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The spectral characteristics of a solid-state laser with a large angular beam divergence is 
considered. The large divergence results in strong spectral overlap of longitudinal modes and 
hence to degeneracy of the modes generated at a frequency corresponding to the maximum of 
the amplification band. It is shown that for a sufficiently large divergence angle the main con
tribution to the integral intensity is from degenerate modes which form a narrow spectral dis
tribution peak. The width of this peak is much smaller than the spectral width of light generated 
by an ordinary plane-parallel resonator. The conclusions of the theory are confirmed by the 
experimental data. 

1. INTRODUCTION 

THE spectral properties of a laser with plane
parallel reflectors were considered by Tang et 
al. [ 1l and in greater detail by Livshitz and Tsi
kunov, [ 2' 3] who showed that the nonlinear interac
tion between the electromagnetic fields of different 
longitudinal modes leads to simultaneous generation 
of a considerable number of these modes, and con
sequently, to a relatively large spectral width of the 
generated radiation. This is physically connected 
with the spatial inhomogeneity of the inverted popu
lation. If, for example, only one longitudinal mode 
were to be generated, then an increased inverted 
population would be produced near the nodes of this 
standing wave and would allow simultaneous genera
tion of other standing waves, in which the intensity 
distribution overlaps the maxima of the inverted 
population. 

The results of the aforementioned authors were 
obtained for a resonator with infinite cross section, 
i.e., without actual allowance for the transverse 
modes. Allowance for the latter, however, does not 
change these results in practice, provided the num
ber of generated transverse modes is sufficiently 
small so that modes with different longitudinal in
dices do not overlap spectrally. This means physi
cally that longitudinal modes of the resonator do not 
interact in practice with the transverse modes, pro
vided the longitudinal modes remain spectrally sep
arated. We note that this condition is usually satis-

fied in the case of open plane-parallel resonators. 
We consider in this paper the opposite limiting 

case, when the spectral interval encompassed by 
the transverse modes is much larger than the in
terval between the neighboring longitudinal modes, 
i.e., there is a strong spectral over lap of the longi
tudinal modes. We shall show that the associated 
interaction between the longitudinal and transverse 
modes leads to a considerable narrowing of the 
spectral line of the laser. Physically this is attrib
uted to the degeneracy of the modes, whose longi
tudinal and transverse indices can combine in such 
a way as to make the frequencies fall in a narrow 
spectral interval in the vicinity of the maximum 
amplification band; a large gain factor ensures pre
dominant generation of such modes. 

It will be seen from what follows that the degree 
of narrowing of the spectral line is determined es
sentially by the angular divergence of the light, i.e., 
by the number of generated transverse modes, and 
that for a given divergence angle it is practically 
independent of the resonator shape. We shall carry 
out the calculations for a plane-parallel resonator 
with a large angular divergence (due, for example, 
to total internal reflection of the light from the 
smooth lateral surface of the active element); the 
main results, however, can be extended to include 
the more common case of a resonator with curved 
reflectors. The analysis will be carried out for the 
case of stationary generation under the assumption 
that the luminescence band is homogeneously 
broadened. 
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2. EQUATION FOR THE SPECTRAL 
DISTRIBUTION OF LIGHT 

Let us consider the electromagnetic field in a 
resonator with an active medium. This field consti
tues a superposition of many natural oscillations 
(modes) of the resonator. We denote by Jn(r) the 
intensity of the field of the n-th mode (r-radius 
vector of the point in. the resonator), and by K(w, r) 
the effective absorption coefficient which takes into 
account both the losses and the amplification of the 
light in the resonator with the active medium. [ 41 

Then the condition for stationary generation takes 
the form (see [ 1- 31 ) 

)x(ffin,r)ln(r)dr=O (1) 

(wn-frequency of the n-th mode; integration is 
carried out over the resonator volume). Equation 
(1) denotes that the average power drawn by the 
electromagnetic field of each mode from the active 
medium and the resonator should be equal to the 
average power loss, since the intensity of each 
mode remains constant in time under stationary
generation conditions. 1> 

Inasmuch as the gain depends on the intensity 
of the electromagnetic field, the condition (1) is a 
nonlinear equation for the distribution of the inten
sity of the laser radiation over the modes. In order 
to consider this equation, it is necessary to repre
sent in explicit form the dependence of K on Jn. 
To this end we write down the effective absorption 
coefficient (confining ourselves for simplicity to 
the case of a four-level scheme): 

X({I),r) = Xt -- Cn(r)P(ffi) = x1 - Bn(r) 

(2) 

Here K1 is the loss of light energy per unit length, 
n the number of excited luminescence centers per 
unit volume, P(w) the form of the amplification 
band (which practically coincides with the lumines
cence band), C and B = CP(w0) are certain con
stants, w0 is the frequency corresponding to the 
maximum gain, and w is a quantity on the order of 
half-width of the luminescence band. The second 
term in (2) is the gain; we had expanded it in terms 
of the frequency in the vicinity of the maximum of 
the gain, retaining only the quadratic terms. 

The generation threshold is reached when the 
losses are offset by the gain at the frequency w0; 

hence 

1>In the simplest cases, condition (1) can be obtained from 
the wave equation for the electromagnetic field in the resona
tor [5 ]. 

B = xt!n"., (3) 

where n* is the threshold value of the number of 
excited atoms. 

In order to express the number of excited atoms 
in terms of the intensity of the electromagnetic 
field, we write down the equation for n, assuming 
the generation to be stationary: 

on n vBnl N 
at= 0 =-T- fiffio + fiffio · (4 ) 

Here T is the time of spontaneous emission of the 
excited centers, v the velocity of light in the me
dium, J the volume energy density of the induced 
emission, and N the pump power absorbed per unit 
volume. The first and second terms of (4) describe 
the spontaneous and stimulated emission of the ex
cited atoms, and the third the excitation of the 
atoms by the pump. Solving (4) with respect to n 
and substituting in (2) with allowance for (3), we get 

{ 1+v-xtlT/n*fiffi0 -NT/n"fiffio n (ffi-ffio)2} 
x=~ + . 

1+vxtlT/n*liffio n• ffiz · 
(5) 

In order to simplify this expression, we note that 
the threshold pump power N* is equal to the spon
taneous-emission power when n == n*, i.e., N* 
== n*liw0/T. Further, in the second small term in 
the curly brackets it is possible to neglect the 
slight deviation of n from the threshold value dur
ing the generation process. Introducing the dimen
sionless light energy 

it = Jvxtf (N- N*), (6) 

we get 

{ 1 - it ( ffi - ffio l 2} 
x=xt --N*/(N-N*)+it + --;; ; . (7) 

It will be seen from what follows that the spatial 
distribution of the intensity [g is practically homo
geneous, z> and that it differs little from unity. This 
enables us to simplify (7) somewhat, putting in the 
denominator of the first term f£ == 1 (we neglect by 
the same token the terms which are quadratic in 
1- 8 and retain the linear ones). Substituting (7) 
in (1) we obtain an equation for the distribution of 
the intensity over the modes3> 

2 )This is physically connected with the simultaneous genera
tion of a large number of modes with nearly equal amplitudes and 
different spatial distribution of the intensity. 

3 )The field intensity ~(r) is equal to the sum of the intensi
ties of the modes, since the terms corresponding to interference 
between different modes n and n' contain the time-dependent 
factor exp[it(w0 - w0 ,)] and drop out upon averaging with re
spect to time. A similar equation was used in ['~ 3 ] for a system 
of longitudinal modes with the transverse ones neglected. 
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n' 

We have introduced here the symbol 

s= 1-N*/N (9) 

for a four-level scheme. 
Omitting the calculations, we assert that Eq. (8) 

and all the results that follow from it remain in 
force also for a three-level system, provided we 
put 

N* s = 1 - -c-----
Nx +N*(1- X) (10) 

for the three-level scheme, where X is the ratio 
of the total light losses in the resonator with unex
cited active medium to the losses in the same reso
nator without the active medium. 

We note that the pump intensity N enters into 
the spectral characteristics of the laser only in 
terms of the parameter ~, which tends to unity as 
N- oo. A similar saturation effect was considered 
by Livshitz and Tsikunov[SJ for a resonator with a 
small angular divergence of the light. 

Equation (8) assumes some concrete form, de
pending on the shape of the resonator. Let us con
sider first a closed resonator in the form of a rec
tangular parallelepiped with a square cross section. 
If we number the longitudinal modes by means of 
the index m and the transverse one by the indices 
p and q, then the spatial distribution of the inten

sity of the natural oscillations takes the form 

• 2 nmz . 2 npx . 2 nqy 
{Smpq(r)=AmpqSlll --sm --sm--. (11) 

l a a 

Here l is the resonator length, a the side of the 
cross section, Ampq the positive amplitude of the 
intensity; the function of the indices Ampq speci
fies the distribution of the intensity over the 
modes. 

Equation (8) includes not only the intensity of the 
natural oscillations, but also their spectrum. Let 
k 11 = rrm/Z be the longitudinal component and k1 
= rr(p2 + q2)112/a the transverse component of the 
wave vector. Usually the light propagates at a 
small angle to the optical axis, i.e., k 1 « k 11 • Mak
ing use of this fact, we get 

Wmpq = Ckmpq = V l'k112 + kJ..2 = v(k11 + kJ..2/2kll + ... ) (12) 

(v is the velocity of light in the medium). The rela
tive change in k 11 within the limits of the spectral 
line of the laser is insignificant; we can therefore 
put in the second term of (12) k11 = const = w0/v. 
Thus, 

(wmpq ~ wo)/w = [a(m- mo) + ~(p2 + q2)] l'f/8, 
8nv 

a=-=-= 
wol 

mo=--. 

(13) 

(14) 
lw l'~ JtV 

(The longitudinal index m0 for q = p = 0 corre
sponds to a "central" frequency w0.) Usually4> 

0! « 1 and f3 « 1. 
Substitution of (11) and (13) in (8) entails no dif

ficulty if we recognize that 
a 

4 ~ sin2 (npx/a)sin2 (np'x/a)dx = a(1 + 6w/2). 
0 

We ultimately get 

Ampq = '(mpq- [a(m- m0) + ~(p2 + q2)]2, 

where 

'(inpq = 64 - 8 ~ Awp'q' 
m', p', q' 

- 4( ~ Amp•q' + ~ Am'pq' + ~ Am'p'q) 
p', q' m', q' m', p' 

(15) 

- 2 ( ~ Ampq' + ~ Amp'q + ~ Am'pq ). (16) 
q" p' m' 

We shall assume that the region of summation 
over the transverse indices is bounded by the in
equality 

p2+q2~p2, p>O; q>O. (17) 

This means that the angular divergence of the ra
diation is confined to a cone which is coaxial with 
the laser. 

3. CASE OF PLANE-PARALLEL RESONATOR. 
PEAK OF SPECTRAL DISTRIBUTION 

Inasmuch as the gain has a maximum at the fre
quency w0 , it follows that the greatest intensity is 
possessed by the modes with frequency close to w0; 

if the number of such modes is sufficiently large, 
then the fraction of their energy is appreciable and 
they form a peak in the spectral distribution of the 
generated light. The remaining modes form the 
"wings" of the spectral distribution (see the fig
ure). We shall investigate the spectral width and 
the ratio of the integral intensities of the "wings" 
and of the peak under the assumption that this 
ratio is small compared with unity. 

We shall calculate in this section the spectral 
width of the peak. 

It is seen from (13) that if the longitudinal in
dices m do not go beyond the interval 

(18) 

4 >under ordinary experimental conditions we have 
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dJ 
dw 

w 

then by suitable choice of the transverse indices 
from the allowed region (17) we can cause the dif
ference Wmpq- w0 to vanish. Thus, the modes 
from the interval ( 18) form a peak of the spectral 
distribution, and the remaining modes form the 
''wings.'' 

As will be shown later, the peak of the spectral 
distribution is sufficiently clearly pronounced only 
if both p and the integral (18), which is equal to 
m = {3p2/a, are appreciably larger than unity. Using 
this, we introduce the small parameters 1/p and 
1/m. If we assume that LmpqAmpq is a quantity 
of zeroth order of smallness with respect to these 
parameters, then the second line in (16) is a first
order quantity, and the third line is a quantity of 
second order of smallness; in fact, the sum of the 
positive quantities Ampq is, roughly speaking, 
proportional to the number of terms. Further, in
asmuch as the second term of formula (15) can 
vanish in the region (18), it is seen from this for
mula that the positive quantity Ampq varies in the 
range from zero to 'Ympq; consequently, the quanti
ties 'Ympq and Ampq are of the same, third, order 
of smallness in the region (18). 

Retaining the zeroth-order terms in (16) we get, 
with allowance for (15), 5> 

1- 1/s 
m, p, q (19) 

= 1- 1/s Z {Ympq-[a(m-mo)+~(p2 +q2H2} =0. 
m, p,q 

We can restrict the summation here to the region 
(18), since, by assumption, the integral intensity of 
the peak is much larger than that of the wings. We 
shall seek the solution of (19) in the form 'Ympq 
= const = 'Y· The sum in (19), which contains a large 
number of positive terms, can be replaced by the 
integral 

mo 

1/. ~ dm~ ~dpdq{y-[a(m-mo)+~(p2+q2)~2}. 
m.-r>p'Ja (19a) 

The region of integration with respect to p and q 
is replaced here by the inequality 

a(mo- m) -l'v ~ ~(p2 + q2) ~ a(m0 - m) + -yi, (20) 

which follows from the condition that the integrand 
be non-negative (we have extended the integration 
to the region of negative p and q, and divided the 
integral by 4). Actually the inequality (20) also 
takes into account the limitation (17), since the cen
ter of the integration region (20) does not go beyond 
the limits of the interval (17), and the length of the 
interval (20), as will be shown by what follows, is 
much smaller (by a factor p - 2/ 3) than the length of 
the interval (17). 

The integral (19a) can be readily calculated in 
cylindrical coordinates, and is equal to rrp 2y 312/3a. 
Consequently, the solution of (19) takes the form 

ry = (24a/:n:p2)'i•. 

Substituting it in (15), we get the distribution of 
the intensity over the modes: 

(21) 

Ampq = (~~ )''• _ 64 ( Wmpq- roo y. (22) 
:n:p2 ~ (j) 

Since the Ampq are positive, we obtain from 
this the spectral width of the peak: 

w "Yf( 3a )'" _ , brop= -- ---::-- == <'>rou(:n:pz)-1•. 
2 :n:p2 

(23) 

We have introduced here for clarity the spectral 
interval owll• which is encompassed by the longi
tudinal modes of a plane-parallel resonator with 
small angular divergence of the light; as is well 
known[ 1- 3J 

(24) 

Thus, with increasing angular divergence of the 
light, the peak of the spectral distribution becomes 
narrower and the integral intensity of the peak, as 
will be shown below, increases. We note that for
mula (23) is applicable only for sufficiently large 
angular divergence, when the integral intensity of 
the peak is larger than that of the ''wings.'' 

4. CASE OF PLANE-PARALLEL RESONATOR. 
"WINGS" OF SPECTRAL DISTRIBUTION 

As shown above, the modes which do not fit in 
the interval (18) are shifted in frequency to the left 
or to the right relative to w0, and form the "wings" 
of the spectral distribution. Let us consider the 

S)We see therefore that in the zeroth approximation the aver- spectral width and the integral intensity of the 

age value of the intensity is 'i8 (r) = 1/s ~· Ampq is equal to unity. ''wings.'' 
m,p-,q 



1164 A. M. RATNER 

We have seen above that Eq. (16) determines, in 
the zeroth approximation, the shape of the peak; 
this is connected with the fact that the triple sum 
which enters in the zeroth approximation is the in
tegral intensity of the generated light, and is con
centrated practically entirely in the peak. In order 
to consider the "wings" of the spectral distribution, 
we retain in (16) the terms of first order of small
ness. We have 

'\'mllq + 4( ~ Amp'q' + .~ Am'pq' + ~ Am'P'q) 
p', q1 m', q' m', p' 

= 64- 8 ~ Am'P'q' = const = 'YMPq 
m',p',q' 

+ 4 ( , ~ AMp'q' + -~ Am'pq' + I~ Awp'q ). 
p', q' m', q' m', p' 

(25) 

Here M is a longitudinal index arbitrarily chosen 
in the interval (18), i.e., in the region of the peaks; 
the index m, on the other hand, belongs to the re
gion of the wings. We have retained 'Ympq in (25) 
because in the region of the wings, unlike in the re
gion of the peak, the order of magnitude of 'Ympq 
cannot be established beforehand with the aid of 
(15). On the other hand, the value of 'YMpq in the 
region of the peak, as shown in the preceding sec
tion, is of third order of smallness and can be neg
lected. Taking this into account and equating the 
first and last expressions in the chain (25), we get 

p', q' p', q' 

The sums involved here can be replaced by inte
grals. Going over to an integral in cylindrical co
ordinates, and using (15), we get6> 

~ Amp•q•=; S {Vmpq-[a(m-mo)+fl~}rdr£ (27) 
p',q' 

with the integration region defined by the inequali
ties 

I a(m- mo) + flill =::;;; i'Ympq, (28a) 

0 =::;;; r =::;;; p. (28b) 

In Eq. (26) we encounter two sums of the type 
(27), in one of which the longitudinal index M be
longs to the region of the peak (18), and in the other 
the index m belongs to the region of the wings. In 
the first case we can disregard the limitation (28b) 
and use expression (21) for 'Y. In the second case 
the upper limit of the integral (27) is equal to p, 
and the lower limit is given by the inequality (28a), 
with 'Ympq being the sought unknown. (For con-

6)We make use of the fact that, according to (31), Ympq is 
actually independent of p or q. 

creteness we consider the left wing, i.e., the region 
adjacent to the interval (18) from the left.) Taking 
the foregoing into account, the integration can be 
performed in elementary fashion, and Eq. (26) 
takes the form 

n ~ ~a 
- [2ym;q - 3ympqaL\m + {aL\m) liJ + 'YmPq = R n2 • (29) 
3fl PP 

Here t..m = m0 - f3p 2/ a - m is the distance of the 
point m from the left boundary of the interval (18). 

We have obtained an equation for 'Ympq in the 
region of the wings. Carrying out simple algebraic 
transformations and omitting the indices, we write 
this equation in the form 

~CVv- aAm) 2 (2iy+aL\m)+ fly= 32ap-2• (30) 
3 

Since the right side of (30) contains a very small 
quantity, and all the terms of the left side are posi
tive, Eq. (30) can be satisfied only if ..f.Y ~ at..m. 
Putting in (30) ry = at..m everywhere except in the 
left factor, we get 

iv = aL\m + {-1- [ 3:a- fl(aL\m) 2]}"'. (31) 
naL\m p 2 

Substituting (31) in (15), we obtain the distribu
tion of the intensity over the modes. In order to 
find the integral intensity of the wings, it is neces
sary to sum the amplitude of the intensity Ampq 
over p and q and over the values of m that do not 
belong to the interval (18). The summation can be 
carried out without difficulty in the same manner 
as above. We finally obtain the ratio of the integral 
intensity of the wings to the integral intensity of 
the peak:7> 

~ w = ~-y-;_(2)'''·=(26rou \'" (32) 
Ee p 3 flp2 36w.L/ 

We have used here the notation (24) and introduced 
the spectral interval 

6w.L = n2v2p2/2a2roo = ro l'fflp2/8, (33) 

which is encompassed by the transverse modes. 
The ratio (32) decreases with increasing number of 
generated transverse modes, i.e., with increasing 
angular divergence of the light. 

The result has the following physical meaning. 
The peak of the spectral distribution is made up by 
degenerate modes, whose frequencies practically 
coincide with the maximum of the amplification 

7)It is easy to verify that the left and right wings of the 
spectral distribution have the same form and the same inte
gral intensity. 
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band w0• The larger the number of such degen
erate modes, the more pronounced the peak is and 
the smaller the ratio (32). On the other hand, the 
degree of degeneracy is characterized by the mag
nitude of the interval owl. If owl reaches the value 
owll, then roughly half the total of the generated 
modes become degenerate, and the integral intensity 
of the peak becomes comparable with intensity of 
the wings. With further increase of ow 1 , the con
tribution of the nondegenerate modes tends to zero 
together with the ratio (32). 

Let us consider now the spectral width of the 
wings. From (31) we can easily obtain the maxi
mum value .6.m = .6.mmax, which causes the radi
cand to vanish, and also the widths of both wings: 

nv 8nv 1 2 )''• ( 26ffiJI )''' llffiw = 2~mmax ~ = -- \--_-2- = OffiJI --- . 
l l a~p 36ffiJ.. (34) 

Thus, the spectral widths of both the peak and the 
wings decrease with increasing degree of degen
eracy. When the degeneracy is sufficiently strong, 
not only the peak but also the wings become nar
rower than the spectral interval ow 1 subtended by 
the transverse modes. However, there is nothing 
strange in this, since each individual longitudinal 
mode subtends only a small fraction of the interval 
ow 1 , rather than the entire interval. 

5. CASE OF RESONATOR WITH CONCAVE 
MIRRORS 

The formulas (23), (32), and (34) obtained above, 
which express the spectral characteristics of the 
laser in terms of the maximum index of the gen
erated transverse modes, are not restricted to a 
plane-parallel resonator. Apart from numerical 
factors, these formulas are applicable also for a 
resonator with concave mirrors, which, as is well 
known, has a relatively large angular divergence of 
the light. The maximum transverse index p is con
nected with the angular divergence e by the rela
tion p "'akB/n; substituting this in (23), (32), and 
(34), we express the spectral characteristics in 
terms of the angular divergence: 

~(J)p ~ 1 Offiw ~ _!:.. v Offill' fSw ~ ~( Offill)''' 
OffiJI (ak8) •;, ' l)(l)ll e ffio rg p 83 (l)o I 

(35) 
Formulas (35) are applicable to a resonator of ar
bitrary shape with sufficiently large angular di
vergence, satisfying the condition e ~ -J ow 11/w0• 

Let us consider a resonator with spherical mir
rors. From Va1nshte1n's theory[ 61 it follows that 
in such a resonator the radius of the p-th trans
verse modes is of the order of p112(ZR) 1/ 4k-l/2, 
where R is the radius of curvature of the mirror, 

and k is the wave vector of the light. Obviously 
the radius of the mode with the maximum trans
verse index p should coincide with the radius of 
the active element a, hence8> 

(36) 

According to Va1nshte1n, [ 61 the neighboring trans
verse modes of the spherical resonator are sep
arated by a spectral interval of the order of 
v-J2/ZR, so that the transverse modes subtend the 
spectral interval 

(37) 

Substituting (36) and (37) either in formulas (23), 
(32), and (34), or in the relations (35), we express 
the spectral characteristics of the spherical reso
nator in terms of its geometrical parameters:9> 

Offip ~ (_!!!__ \)•r,' Offiw ~ ( ZR6ffill )''''·iS w ~ ( lROffill )'!. 
<'lffill k 2a" Offill a2(1)o iS p a2 (1)o 

(38) 
These formulas can be generalized to include the 
case of concave reflectors in the form of an arbi
trary surface of revolution. We can show[ 71 that 
for a resonator with such mirrors e ,...,-Jb/1, where 
b is the sag of the reflector within the confines of 
the generating part of the cross section. Substi
tuting in (35), we get 

<'lffip ~ (-Z_)''' Offiw ~ ( ZOffiJI )'/,.iS w ~ ( lOffiJI )''' (39) 
0(1)11 bk2a2 1 ' l)(l)!l b(l)o ' iS p b(l)o • 

The condition for the applicability of the results 
iS wl~ P « 1, takes in the case of a spherical reso
nator the form 

(40) 

This condition is simultaneously also the condition 
for an appreciable narrowing of the spectral line of 
the laser. 

The narrowing of the spectral line was investi
gated experimentally in a ruby laser, [ 91 using in 
lieu of a spherical resonator a plane-parallel reso
nator with two identical positive lenses. Such a 
resonator is analogous to a spherical one with a 
radius of curvature R = F, where F is the focal 
distance of the lenses. Experiment shows that nar

rowing down of the spectrum is observed only for 
sufficiently strong lenses, satisfying the condition 
F ~ R, the width of the spectral line in this region 
decreasing with decreasing F. When the radius of 

8 )This formula can be readily obtained in the geometrical
optics approximation [7 • 8]. 

9)Formula (38) or (39) is applicable when R > l/2 or 

b<a2/l. 



1166 A. M. RATNER 

the generating part of the active element is de
creased with the aid of a diaphragm introduced into 
the resonator, the spectral width of the radiation 
increases, in accordance with (38}. Experiment also 
shows that narrowing of the spectral line of the la
ser is accompanied by regular relaxation oscilla
tions of the intensity; this is apparently connected 
with the fact that the intensity of all the degenerate 
modes varies with time in accordance with the same 
law. 

The author is grateful to B. L. Livshitz and V. N. 
Tsikunov for useful discussions. 
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