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A qualitative description of phase transitions permits one to draw some conclusions regarding 
the nature of the statistics in the vicinity of the critical point. In the vicinity of the transition 
all thermodynamic quantities can be expressed in terms of three unknown parameters, pro­
vided three assumptions are made: that the temperature fluctuations are uncorrelated, that 
moments of different magnitudes are uncorrelated, and finally the assumption of space simi­
larity. Singularities are defined by a single parameter. It is shown that in the three-dimen­
sional case the parameter can assume only two values. 

SECOND-ORDER phase transitions have been ob­
served and experimentally investigated in ferro­
magnets and ferroelectrics, in binary alloys and in 
solutions, in the vicinity of the critical point, and 
in liquid helium (the A. point). The two-dimensional 
Ising model and the Kac-Uhlenbeck-Hemmer model 
have been studied theoretically. Some information 
has been obtained from computer calculations. 

These studies revealed the general features of 
the behavior of various systems in the transition 
region. An attempt is therefore made in this paper 
to obtain all the information about a second-order 
phase transition in a system with an unknown inter­
action. It is merely assumed that the interaction 
radius is finite. 

Section 1 describes the phase transition in a 
sample of finite dimensions. The concept of the 
phase-transition region is introduced. It is to this 
region that all the assumptions and conclusions of 
this paper refer. Outside the phase-transition re­
gion the usual methods of statistical physics apply. 

The boundaries of the region are determined by 
the magnitude of the temperature fluctuations 
(Sec. 2). The physical significance of this magni­
tude is determined (the thermodynamic theory of 
fluctuations is not applicable here). A number of 
arguments are cited favoring the assumption of a 
gaussian behavior of the temperature fluctuations. 
This assumption specifies the temperature depend­
ence of the correlation radius, and turns out to be 
practically equivalent to the well-known law of the 
logarithmic growth of the specific heat. At the 
transition point the correlation radius becomes in­
finite. This circumstance is related to a number of 
assumptions described in Sec. 3 which are in the 
final analysis equivalent to the similarity hypoth-
esis. 

These two hypotheses exhaust almost com­
pletely the content of the phenomenological theory. 
If in accordance with the meaning of the phase­
transition region it is assumed that the nature of 
the statistics in the phase-transition region does 
not depend on the temperature, and outside this re­
gion it does not depend on the volume, then one can 
obtain a phenomenological theory described in 
Sec. 4 which is of course not exact, but simple and 
complete. Within the framework of this theory only 
the numerical values of three parameters remain 
unknown. The nature of the singularities (second­
order phase transitions are usually classified by 
the nature of the singularities) is determined by a 
single parameter n. 

The presentation of the theory is completed in 
Sec. 5. The hypothesis of the gaussian nature of the 
relative fluctuations of the magnetic moment makes 
it possible to formulate the complete system of 
equations of the phenomenological theory (the hy­
pothesis of Sec. 4 is now no longer required) and to 
obtain limits on the possible values of the param­
eter n. In the three-dimensional case there are 
only two possibilities: n = 2 and n = 3; in the two­
dimensional case n can assume seven values (2, 3, 
4, 5, 6, 7, 8). 

For simplicity the entire treatment is carried 
out for a two-dimensional and three-dimensional 
Ising model (the magnetic moment of the atom is 
± 1) with an arbitrary interaction radius. The pos­
sibility of proceeding to a more general case is ob­
vious. 

1. PICTURE OF THE TRANSITION 

We take a ferromagnet as an example of a many­
particle system. Let m be the magnetic moment of 
the sample (per atom), N the number of atoms in 
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FIG. 1. Change in the distribution of the magnetic moment 

in the neighborhood of the transition point. 

the sample, and p(m) the probability density for m. 
If the dimensions of the sample exceed the radius of 
action of the forces considerably, then the possible 
values of m will concentrate about the maxima of 
p(m). Let f1(m), f2(m) ... be the free energy per 
particle (or, more accurately, the thermodynamic 
potential expressed in terms of m) in the neigh­
borhood of the first, second, etc. maximum. If the 
Gibbs integral is split into a sum of integrals over 
regions about the configurations which yield the 
maxima of p(m), then the usual arguments of sta­
tistical physics yield 

p (m) = ate-Nt.(m)/hT + a2e-N!.(m)/hT + ... ' (1) 

where the coefficients O!to a 2, ••• depend weakly 
(compared with the exponential) on N and T. 

For N - oo the contribution to the sum (1) will 
only yield a maximum for which the free energy 
f(m) is minimal. The contribution of each hump 
(see Fig. 1a) will change with changing tempera­
ture. If there exists a temperature for which the 
contributions of any two humps turn out to be equal, 
then this temperature will generally speaking be a 
first-order transition point. 

However, it can occur that some symmetry pres­
ent in the sample will manifest itself in the sym­
metry of p(m) and will lead to the appearance of a 
series of symmetric and equally varying humps. In 
this case a sharp change in the nature of the dis­
tribution can only be related to a vanishing of the 
distance between the humps (see Fig. 1b). The cor­
responding temperature (Tt in Fig. 1b) can be a 
second-order transition point. In particular, if one 
takes for f(m) a very simple analytic expression 
consistent with the diagram 1b, then one obtains 
the phenomenological theory of second-order phase 
transitions due to Landau. [ 1 J The maximum corre­
sponding to the paramagnetic state may also remain 
below the transition point. This situation is de­
picted in Fig. 1c. If the equalization of the heights 
of all the three maxima does not coincide with the 
vanishing of the distance between the outermost 
maxima, then we have either a first-order transi-

tion of the type d in Fig. 1, or again a transition of 
the type b in Fig. 1. 

The calculation of first-order transitions is 
complicated by the existence of two-phase regions 
and surface tension; however, the independent na­
ture of the motion of each of the two maxima (for 
unbounded systems) makes it possible to utilize 
effectively the usual methods of statistical physics. 

In first-order phase transition the configura­
tions near each maximum always remain different. 
In second-order phase transitions there exists a 
region in which the difference between these config­
urations lies within the fluctuations and expan-
sion (1) loses its meaning. However, it will be 
shown that this region has its own simple laws. 

In order to define more clearly the boundaries 
of the region we divide the sample into pieces of 
dimension R. Let PR (m) be the distribution of mo­
ments for each such piece. Near the transition 
point the number of humps PR(m) (one or two, see 
Figs. 1 and 2) will depend on the values of m in 
neighboring regions and will change, depending on 
the choice of these values. The fluctuations of p(m) 
are shown schematically in Fig. 2. In this figure 
the temperature difference between T and the tran­
sition point T c is plotted in dimensionless units 
T = (T - T c> /T c on the ordinate, and the dimension 
of the piece R (the volume v) on the abscissa. The 
curves indicate the form of p(m) in various regions. 
For small T and R the shape of p(m) is undeter­
mined and the curves oscillate between the extreme 
values indicated by the dashed curves. 

The number of humps becomes stable only for 
sufficiently large pieces for which one can neglect 
the surface energy. The dashed lines in Fig. 2 in­
dicate the points at which the number of humps be­
comes definite. 

FIG. 2. The neighborhood of the transition point. Regions 
with identical physical phenomena. 
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FIG. 3. The magnitude of the spontaneous moment in the 
neighborhood of the transition. 

Instead of the instantaneous value p(m), one can 
take p(m) -the average over all the configurations 
of the surroundings. For the convenience of the 
discussion we divide the vicinity of the transition 
into the regions shown in Fig. 2. Above the transi­
tion point and for sufficiently large samples (re­
gion C) the possible values of m concentrate about 
m = 0. Below the transition point, also for suffi­
ciently largeR (region D), the maxima of p(m) cor­
respond to the possible values of the spontaneous 
magnetic moment (there are two in the figure). In 
the intermediate region B the fluctuations of the 
moment exceed the distance between the maxima. 
Region A corresponds to samples with dimensions 
smaller than Z-the radius of the interaction be­
tween the spins. 

In order to exclude summation over the direc­
tions of the spontaneous moment, we place the mag­
netic substance in an external magnetic field, suf­
ficiently small so as not to change the distribution 
in a finite region, but sufficiently large to prevent 
a change in the sign of the spontaneous moment of 
the entire sample. Let us introduce the following 
notation: mo is the value of the specific spontane­
ous moment, v is the volume of part of the sam­
ple, V is the volume of the entire sample, H is 
the external field, and T is the temperature. The 
condition formulated above means that 

vmoH~kT~VmoH. (2) 

For V /v- oo there always exist for any real mag­
netic substance fields which satisfy both inequali­
ties. Under these conditions the evolution of the 
distribution will have the form shown in Fig. 3. The 
horizontal arrows indicate the magnitude of the 
spontaneous moment. The thin slanting lines show 
the value of the factor exp ( -mH0/kT) where H0 is 
the average field produced by the neighboring re­
gions. 

It is seen from this diagram that at the points A 
and E the values of the average moment m 0 will 
simultaneously also be the values of the most prob­
able moment. In other words, these values of the 
average moment will be stable, small perturba-

At the point C, on the other hand, the value of 
the average moment m0 corresponds to its least 
probable value. This means that turning on the 
field results in rotation of the pieces and rapid in­
crease in the average moment from a value of zero 
to the value denoted in Fig. 3 by a horizontal arrow .. 
The points B and D are the boundaries of the re­
gions having various properties which have been 
described above. At those points 82f/8m2 = 0 for 
m = m0 , whereas 82f/8m 2 > 0 for m = m0 (stability) 
at the points A and E, and 82f/8m2 < 0 for m = m0 

(instability) at the point C. 
The transition region can therefore be defined 

as follows; We place the system in an external 
field H satisfying condition (2). We choose any 
bounded region of volume v, set the value of the 
total moment mv of the region, and average (with 
a Gibbs weighting) over all remaining parameters 
of the system. The distribution p(m) calculated in 
this way is expressed in the form 

p(m) = e-vf(m). (3) 

Simultaneous fulfillment of the conditions 

at jam= 0, 82!/8m2 = 0, (4) 

will yield an equation for determining the bound­
aries of the phase transition in the given region v. 

We note that the picture described above as­
sumes the existence of two possible definitions of 
the spontaneous moment: the moment indicated on 
Fig. 3 by a horizontal arrow and the usual spon­
taneous moment. Outside the transition region both 
definitions coincide. Within the region the moments 
differ and can in various phenomena play a differ­
ent role. Although Pv(m) has been defined for a 
finite region, it is not an analytic function of T. In­
deed, the specific heat 

az S -ln Pv(m)dm, a-c2 

becomes, as is well known, infinite for T - 0. 
The presence of two humps means that a homo­

geneous state with a moment equal to the average 
value of the moment will be relatively improbable 
and unstable. If we were to prepare such a state 
by some means, then during the following instant 
the system would split, first into small domains 
with opposite spin directions, followed by the ap­
pearance of larger regions, and we would obtain a 
hierarchy of dimensions, the fluctuations of the mo-
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ment not being smooth functions even on a large 
scale. 

The dimension of the region of phase transition 
can be related to the magnitude of the correlation 
radius Rc· The concentration of the values of the 
moment about m = 0 (region C) can occur only for 
R > Rc when the number of independent regions 
equal to R3/R~ is large. For this very reason the 
dimension R of the region D is larger than R~-the 
correlation radius for deviations of the moment 
from the average value. In the region B the dimen­
sion of the sample R is less than the correlation 
radius. 

2. MAGNITUDE OF THE TRANSITION REGION 
AND THE CORRELATION RADIUS 

The phase-transition region is shown in Figs. 2 
and 3 in terms of the variables T = (T - Tc) /T c 
and R-the dimension of the sample. This is the 
region in which the nature of the statistics is the 
same as in the direct vicinity of T = 0. If we were 
to specify a definite value of T and change R, then 
the distribution of the magnetic moment would 
change sharply in passing through the value R equal 
to the dimension of the unordered regions for 
T < T c· Therefore the boundary of the region can 
be specified by the condition R = Rc(T). 

If we specify the dimension of the sampleR and 
change the temperature T, then because of the fi­
niteness of the sample the phase transition will 
turn out to be smeared out over some range of 
temperatures. The singularities of the thermo­
dynamic quantities at T = 0 are due to a rapid in­
crease in the number of degrees of freedom con­
nected with long-wave fluctuations. The smearing 
for finite R occurs because of the absence of a 
contribution from degrees of freedom with a wave­
length larger than R. For R = Rc(T) the dimen­
sions of the fluctuations become equal to the dimen­
sions of the sample and on further decrease of T 

new degrees of freedom do not appear. For the 
boundary of the phase-transition region we again 
obtain the condition R = Rc ( T). 

In this section we estimate the magnitude of the 
temperature smearing llT as a function llT (R) of 
the dimensions of the region R. As has been shown 
above, for a given T the correlation radius Rc is 
equal to that value of R for which T = !:J.T. There­
fore Rc is obtained from the condition !:J.T(Rc) = T. 

The subsequent discussions, like most of the 
other conclusions of this paper, are not rigorous 
proofs but merely arguments favoring certain as­
sumptions. We shall therefore present three vari­
ants of one and the same argument: 

a) One can make use of the relations of thermo­
dynamic theory of fluctuations, but the temperature 
must be defined in terms of the values of the pa­
rameter A for which the correlation radius RA is 
limited to several interatomic distances. Only in 
this case will the distribution of values of the pa­
rameter A uniquely determine the temperature 
field. As the A parameter one can apparently take 
arbitrary configurations of k spins a (rk) (a is the 
moment and rk is the coordinate of the atom) if all 
the spins lie within a small region and satisfy the 
conditions: 

~ a(r~<) = 0, 
II. 

Let us calculate, for example, the correlation of 
the quantities ak+l- 2ak + ak-1 ~ a2ak/ak2• If 
G(r) = akal is the correlation of two spins, then 
the correlation 

82a~;. 82Ut 
---
fJk2 fJl2 

(5) 

However slow the decrease of the function G(r) for 
T = 0, the correlation length 

) a•c 
4n: -. - ,.a dr 

ar> 
is finite, and will therefore be cut off at atomic dis­
tances (there are no other parameters). Thus the 
overwhelming majority of independent parameters 
characterizing any small region will not be corre­
lated with the same parameters of another region. 

The temperature fluctuations inside RA will be 
(llT )2 = (8A/8T) -2 (&)2. The temperature fluctua­
tions in the entire sample are obtained by dividing 
this expression by the number of independent re­
gions v/vA; we obtain 

(~'t') 2 = a/v, a= v,.(BA./B't)-2 (~/..,) 2• (6) 

The values entering in a are assumed to refer 
to a small region and are not correlated with 
neighboring values. In an infinite sample they will 
be the same as in a granule of volume vi\ and can 
therefore have no singularities for T- 0. In other 
words, a does not depend on T and R and is a 
constant. 

b) No singularities of thermodynamic quantities 
can be observed in a finite sample, even if only be­
cause of the fluctuations of these quantities. There­
fore all singularities are connected with larger 
scales. But these scales have comparatively few 
degrees of freedom (the density of states is pro­
portional to the square of the wave number). If 
there are singularities of the magnetization or spe­
cific heat, then this means that long-wave vibra-
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tions make the largest contribution to these quan­
tities. But the temperature fluctuations in a sys­
tem of independent or weakly coupled degrees of 
freedom will be the same ( ~ T) for any degree of 
freedom; this follows from the Gibbs distribution. 
The contribution of long-wave vibrations will in 
this case be negligibly small. The fluctuations of 
the average temperature will be inversely propor­
tional to the number of degrees of freedom, i.e., 
to R3, and we shall again obtain (6). 

We note that in a system consisting of independ­
ent degrees of freedom there can be no phase tran­
sition; therefore the long-wave fluctuations must be 
coupled. However, one might expect that the tern­
perature fluctuations per degree of freedom will 
not change appreciably on this account and the con­
tribution of long-wave fluctuations will be small, 
as before. 

The following hypothesis that the smearing tem­
perature remains constant becomes thus likely; the 
(temperature) width of the transition region coin­
cides with the magnitude of the temperature fluctu­
ations, and these fluctuations do not change when 
the sample is split into a large number of interact­
ing parts. 

We have not defined here the concept of temper­
ature fluctuations, but the formulation does not de­
pend on this definition. The meaning of the hypoth­
esis is that long-range correlations do not affect 
the temperature smearing. 

As was shown at the beginning of this section, at 
the boundary of the transition region the distance to 
the transition point is equal to the magnitude of the 
temperature smearing (T = .6T), and the dimension 
of the sample R is close to the correlation radius 
Rc (R = Rc>· Substituting these two relations in (6), 
we obtain expressions for the volume of the corre­
lation region v c= 

(7) 

An exact formulation of the temperature smear­
ing hypothesis is: the boundaries of the transition 
region defined by the conditions afv/am = a2fv/am2 

= 0 (see Sec. 1) are described by the dependence 
T2V =a. 

We note that the conclusion described above is 
not exact, although it yields the right result. Equa­
tion (6) is valid inside the phase-transition region, 
and outside this region it coincides with the corre­
sponding formula of the thermodynamic theory of 
fluctuations; however, the magnitude and meaning 
of the constants in these two formulas are different 
[for details see c) below]. 

As will be shown in the next section, the hypoth­
esis proposed above is practically equivalent to the 

well-known law of the logarithmic increase of the 
specific heat in the vicinity of the critical point. 
This equivalence can be explained with the aid of 
the following simple considerations. The tempera­
ture smearing DoT is connected with the fluctuations 
of the total magnetic moment M by the relation 

(~-r)z= (aM/fh)-2Kfz. 

According to the thermodynamic theory of fluc­
tuations M2 = kT c8M/8H (H is the magnetic field, 
Tc-the Curie point, and k-the Boltzmann con­
stant). Making use of the well-known thermody­
dynamic identity 

we obtain: 

Here CJ.vr and CH are total heat capacities, not 
the specific heats. Constant a means that the dif­
ference between the specific heats CH=o- CM =o 
for T > 0 and v < vc is constant. But CH=o is the 
heat capacity of a sample with constant spontaneous 
magnetic moment, and CM=o is the heat capacity of 
a sample consisting of two halves with opposite di­
rections of the spontaneous moment (the surface 
energy prevents further division). One can there­
fore expect that CM=O is equal to CH=O for a sam­
ple of half the volume. The fact that a is constant 
means that the dependence of CH=o (v) on the vol­
ume v satisfies the relation 

c(v)- c(v/2)= a= const. (8) 

Applying this relation to v /2, v /22, etc. n times, 
we obtain; c(v) =an+ c(v/2n). Or, assuming 
v = 2nv0, where v0 is a small constant volume, and 
expressing n in terms of v, we find that 

v 
c(u) = alog2 ~ + c(vo). 

Vo 

We note that this argument is similar to the 
method employed by Buckingham[ 21 in his discus­
sions. The increase of the heat capacity on increas­
ing the volume v will stabilize at v equal to double 
the volume of the correlation sphere v c• since for 
v > 2v c and T > 0 in the state with H = 0 there is 
no spontaneous moment (we assume that in the re­
gions Vc the spontaneous moments are not zero, 
but are independent and CH=O - cM=O = c(v) 
- c(v/2) = 0. Denoting the specific heat of an infi­
nite sample by c, we obtain 

2ve 
c = c(2ve) = alog2- + c(vo). 

Vo 

Substituting here the value of the correlation ra­
dius Rc from (7), we find finally: 
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c = A ln T + B+, T > 0, 

where A and B+ are constants (do not depend on 
T). 

(9) natural to assume that the relationship between the 
local value of the parameters and the local "tem­
perature" coincides with the temperature depend­
ence of the mean values of these parameters. In 
particular, if one defines the temperature in terms 
of the energy of the system, then one obtains for 
the magnitude of the temperature fluctuations [ 1 J 

Below the transition point (T < 0) all arguments 
refer to the deviation of the moment from its aver-
age value m0 equal to the value of the spontaneous 
moment (per atom) of an infinite sample. There­
fore, instead of CM=o one must take everywhere 
cM=mo· In addition, the equality CH=o = CM=mo 

will occur for v ;::::; Vc· Therefore relation (8) will 
cease to hold for v = v c• and not for v ;::::; 2v c as 
in the case T > 0. Instead of (9), we obtain 

c=AlniTI+B-, -r<O, (10) 

where A and B_ are constants (do not depend 
on T), and B+- B_ = A. 

This conclusion takes into account the specific 
characteristics of the phase transition, but takes no 
account of the existence of a nonzero average mag­
netic moment. In order to allow for the interaction 
of distant regions by means of the average mag­
netic moment, one can use self-consistent field type 
methods (the Bragg-Williams or Curie-Weiss 
methods) or Landau's theory. These methods yield 
for the jump in the specific-heat values which are 
several times larger than that calculated above 
[A in (10) can be taken from experiment] and of 
opposite sign. 

Thus the observed jump of the specific heat con­
sists of two differing parts of opposite sign. In 
particular, the jump can vanish, as in the two­
dimensional Ising model where the Kramers-Wan­
nier symmetry ensures the symmetry of the spe­
cific-heat peak. 

c) In statistical physics the temperature is de­
fined as the Gibbs distribution parameter. Equilib­
rium systems are Gibbs distributions, and there 
are therefore no temperature fluctuations in such 
systems. 

However, any real equilibrium is only approxi­
mate; therefore, we make use actually of the con­
cept of the local temperature defined without allow­
ance for the interaction of the system with the sur­
roundings. The local temperature can be meaning­
ful, for example, in a case when the temperature of 
different regions of the sample is different, but for 
sufficiently small volumes the equilibrium depend­
ence of the parameters on the temperature is pre­
served. 

Taking into account the different corresponding 
relaxation times, we can also in the equilibrium 
case relate part of the fluctuations with a change of 
the "temperature" of a small region. Here, as in 
the thermodynamic theory of fluctuations, [ 11 it is 

- k1 
(Ll'L)2= --, 

c, v 
(11) 

where v is the volume of the region and cv is the 
specific heat. 

In the vicinity of the transition point there ex­
ists for sufficiently large regions (but outside the 
region of applicability of the thermodynamic theory 
of fluctuations) an uncertainty in the value of the 
local temperature which is considerably greater 
than (11) and related to the indefinite nature of the 
concept of the "temperature of a small region" in 
the case when this region interacts intensively with 
the surroundings. Neglecting the interaction, we 
introduce an error of the order of 

-- (kT) 2 k 
(d't)Z = ---=-' 

( LlEint) 2 CintV 
(12) 

where Eint is the interaction energy and cint is 
the specific heat connected with this energy. In de­
riving (11) and (12) use is made of the Gibbs dis­
tribution; neglecting the interaction energy, we 
cannot reconstruct the Gibbs distribution from the 
distribution of the parameters within the region 
with an accuracy greater than (12). 

Within the phase transition region the interac­
tion of a small portion of the sample with the sur­
roundings can be described as follows. The sur­
roundings determine the direction of the spontane­
ous moment and the choice of the maximum of the 
double-humped distribution shown in Fig. 3. The 
interaction energy is connected with the deviations 
of the moment from the most probable value in the 
vicinity of this maximum. Since the vibrations 
close to one maximum give the regular part of the 
specific heat, it can be expected that Cint tends to 
a constant for v- oo, unlike Cv in (11) which is 
related to jumps between the humps. 

Dividing the region into halves, we obtain from 
the relation 

E(2v) = 2E(v) + E'int 

for the specific heats (E int is the energy of one 
half in the uniform field produced by the other half; 
therefore Eint ~ v) 

c(2v)- c(v) ~ Cint= const. (13) 

From this relation we obtain, as in the previous 
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subsection, a logarithmic dependence of cv on v. 
The exponent in expression (7) has been obtained 

by Widom, [ SJ Pokrovskil and Patashinskil, [ 4] and 
Kadanoff[ 5] from the assumption of the logarithmic 
nature of the specific-heat divergence. They also 
assumed that the Essam-Fisher-Widom [SJ rela­
tions are valid and made use of similarity concepts. 
Calculations have also been carried out[ 7 ] of the 
temperature dependence of the correlation radius 
which are close to the method used in this paper. 

In this connection we note that the main result of 
this work as far as the vc(T) dependence is con­
cerned consists of two theses: first-that the coef­
ficient a in (7) contains no logarithmic and similar 
weak divergences, second-that relation (7) follows 
to some extent from the general properties of 
many-particle systems, and it is therefore logically 
simpler to consider it primary rather than derive 
it from the logarithmic behavior of the specific 
heat and the relations of [ 4, 5• 7J. 

The content of this section includes the main 
conclusions which can be reached on the basis of 
the hypothesis that the temperature smearing is 
constant, without additional assumptions. These 
conclusions-the exponents in the power relations 
of the correlation length and partly the specific 
heats-do not depend on any micro- or macroscopic 
characteristics of the material and differ in this 
respect from the results which will be obtained in 
the following sections. 

3. NATURE OF THE STATISTICS IN THE 
VICINITY OF THE CRITICAL POINT AND 
THE CORRELATION FUNCTION 

For T- 0 the correlation radius Rc becomes 
infinite. There appears an unbounded hierarchy of 
scales. Under these conditions one can expect that 
for distances R much larger than the interaction 
radius and much smaller than Rc the nature of the 
statistics does not depend on the choice of scale­
a similarity region appears. The insensitivity of 
the correlation function to a choice of scale can 
only be assured by a power dependence on R. The 
similarity hypothesis can be justified to some ex­
tent, the nature of the considerations depending 
considerably on the method of introducing the sim­
ilarity. The derivation of the power dependence of 
the correlation function will also differ. We shall 
cite three variants of this derivation. 

a) In the Kolmogorov theory of turbulence[S] 
(the connection between the theory of turbulence 
and the problem of the phase transition was pointed 
out by Patashinskil and Pokrovskil[ 9]) the accepted 
picture is of an energy flux from large to small 

scales via intermediate scales. On the whole cou­
pling of large scales is accomplished only by means 
of a scale-independent constant-the energy flux. 
For small scales-on the boundary of the turbulence 
region-the energy flux vanishes. 

In the region of a phase transition there is an 
analogous constant-the part of the heat capacity 
which is connected with the interaction energy, or 
the change in the specific heat when the volume of 
the system is doubled. The dimension of this con­
stant is that of the free energy f divided by T2, and 
the dimension of T2 is according to (1) [ v ]-1. If the 
free energy (more accurately, its dimension) is of 
the form f ~ bm2n, then we obtain for the correla­
tion G(r) = m1mr 

(mtmr] = [j f't·2)1/n [r)-1/n 

and consequently 

G(r) ~ bjvifn; (14) 

v = 47Tr3/3 for the three-dimensional case, v = 1rr2 

in the two-dimensional case, and b is a constant. 
b) The power dependence (14) can also be ob­

tained directly from similarity considerations. Let, 
for example, on increasing the scale by a factor 
of K, i.e., on increasing the distances between 
spins from r 0 to Kr0, the correlation between 
these spins decrease by a factor of L; that is, 

G(Kro)= G(rf1)/L. (15) 

Using Kadanoff's considerations, [ 5] one can 
show that for r 0 - co the quantity L tends to a fi­
nite limit. We divide the sample into regions of 
dimension r 0 and denote the spontaneous moment 
of the region by m0 and the direction of the spon­
taneous moment of the region K by ak = ± 1. The 
correlation G(r0) is close to m2 (see Sec. 4) and L 
is expressed in terms of the correlations akak'· 
However large r 0, the responsibility for the &ingu­
larities as T- 0 lies with the Ising model made up 
of the ak. For this reason the parameters of this 
model always lie in the phase-transition region, 
and akOk' cannot vanish for close regions. 

If L is independent of r 0, then ann-fold appli­
cation of (15) yields G(K~0 ) = G(r0) /Ln. Setting 
Knr0 = r, we obtain 

b 
G(r) = r2~, b = ro2~G(ro). 

lnL 213 = --. (16) 
InK 

Expression (16) for the exponent 2{3 has been ob­
tained with the aid of analogous considerations in 
Khinchin's book[ tO] and in the work of Novikov and 
Stuart. [ 11 J 

c) For large systems one usually assumes the 
existence of a limiting value of the specific free 
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energy f(m) as a fw1etion of the specific moment 
m. It is correspondingly assumed that there exists 
a limiting distribution p(m) = exp [-vf(m)]. It is 
assumed that for R-oo the quantity p(m) retains 
its form, i.e., the function p(m/ ~) where ~ = (m2) 
= (m2)1/2 has a limit. This means that vf[ m/~(v)] 
does not depend on v. Differentiating, we obtain 
f- vf' mt::i I ~2 = 0. For a given R the solution is of 
the form 

f = cm2n, (17) 

where c is a constant, and 2n = ~/v ~'. The ex­
pression for n yields an equation for ~ whose 
solution is of the form ~2 = m2) 

m2 = b' jviln, (18) 

where b' is a constant. 
Making use of relation (23) derived in Sec. 4, 

we obtain for the correlation the expression (14) 
with 

b = (1-1/n)b'. (19) 

We note that the distribution satisfying the 
above requirements of the limiting behavior in the 
theory of probability is called stable (see, for in­
stance, [ 12 J). 

4. SIMPLEST VARIANT OF THE PHENOMENO­
LOGICAL THEORY 

This section contains considerations in the spirit 
of [ 4-TJ. However, use of (7) makes it possible not 
only to amplify the Essam-Fisher-Widom rela­
tions, [ 6 J but also to construct a complete albeit not 
a rigorous theory. 

a) Spontaneous magnetic moment. Let ak be 
the magnetic moment of the k-th atom. Below the 
transition point there appears for each atom a non­
zero average magnetic moment m0• The quantity 
ak can be represented in the form of a sum of m0 

and a random deviation ~k• i.e., one can set ak 
= m0 + ~k· The average value of ~k is zero, and 
the average value of the product ~k~l for two at­
oms k and l decreases with increasing distance 
between the atoms and vanishes when this distance 
exceeds the correlation radius Rc. The vanishing 
of ~k ~ z for Irk - r zl > r c means that 

a~ta; = m02 + Ll~tllz = m02 for I r"- rzl > rc. (20) 

On the left-hand side we have the correlation 
function; therefore rna= G(rc). Let us take for 
G(r) expression (14), and making use of (7) ex­
press rc in terms of T. We obtain 

(21) 

b) Fluctuations of the magnetic moment and the 
correlation function. Let us calculate the mean 
square of the total moment M of part of the ferro­
magnet-a circle of radius R in the two-dimen­
sional case, or a sphere of radius R in the three­
dimensional case: 

kl~ = ~ a"a1 = ~ G(r~t- rz). 
h, l h, l 

The sum is taken over all rk and r z within the 
circle or the sphere. For regions smaller than Rc 
we find approximately (v is the volume of the 
sphere or the area of the circle) 

R 

M2 = 4nv ~ G(r)r2dr in the three-dimensional case 
0 

R 

M2 = 2nv ~ G(r)rdr in the two-dimensional case. 
o_ 

(22) 

Differentiating (22) with respect to R and set­
ting M = mv, we find 

G(r) = _t_a(m_2 rJ) 
3r2 or in the three-dimensional case, 

1 o(m2 r2) 
G(r) = 2r or in the two-dimensional case. 

(23) 
Calculating m2 from the distribution 

and substituting in (23), we obtain the connection 
between the constant b of relation (14) and the con­
stant c of (17): 

b = ( 1 _ ~) f(3/2n)(~)iln. (24) 
n f(1/2n) c 

c) Susceptibility. From the definition of the sus­
ceptibility X (v c is the volume of the correlation 
sphere) we have above T c 

X+=~a(O)a(r)d3r=vcm2 l=r; (25) 

Below Tc we have for a state with a given direc­
tion of the spontaneous moment m0 

X-= ~ [cr(O) ...:.._ mo][a(r) ~ d3r 

(26) 

The value of m2 for r = r c is obtained from (19), 
(20), and (7), and for m0 we take expression (9). 
For Vc = R~ we obtain: 

1 [ bai-t/n ] 1 
X-=;;: 1-=-1/; -r2-2/n • 

(27) 
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The ratio of the susceptibilities depends on n only: 

x-IX+ = 1/n. (28) 

In deriving (27) it was assumed that within the 
phase-transition region the correlation G(r) does 
not depend on T, while outside it G(r) = 0 for T > 0 
and G(r) = G(rc) for r< 0. This indicates an asym­
metry between m for T >o and m- m0 for T < 0, 
and as a result a different susceptibility above and 
below Tc· 

d) Specific heat. The results of preceding sec­
tions make it possible to estimate the magnitude of 
the partition function. We divide the sample into 
regions of volume v c where v c is the volume of 
the correlation region. Let m be the magnetic mo­
ment of the region (calculated per spin), f(m) the 
specific free energy of the region, and v the vol­
ume of the sample. The values of the moment in 
various regions can be considered independent; 
therefore the partition function is 

(29) 

For sufficiently small m above Tc the free en­
ergy f+ = m2/2 X+· 

Below T c there will in addition be the interac­
tion energy of the average moment of the region 
and the spontaneous moment of the sample mVx+ 
(m0 increases from zero and we have therefore 
taken the high-temperature susceptibility). The 
total energy will be 

1-(m) = (m- mo) 2/2x-- mNX+· 

The energy is determined with an accuracy up to a 
constant, but this constant has no singularities in 
T since for m I- 0 there is no phase transition. 

Substituting in (17) the expressions for f+ (m) 
and f_ (m), we obtain for the specific free energy: 

2a "'2 mo2 
1+ = - -:rrln (nkTcVcX+], 1- = - 2a In (nkTcVcX-]- "'~+ 

(30) l'v 

Using (7), (21), and (27), we find an expression 
for the specific heat c (the plus and minus signs 
refer to T > 0 and T < 0 respectively): 

c= Aln't'+B+, 

2 (2n- 1) 1 1 [ nkTcba2 J 
A= , B+=-+-ln , 

na na a (1-1/n)a11n 

2-2/n 1 
B-=B++ -Inn. (31) 

a a 

The relative jump in the specific heat 

parts-the energy gain mVx+ and on entropy loss 
ln (X_/X+)1/ 2 equal to the logarithmic ratio of the 
spreads of the moments above and below T c· For 
n ~ 8 the jump vanishes and becomes negative with 
further increase in n. 

Formula (30) establishes the connection between 
the specific heat and the susceptibility and con­
firms the assumptions of [ 13• 141 concerning their 
close values. 

e) The total system of equations. Let us write 
out the relations of the preceding Sections. We de­
note the volume of a region of radius r by v. 

The correlation of the deviations of the moment 
from its average value m0 is: 

b 
G (r) = --- mo2 v < Vc, yi/n ' 

G(r) = 0, v > V 0 • 

The susceptibility is: 

X-v[ b -m2] 
- . (1-1/n)vi/n ° ' v< V0 , 

X= Vc [(1- 1;n) Vci/n- mo2 J' v> V 0 • 

The free energy per unit volume is: 
1 mrf 

I= -ln (nkTxv) +-, v < Vc, 
2v X+ 

1 mo2 

I= -In (nkTx+vc) + -, v > Vc, 
2vc X+ 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

For v > v c the quantity rna is determined by ex­
pression (21); therefore for v > v c relations (33)­
(38) and (21) provide a complete description of the 
properties of a system with given constants a, b, 
and n. For v < v c the quantity m0 coincides in 
its meaning with the spontaneous moment intro­
duced in Sec. 1 and marked in Fig. 3 by horizontal 
arrows. However, the assumptions of the preceding 
sections are insufficient for determining its value. 
The simplest additional assumption is the following: 
for sufficiently small T on lowering the tempera­
ture from the upper limit of the transition region 
the moment increases equally for arbitrary v. 
This means that to determine rna at any point (v, T) 
one must take the temperature separation from the 
upper limit (a1/ 2/v112 - T) and ascertain for what v 
this separation becomes the width of the transition 
region. For this v the sought moment will be equal 
to the spontaneous moment at the lower limit given 
by relation (21). Finally, we obtain 

b'l• [ 1 ( a'/• )]1/n 
mo(v,"C)-= a}t2Ti: 2 dt·-"' .. (39) 

B-:_-B+ n [ 2 J 
A =2(2n-1) 2 --;:;:--lnn (32) Actually, for finite v there is always a region 

depends only on n. The jump consists of two 
where the moment increases proportionally to 
(a112;v112 - r) 112, since here f(m) can be expanded 
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in series and one can use Landau's theory. The 
assumption formulated above means that asymp­
totically for T - 0 one can neglect the contribution 
of this region (for n f. 2). 

Relation (39) is not used in this paper, but for 
suffici~ntly large v the system of equations (33)­
(39) provides a complete description of the mag­
netic substance. 

f) Free energy. Let us place the sample in a 
magnetic field H. A moment X H will now be added 
to the spontaneous moment Ino· The entire discus­
sion and all conclusions which referred to devia­
tions from m0 remain unchanged for deviations of 
the moment from the average value mo + X H. 
Therefore, to describe the system in the external 
field one need only replace in Eqs. (33)-(39) m0 by 
mo + XH. 

The volume of the correlation sphere is deter­
mined from the condition 

b''•!vc1' 2"' = mo + xH. ( 40) 

When X H » mo, then Vc = (b112/X H)20• Substi­
tuting this expression in (36), we obtain 

X- b (~ \2n-z A 
- 1 - 1/n xH J · 

Expressing X in terms of H, we find for m = XH 
the equation of state: 

bn/(2n-1) 
m = H1/(2n-1J. 

(1- 1/n)2n-1 
(41) 

If, on the other hand, X H « IDo, then we obtain 
directly from (30) for the singular part of the spe­
cific heat 2a -t In v-1/ 2n: 

2(2n -1) ( a,fln ) 
CH ~ In 'l'i/n +-X±H . 

a b~ 
(42) 

Since X+ f. X_, the halves of the lambda curve 
will be distorted differently. In a magnetic field 
there appears an additional quantity 6 to the jump 
in the specific heat; according to (42) 

ll = 2 (2n- 1) In "1/n + (a112njb'l•)x~ 
a -.:1/n + (a1/2njb'l•)x_fl ' 

For H = 0 this additional quantity is equal to 
zero, but 86/8H becomes infinite for H = 0 and 
T = 0 in accordance with the results of [ 15 • 161 . 

The effect of impurities and inhomogeneities can 
be taken into account to a first approximation by 
introducing an effective magnetic field produced by 
these defects. The distortion of the lambda curve 
will be similar to (42) and will also by asymmetric. 

Knowing the f(H) dependence, one can find the 
free energy for a given magnetic moment. Without 
dwelling on the derivation, we note that for R » Rc 
and m « mo 

j(m) = a11m2n + Un-ft·2/nm2n-2 + Un-2~nm2n-4 

+ ... + a{r2-2/n m2+ /o('r). 

Here as are coefficients which depend on a and 
b, and as~ a sin; abs. Or, since m0 ~ T 1;n and 
m « m0, we have 

f(m)= fo('r)+ a-rz-2/nm2+ ~'t2-4/nm4, 

where a and {3 are some coefficients. For n = 2 
we obtain the well-known Landau expansion. [ 1l For 
n = 3 we have an expansion proposed by Mama­
ladze[ 171 for the neighborhood of the A. point of He4• 

For the transition of helium to the superfluid state 
the mathematical analog of m2 will apparently be 
the square of the absolute value of the wave func­
tion of the ground state. [ 18 1 

For an antiferromagnet each sublattice will have 
its own Eqs. (33)-(39). We shall then obtain two or 
several systems of the type (33)-(39) coupled with 
each other. 

g) Other variants of the theory. This section 
contains the simplest variant of the theory which 
apparently reproduces correctly the main features 
of the transition while permitting one at the same 
time to obtain explicit expressions for the thermo­
dynamic quantities. It is interesting that the entire 
theory is set up without making use of expression 
(17) for f(m). If, on the other hand, one takes this 
expression to be basic, then one obtains somewhat 
less transparent (the integrals cannot be obtained 
in explicit form) but more accurate and logically 
simpler variants of the theory. 

For example, assuming that (17) is fulfilled for 
deviations of the moment from the average value 
±m0 , we take 

_ c ( m - m0 \ 211 c ( m + m 0 )2n 
f(m) -2 A ! + 2 ll • 

For the susceptibility we obtain 

~ (m-mo)2exp {- 1/2vcc[(m-mo) 211 +(m+m0) 211]}dm 

x= 
~ exp {- 1/2vcc[(m- mo) 2n + (m + mo) 2n]}dm 

and for the specific free energy 

1 {~ { VcC f =-In ) exp --[(m- m0)211 
Ve 2 

+ (m + m0) 211]} dm}. 

Here m0 is given by expression (21). Generally 
one need not use expression (14) for the correla­
tion and consider m0(T) to be an unknown function. 
This function can be determined from the condition 
I m I = mo for v = v c or from any other condition 
giving the lower boundary of the transition. 

The approximate nature of the calculations which 
have been carried out is obvious. For example, it 
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has been assumed that for R < Rc the correlation 
function does not depend on the temperature and 
vanishes jump-wise for R = Rc. But the singulari­
ties of the thermodynamic quantities increase with 
increasing R and reach a maximum precisely at 
the point R = Rc· 

However, because of their simplicity and clarity, 
this calculation and system of hypotheses are of in­
terest independently of the existence of an exact 
theory. 

5. THE INDEPENDENCE OF LARGE-SCALE 
FLUCTUATIONS 

The relations of the preceding section practi­
cally determine the form of f(m); however, there 
remains an arbitrariness which results in a small 
error in the susceptibility and specific heat. Cer­
tain details of the behavior of the system in an ex­
ternal magnetic field also remain unexplained. 

The hypothesis of the independence of large­
scale fluctuations formulated in this section re­
moves this arbitrariness. This hypothesis makes 
it possible to obtain an equation that describes the 
evolution of the distribution when the volume of the 
region changes (for large v). With the aid of the 
hypothesis that the temperature smearing is con­
stant we can relate the volume dependence with the 
temperature dependence. In the end there appears 
a system of equations which makes it possible, 
starting from (17), to describe the entire vicinity 
of the transition without resorting to atomic scales. 

The appearance near the transition point of a 
broad spectrum of scales allows one to assume that 
fluctuations of differing scales (differing in the 
sense of a different nature of the distribution) are 
to a large degree independent. At the transition 
point the correlations decrease with distance both 
in x and p space, and the distribution of the mo­
ment p(m) tends with increasing scale to its lim­
iting value (17). This means that there are changes 
of scale which are sufficiently small for p(m) to 
change little, but sufficiently large for the moments 
of the corresponding regions to be weakly corre­
lated. 

a) The independence of relative fluctuations. For 
v - oo the value of the specific free energy is the 
result of averaging over small-scale fluctuations. 
The averaging procedure can be described by the 
relation 

1 N 

foo(m) =limN~ fv(mt.) = ~ fv(m')Pv(m', m)dm', (43) 
N ..... oo 1<=1 

where Pv<m', m) is the probability of finding in a 
system with moment m within a volume v a mo­
ment m'. 

The assumption that relative fluctuations are in­
dependent means that in sufficiently large regions 
the values m'- m do not depend on m and consist 
of a large number of independent deviations (within 
a single volume v), i.e., they have a gaussian dis­
tribution 

Pv(m', m) = (nmv2)-'h exp{- (m'- m) 2/mu2}. (44) 

According to the stipulation the dispersion does 
not depend on m, and for m = 0 it is obviously 
equal to the average value of m2 within the vol­
ume v. 

Substituting (5) in (4), we obtain for fv(m) the 
equation 

(45) 

For v - oo the quantity m~ - 0 and the gaussian 
nature of the distribution (44) signifies the absence 
of a phase transition in a sample with a given m. 
One can, on the contrary, require the absence of a 
phase transition and from this condition derive (44). 

The solution of this equation with the initial con­
dition (17) for integer n is: 

n (-2 a 
f(m) =c ~(-1)•Czn28 (2s-1)!!m2n-2a ~). (46) 

s=O 

Since 

m2 = ~ m2e-vt<m>dm = m2 ~ y2exp {- v(m2)ncp(y)}dy,(47) 

where 
n 2n-2s 

cp(y) =c ~(-1)•Czn28 (2s-1)!!-Y-, 
•=0 2• 

then condition 

yields 

m2 = b' fv11n, (48) 

where b' is a constant determined from the rela­
tion 

S y2 exp {- (b')ncp(y)}dy = 1. (49) 

An expression has thus been obtained for the de­
pendence of the specific free energy on the volume 
at the transition point 

{ ao a1m2 
f(m) = c -+(-f)n-1 __ 

v vl-1/n 

azm4 } +(-f)n~z __ + + m2n 
v1-2/n . . • ' (50) 

where as are numerical coefficients which depend 
on n and are given by the relations (46)-(49). 

The quantity f(m) for a portion of the sample of 
volume v should be close to the specific free en-
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ergy of a sample of volume v. But in the latter in­
stance the Gibbs integral contains a finite number 
of sums; therefore f(m) can be expanded in series 
in powers of m. For noninteger n we obtain, in­
stead of (46), an infinite series expressed as an in­
tegral of m2n with a diffuse kernel. One sees 
readily that in this case f(m) does not expand in a 
Taylor series in powers of m. Therefore n must 
be an integer. 

Other limitations on the possible values of n can 
be obtained from the usual expression for the inter­
action energy of long-wave fluctuations. [ 1l 

6) 

S (Vm0) 2dx = N~ k2a,.2dw A 
0 

[ N is the total number of degrees of freedom and 
ak is the Fourier harmonic of m(x)). The average 
energy per degree of freedom in the long-wave re­
gion 

for a~ == dm~/dw and m~ ~ w 1/n will in the three­
dimensional case be proportional to k3/n- 1 and be­
comes infinite for small k, if n > 3. Inasmuch as 
it was shown above that n should be an integer, 
there remain in the three-dimensional case only two 
alternatives: n == 2 and n == 3. This result has been 
obtained in a somewhat different way by Fixman; [ 19 J 

such a possibility was indicated by A. Z. Patashin­
ski1 (private communication). In a space with a 
number of dimensions larger than three (the fourth 
dimension can, in particular, be the time) the only 
admissible value is n == 2. 

In the two-dimensional case the only limitation 
can be the requirement that the specific heat in­
crease in a transition to a more ordered phase. [ 1 J 

Indeed, it follows from (30) that for finite v the 
heat of fusion is proportional to T D.c where D.c is 
the specific heat jump and T ~ v-112 . But the heat 
of ~usion is always positive; consequently the jump 
D.c should also be positive. Equation (32) shows 
that for a uniaxial magnetic substance an increase 
in the specific heat is only obtained for n ~ 8. Thus 
seven values of n are possible in the two-dimen­
sional case: 2, 3, 4, 5, 6, 7, and 8. 

For sufficiently large n it turns out that not only 
is the interaction energy infinite but also the con­
tribution to the energy that appears when one fixes 
the direction of one of the spins. This can be shown 
using the following considerations of Fixman. [ 19 J 

On fixing the spin there appears in the magnetic 
substance at the origin a magnetic moment m(x) 
== G(x) ~ R-3/n. The energy of the long-wave fluc­
tuations will change by (8G/8x)2d3x. This quantity 

is proportional to R1- S/n and becomes infinite for 
n > 6. 

b) Strengthening of the temperature smearing 
hypothesis. For regions smaller than the correla­
tion radius, the value of the free energy depends on 
the configuration of neighboring regions, but it can 
be assumed that the effect of the neighbors will in a 
first approximation reduce to a smearing of the 
temperature. In other words, we shall assume that 
for a state with an accurately defined temperature 
the specific free energy is by definition equal to its 
limiting value for v- oo, and the actual free energy 
is due to a temperature spread which is unavoidable 
for a sample of finite dimensions. From considera­
tions presented in Sec. 2 it follows that the temper­
ature smearing will be gaussian with a spread 
(D. T )2 == a/v. This means that the average value of 
the free energy will be 

( v \';, \ { T-r- -r') z } 
f(-r,v) = 2:na/ J f(,;',oo) exp -~-v dr:', (51) 

or (w == 1/v): 

of a 82f 
ow- 2 ar:2 ' 

(52) 

This relation, in conjunction with (50), makes it 
possible by using relatively simple calculations to 
obtain from (17) the main results of Sec. 4. 

c) Calculation of the thermodynamic quantities. 
The free energy f(m; w, T) is sought in the form 

f(m, w, -r) = ao + a1m2 + azm~ + a3m6 + ... 
For w f. 0 (finite volume) f0 is expressed in terms 
of the Gibbs integral over a finite number of de­
grees; therefore f0 can be expanded in T under un­
der the integral sign. This means that the coeffi­
cients ak can be sought in the form 

a,. = ak0> + a~>,; + a~%) r:2 + ... 
Equation (20) permits one to express all a~i> in 

terms of a~o> and ap>. The coefficient a~o> is given 
by expression (50), and the coefficient a~1> can be 
found from condition (7) at the upper boundary of 
the transition region, i.e., from the condition 

a1 (w, r:) = 0, for r:2 = aw and r: > 0. 

Having solved Eq. (45) with the boundary condi­
tion 

~, =0 
am m=O ' 

f)2f I 
a~ =ai(w,r:), 

m m=O 

we find f(m, m2 ). Substituting this solution in re­
lation (8), we obtain an expression for determining 
m2. The value of m 0 will be obtained from the con-
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dition a2f/am2 j = 0 at the lower boundary 
m =m0 

of the transition region. 
Solution of these equations will yield the value of 

f(m) which should be substituted in (29) and an ex­
pression for the m 0(T) dependence which had been 
practically postulated by relation (39). Knowledge 
of this dependence makes it possible to close the 
system of equations (33)-(39) (formulated in Sec. 3) 
for finding the free energy in an external magnetic 
field or for a given magnetic moment. 

In conclusion we note that in accordance with 
the ideas of item c) of Sec. 2, the quantity a in (52) 
should only be constant along the lines v~ = const, 
but cannot remain constant for arbitrary tempera­
tures. Nor can relation (44) be universal, since 
m~ ~ (82f/om2f 1 depends on m also for large m. 
However, it follows from (50) that for m2 < m2 (i.e., 
for the overwhelming majority of the m) m; 
~ (o2f/om2~~ and depends weakly on m. 
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