
tric. x - Fixed coordinate 
axis, y - coordinate axis con
nected with the SWF. 
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in the dielectric) and produces a field E = f.J./(a- x), 
corresponding to a charge S = E1 f.J.[47r(a- x) t 1 and 
a current density in the circuit 

i = dS I dt = e1crpl)2·4n(a- x)-26-1• (7) 

It follows from (7) that i - oo as x - a. 
Actually p ;o0 0, and the circuit includes as a rule 

a certain load resistance R. Therefore formula (7) 
is limited by the condition that the potential differ
ence on the layer of compressed matter behind the 
SWF does not exceed 11- when x- a: 

pai/6 ~ Dpa/tl, (8) 

or imax = Da/a, that is, imax does not exceed the 
value of i obtained without allowance for the con
ductivity and the relaxation processes. Solving (7) 
and (8) simultaneously, we obtain the limit of ap
plicability of formula (7): 

a-x~ (aDp~t/4n6)''• ~ (ayo)'l•. 

Accordingly 

V max = imaJi = DaR/ a. 

Formula (7) must be corrected also at the start 
of the process, during the transient stage. In fact, 
at t = 0 we have in a real circuit i = 0, that is, the 
value of i obtained from (7) does not occur instan
taneously. It is necessary to take into account here, 
besides the time ®, also the relaxation time of the 
circuit T = RC, where C is the initial value of the 
capacitance. Different V(t) curves are obtained at 
the start of the process, depending on whether 
T >®or T < ®. 

If ® < T, then the quantity V(t) grows when t < ® 
and reaches a value V = f.1. at t ~ ®, after which a 
decrease occurs, within a time T, to a value deter
mined by (7). If® > T, a rise takes place at t < T, 

up to t ~ T, after which a decrease takes place, con
tinuing tot ~ ®. The predicted curve is shown in 
Fig. 2. 

The initial growth of V = V maxtD/ a continues 
for a time T or ®. A maximum is inevitable in this 
case. In order of magnitude, Vmax ~ Va2D-2®-tT-1, 

where V is the voltage obtained in accordance with 
(7). 

FIG. 2. Approximate 
time variation of the voltage 
across the load resistance. 
The quantities ® and r out
side the parentheses per
tain to the case ® < r, those 
iri the parentheses pertain 
to®> r. 
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Exact solution. Let us consider a short circui
ted parallel-plate capacitor of thickness a, such 
that the potential cp(O) = cp(a) = 0. A surface paral
lel to the electrodes, with bound-charge surface 
density a moves from left to right in the capacitor 
at a velocity D. We have E = const throughout, and 
the material is at rest (o = 1). When x > Dt, the 
resistance is p = oo, and for x < Dt the value of p is 
finite. The material is assumed isotropic. 

In the region x < Dt we have a space-charge 
density distribution v(x, t) 2>, a potential distribution 
cp(x, t), and a current density distribution j(x, t). 
The measured quantity is the current flowing 
through the wire joining the plates of the capacitor 
and expressed in terms of cp(x, t) : 

i = as=__~!__:!_ ( aq>) I , 
dt 4n dt ax ! x=a 

where S is the charge density the electrode at x = a. 
The Poisson equation can be readily integrated 

under the given boundary conditions with the aid of 
the Green's function, which gives the potential pro
duced at the point x by a charge situated at the point 
y, 

G( -{4nx(a- y)/ea, x < y . 
x,y)- I , 

4ny(a-x) ea, x> y 

we get 

Dt 
4nax(a-Dt) 4nxS 

cp(x,t) = +- v(y,t)(a-y)dy 
ea ea ., 

4n(a- x) s"' + · v(y, t)ydy, x < Dt, 
ea 0 

4naDt(a- x) 
q>( X, t) = ---'---'

ea 

4n(a-x) DSI + v(y,t)ydy, x>Dt. 
ea 0 

In particular, the following expressions will be 
found useful 

a I 4 Dl 

-a q> 1 = ....:.:[ aDt+ S v(y,t)ydy]. 
Xx=a ea 0 

E '1 = _!__cp I = 4n[-a(a-Dt) 
x=Dt--o {Jx x=Dt--o ea 

(9) 

(10) 

(11) 

(12) 

Dt 

+ ~ v(y, t)ydy]. (13) 
0 

We turn to the equation for the continuity of the 
current 

2>v does not iriclude the charge of the plane x = Dt, which 
is equal to a. 
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iJv aj 

at ax 

the conduction equation 

. E 1ihp 
1=-=---
. p p iJx 

and the Poisson equation 

iJE iJ2cp 
e-=-s-=4:nv. 

iJx iJx2 

We get the relation 

_0.:= -~v = -~ e =_£_6 

iJt pe e 4:rt' 

(14) 

(15) 

(16) 

(17) 

from which it follows that the solution in the region 
0 < x < Dt must be sought in the form 

v = f(x)e-t!EJ. (18) 

A special analysis is necessary for the line 
x = Dt. During the time dt, the current brings into 
the region dx = Ddt a charge dq = jdt from the left, 
there is no conduction on the right, and consequently 

V = dq = __j!!_ = j_ = Elx=Dt-0. (l 9) 
dx Ddt D pD 

On the line x = D itself we have a concentrated 
charge. 

We introduce a new system of variables3>. The 
time is in units ®, t = t' /®. The length is in units 
of D®, x = x' /00, so that now the front is x = t. The 
entire length of the capacitor is b = a/00 and is 
dimensionless. The unit surface charge density is 
taken to be and the unit volume density is the quan
tity ujD®, v = v'OO/u. The unit of potential is 
47ru00/E, the unit field is 47ru/E, and the unit cur
rent density is uj®. In terms of the new variables 
we have 

x(b-t) xr/ 
cp=--r-b-+bJ v(y,t)(b-y)dy 

X 

b X 

+ b x ~v(y,t)ydy, x<t, 
0 

t 
t(b-x) b-x r 

cp = b + --b- J v(y, t)ydy, x>t; 
0 

b- t 1 t 
E I x=t--Q = - --b-+ b ~ V (y, t) ydy. 

0 

Equation (19) yields 

b- t 1 t 
v(x=t,t) = --b-+b ~v(y,t)ydy. 

0 

We seek a solution in the form 

(lOa) 

(lla) 

(13a) 

(20) 

3 lThe old-dimensional-quantities are primed, and the new
dimensionless-are without an index. 

v = Z(x)e-1• 

Substituting (21) in (20), we get 

t e-t t 
Z(t)e-t = -1 +-+- \Z(y)ydy . 

b b 0 

(21) 

(22) 

Multiplying (22) by et and taking the derivative, we 
obtain the differential equation for Z. We again re
name the variable x in lieu of t, and then 

dZ(x) X 1 X ( 23) 
dx =-ex+,bex+bex+z;Z(x), 

We obtain the initial conditions by turning to the 
integral equation (22) and substituting t = 0; we get 
Z(O) = -1. Then (23) yields 

Z =- exp (;; )[ 1 + f ( 1- ~- : )exp ( y- :; )ay j 
0 

( :1.2 )[ ( x2 ) 1 ~"' ( y2) J = - exp ' - exp x-- -- exp y-- dy 
\ 2b \ 2b b 2b . 

0 

(24) 

Substituting this in ( 21), we get 

v (z, t) = e- 1 Z (x) = -ex-t+~ exp ( -t + .:!!:_) 
b ' 2b 

X 2 

X ~ exp ( y - :b ) dy. ( 25) 
0 

Thus, forb » 1 we have asymptotically v =

-ex-t, corresponding to a space charge that com
pensates u in a double layer of thickness y0 = 00. 

Let us find the current through the right-side 
plate. In dimensionless units we have 

iJ 1 iJ t 
i=-;J"/Ix=b,t=bat[t+ ~ v(x,t)xdx J. (26) 

0 

We substitute here (25) and get 
1 d t 

i = b - dt [ e-t ~ exxdx J 
0 (27) 

1 d 1 x2 x y2 
+ b 2dt { e-t ~ exp ( 2b )x [ ~ exp ( y - 2b) dy J dx}. 

0 0 

We transform the integral by parts 

t X 

~0 exp G:) xdx [ ~ exp ( Y - :: )ay J 

t X 2 2 

= b ~ [ ~ exp ( y - }J_ )ay J d [ exp ( :_) J 
0 0 2b . \ 2b' 

t2 t 2 

= b exp (~ \ Sexp (Y- }J_ )ay 
?.b1) 2b 

0 
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t! t 2 

= bexp (_ )1 exp (y-_!!___)dy-b[e 1 -1]. 
\2b,·) 2b 

0 

Substituting in (27), we get after cancellation 

1 d [ ( t2 ) ~t ( y2 \ J i=-- exp -t+- exp y-- dy 
b dt 2b 2b 

0 
(28) 

= ~ [1- (1-~)exp(- t +~) ~exp(y -~Jdy]. 
b ' b \ 2b \ 2b, 

0 

It follows from (28) that 

i(t = 0) = 1/b, i(t =b)= 1/b. (29) 

This value corresponds to a zero conduction effect, 
that is, in the dimensional form the expression 
i = 1/b in (29) yields i' = uD/a in accord with (1). 

We now find the intermediate asymptotic value. 
To this end we assume that t » 1 and b- t » 1, and 
neglect the exponentially small terms. We intro
duce the variable 

U=(t-y)(1-t/b). (30) 

It is easy to verify that 

/(1-t/b) 

- \ exp [- u - - 2-(-:-u-
2
-t-)2 J du. (31) 

Putting b(b- t)-2 « 1, we expand the exponential 
and neglect the exponentially small terms, replacing 
the limit t(1 - t/b) - oo. We get 

I = r e-u [1 - bu2 
] du = 1 - b ( 32) 

~ 2(b-t)2 (b-t)2' 

It follows therefore that in this approximation 

1 1 (33) 
i = b [1 -I]= ( b- t) 2 

In dimensional form, (33) yields for the current an 
expression proportional, given by (7), to (a- Dt)-2 

in the middle of the interval. 
The general expression (28) thus contains differ

ent limiting cases. The case b < 1 denotes small 
conductivity and a current i ~ 1/b which is constant 
for all 0 < t < b; the case b » 1 corresponds to 

FIG. 3. The dependence 
of the relative current in the 
presence of conductivity be
hind the SWF. 

large conductivity, when a double layer is pro
duced and the variation of i exhibits a deep mini
mum (33). A plot ofT/ = i/i0, where i0 corresponds 
to the formula i0 == uD/a, for different values of the 
conductivity yields the picture shown in Fig. 3. In 
the general case we have T/ == W(t/T, b), where W is 
expressed in terms of the error integral. 

In comparing with Fig. 2, we note that the exact 
solution shown in Fig. 3 pertains to the case R = 0 
and T = 0, so that the left-side maximum disap
pears. 

It is interesting to note that when water is used 
as the dielectric [3] the qualitative character of the 
experimentally registered current oscillograms 
coincides with the curves of Fig. 3. An explanation 
for this fact is the sharp increase of the conductiv
ity of the water on the SWF. [4•5] 

I take the opportunity to thank the authors of[t] 
for suggesting the problem and for valuable discus
sions. 

1 A. G. Ivanov, E. Z. Novitski!, V. N. Mineev, 
Yu. V. Lisitsyn, Yu. N. Tyunyaev, and G. I. 
Bezrukov, this issue, p. 2S [orig. p. 41]. 

2 R. A. Graham, F. W. Neilson, and W. B. 
Benedick, J. Appl. Phys. 36, 1775 (1965). 

3 F. E. Allison, J. Appl. Phys. 36, 2111 (1965). 
4 R. T. Eichelberger and G. E. Hauver, in: Les 

ondes de detonation, Paris, (1961), p. 364. 
5 A. A. Brish, M. S. Tarasov, and V. A. Tsuker

man, Zh. Eksp. Teor. Fiz. 38, 22 (1960) [Sov. Phys.

JETP 11, 15 (1960)1. 

Translated by J. G. Adashko 
26 


