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The tunnel recombination of protons near the surface of a metal is considered. Recombination 
probabilities to the ground level and the n-th level of a hydrogen ion are calculated for v « vF 
and v » vF, where v is the velocity of the proton and vF the velocity of the electron on the 
Fermi surface of the metal. The results are compared with the experiments of Phillips. [ 21 

1. INTRODUCTION 

IN a number of experiments, [ 1• 21 the recombina­
tions of ions coming up to a metal or passing 
through a thin metallic foil have been studied. The 
recombination process can take place in two ways 
here-by a tunnel transition of the electron from 
the metal to a level with the same energy in the 
ion (isoenergetic transition) and by transition to a 
lower level with transfer of the excess energy to 
the second electron, which can leave the metal 
(Auger effect). In the present paper, only transi­
tions of the first type are considered; these are not 
accompanied by secondary electron emission. 

The theory of such tunnel recombination was de­
veloped in the papers of Oliphant and Moon, [ 1 1 

Massey/ 31 Shekhter,[ 41 Cobas and Lamb,[Sl and a 
number of others. In all the works mentioned, the 
calculation was carried out in two steps. First, it 
was assumed that the ion is at rest at a distance R 
from the surface of the metal (Fig. 1), and the 
probability of transition of the electron from the 
metal to the ion per unit time, v(R), was calculated 
by time-independent perturbation theory. The total 
recombination probability is w = J v dt, where dt 
= dR/v (v is the speed of the ion). Thus, the first 
step is inconsistent, since the motion of the ion is 
not taken into account at all. This approach will be 

FIG. l. Ion close to a metallic surface. 

called what follows the "fixed ion approximation" 
(FIA). 

In the present research, this inconsistency is 
removed by the use of time-dependent perturbation 
theory, which permits us to determine the recom­
bination probability w for an arbitrary speed of the 
ion (Sec. 3). In particular, it is shown that the fixed 
ion approach leads to the correct result only for 
v « vF, where vF is the speed of the electrons on 
the Fermi surface, while for vi:. vF, the recombi­
nation probability can be materially different from 
that obtained within the FIA framework. For exam­
ple, for v » vF, there is an asymptotic dependence 
w ~ 1/vl' (Sec. 4). We also present here a correc­
tion of the calculation of Shekhter[ 41 (see Sec. 2), 
who determined w within the framework of FIA, but 
made a mistake which increases the value of w by 
about three orders of magnitude. 

2. FIXED ION APPROXIMATION 

Qualitatively, the probability of tunnel recombi­
nation can be estimated from the following semi­
classical considerations (see Fig. 1). A number of 
electrons 

dv = dcrcos8·4meded!J/(2:rr:li)3 

is incident on an area da from the depth of the 
metal to its surface. Multiplying this quantity by 
the transmission coefficient of the barrier 

D ~ exp[- 21i ~ drl'2m(jWj-e-e2/r) J 
Tmin 

~ exp [- 2: l'2m( I Wj-e) J. (2.1) 

and integrating over the energy and the solid angle, 
we get 

(2.2) 
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Here, it is taken into account that 

rmtn=e2/(IWI-e), cose=R/s, dcr=2:rr.pdp, 

s = yp2+R2. 

In (2.2), the quantity cp == IW 1- EF is the external 
work function and y is an undetermined quantity of 
order unity, which takes into account the inaccuracy 
in the determination of D and integration over dQ. 
The change in the number of ions is described by 
the equation 

dN; = - Ni'vdt, N; = N; (0) ( 1- w), (2.3) 

whence we find for the recombination probability 

w = 1- exp (-~ v dt) = 1- exp(- const/v), (2.4) 
0 

where canst== 1/ 2yvF.JEF/cp. Thus, the w(v) de­
pendence always has the standard form (2.4) in the 
FlA. In what follows, we shall show that a system­
atic account of the motion of the ion leads to an­
other w(v) dependence for v .2: VF· 

Let us now consider the quantum-mechanical 
formulation of the problem. Following Shekhter, [ 41 

we have for the transition probability of a single 
electron per unit time 

~ r ~ 
v=- JV,.I2~(EO-E"), v .. = J dr'IJl*(r) -x(r),(2.5) 

h r 

where Vn is the matrix element of the perturba­
tion operator e 2/r for the transition of the elec­
tron from the metal to the n-th level of the ion. 
The wave functions of the electron in the hydrogen 
atom have the usual form (see, for example, [ 61 ), 

and the wave function in the metal is equal to 
(see [ 41 ) 

(2.6) 

where o == .JkH- k~, k~ ==2m 1Win2, A2 == N is the 
density of electrons in the metal, ak 
== (ikx + 6)/(ikx- o) is the amplitude of the reflected 
wave, while the amplitude bk is determined from 
the matching conditions and is equal to bk 
== 2ik,c/(ikx- o). 

Let us consider the transition of the electron 
from the metal to the ground state of the hydrogen 
atom. The matrix element in this case was com­
puted by Shekhter: 

2e-M + 6 +; e-sR }. 
62- ;2 k2 + 1/acl- s 

(2.7) 

Here we have introduced the following notation: 

6 = l'1 I ao2 + k.1.2, k.1.2 = ky2 + kz2, k2 = 2me I h2• 

The function o(E0 - Ek) appearing in Eq. (2.5) 
expresses the law of energy conservation and will 
be represented (in our notation) in the form 

2m 
6(EO- E") = ll( I WI- I- e)= -6-6(s -6). (2.8) 

Setting ~ == o in (2. 7), we find 

V _ 2l'nAb~~.e2 _. ( 1 2 ) 
1- e •R -+-

-y aoa \ 252 ko2 
(2.9) 

(as will be shown in Sec. 3, the dependence on R is 
taken into consideration only in the exponent). 

Substituting (2. 9) in (2. 5) and averaging over the 
Fermi distribution, we find the probability of tran­
sition per unit time: 

e8 e, 

<v<R»= ( ~dey;rt 2; ~ dq'eiVtJ2ll[e-<IWI-I>J. 
o o ~.W) 

In particular, if the quantity E == I WI - 1 lies out­
side of the interval (0; EF), then the transitions are 
impossible. For the calculation of the total proba­
bility, it is necessary to integrate (v(R)) over 
dt == dR/v. 

By using the value of lw I == 18 eV, assumed in 
[ 41 for a molybdenum surface for a proton speed 
v == 1.5 x 106 em/sec, we find fooo dt (v(R)) ~ 102, 

which is three orders smaller than the result of 
Shekhter.O 

According to recent data, IWI ~ 10 eV for mo­
lybdenum; moreover, one can assume for all met­
als that I WI< 13.5 eV. This means that, in aver­
aging over the Fermi distribution (2.10), the zero 
point o (E - I WI + I) lies outside the integration in­
terval, and w1 == 0 in the FlA. Therefore, we have 
computed the probabilities w2 and w3 for the elec­
tron transition to the second and third levels in the 
hydrogen atom, which, with account of (2. 3) and 
(2.4), are given by 

w2 = 1 - exp ( -0,2e2 i liz1), wa = 1 - exp (0.08~ I hv). 

(2.11) 

The numerical factors 0.2 and 0.08 were obtained 
as the result of substitution of the value IW I == 10 eV 
and EF == 6 eV, which are typical for many metals. 
These parameters are shown in the table, the data 
in which were taken from various sources. [ 7- 91 

It is seen from the table that cp == IW 1- EF ex­
ceeds the ionization energy of the fourth level 14 

l)The discrepancy is due to an arithmetic error made in [•]. 
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I WI, eV II. I 10.2 10.3 7.0 111.0 10.7 10.5 
f-F, eV 7.0 5.5 5.5 4.3 6.5 6.5 7 .I 

(j), eV 4.1 4.7 4.8 2.7 I 4:5 4.2 3.4 

~ 0.8 eV, and therefore the consideration of the 
transitions to the fourth and higher levels is not of 
interest. 

3. ACCOUNT OF THE MOTION OF THE ION 

The transition probability per unit time v was 
calculated above under the assumption that the pro­
ton is found at a distance R from the boundary of 
the metal and can be considered to be at rest. This 
is why we used Eq. (2.5) from the theory of transi­
tions for stationary excitation. 

However, if the velocity of the ion is sufficiently 
large, and in particular, if it exceeds the velocity 
of the electron on the Fermi surface (v ~ vF), then 
it is obviously no longer possible to consider the 
excitation as stationary, and Eq. (2. 5) is not valid. 
In this case, the transition probability must be 
computed from the Schrodinger equation, which 
takes into account the change of state with time. 

experiment of Phillips, [ 2 ] in which it can be as­
sumed that at the initial instant of time (t = 0) the 
proton leaves the metal and goes off to infinity with 
the velocity v, which is equivalent to the conditions 
a(O) = 1, {3(0) = 0. 

Assuming the Coulomb excitation - e2/ I r - vt I to 
be small, we find from the Schrodinger equation 

. 1 (" ( e2 ) 
p(t)=ih Jdnf(r,t) - lr-vtl ;x(r,t). (3.5) 

Carrying out the integration, we represent {3(t) in 
the form 

. { ~R } p (t) = B exp -iwt + i2- sR Uv + gv exp {-ikpR 

+R<s-6)}]. (3.6) 

Here, we have introduced the notation 
mv 

kp= -, R=vt, 
h 

1 
w=-(I-IWI+e), 

h 

1 [ 1 kp + i <s + 6) ] 
!v=1 kp+i(s-6)- (kp+is) 2 +kx2 • 

2i 
gv=---

(kp- i6)2 + 62 . 
~ a~ ~ h2 
H~=ih-· H=--11+U(r t). 

at' 2m ' 
(3.1) To determine the recombination probability in 

first-order perturbation theory, we must find 
Here 

{ -e2/lr-vtl, x > 0 
U (r, t) = Umet (r) + Ucc;mt(r, t) = -I WI' 

.r < 0. 

(3.2) 
The wave function of the electron can be repre­
sented in the form 

~(r,t)= a(t}x(r,t)+ p(t)'ljJ(r,t). (3.3) 

Here 

X (r) is determined by Eq. (2. 6), and 1/J is the 
hydrogen wave function. In the laboratory system of 
coordinates, the function 1/J(r, t) is equal to (see 00 ]) 

1 { lr- vtl 
'ljJ (r, t) = -=exp - --'---'-

l':n:ao3 ao 

I ( mv mv2 )} +i-t+i -x--t . 
h \ h 2ft 

(3.4) 

The coefficients a (t) and {3 (t) in (3. 3) determine 
the probability of the state of the electron at a given 
instant of time in the metal or in the moving hydro­
gen atom. 

Let us consider the case corresponding to the 

00 

p(oo)= ~dt~(t), w=(l~(oo)l2). (3.7) 
0 

It is curious to see how Shekhter's result can be 
obtained from (3.6). This result (corrected by us) 
corresponds to the fixed-ion approximation. For 
this purpose, we must set kp = 0 and R = const in 
(3.6). Then, as is not difficult to prove, (3.6) takes 
the form 

. i 
p = h V (R) e-iwt, 

where V(R) is identical with the matrix element of 
Shekhter (2. 7). By computing 

t 

p(t)= ~ dt~ = V(R)(1-e-i"'t)/hw,, 

we get for the transition probability per unit time 

1 11 12 v(R) = lim-1 p (t) 12 = 7 V(R) 2:n:6(w), 
1-+oo t f£ 

(3.8) 

which is identical with (2.5). Furthermore, by 
averaging (3.8) over the Fermi distribution and in­
tegrating over dt =dR/v, we get Eq. (2.11). In 
first-order perturbation theory, we can write this 
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in the form 
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F{ujvF)· 

w = ~ (v(R)) dt = const/v, const = ~ (v(R)) dR. (3.9) 

Thus, in the fixed-ion approximation, we assume in 
the integral J dt {3 that R = const and v = 0, and 
for the next integration J ('v(R)) dt, we assume 
R = vt and v f. 0, which is inconsistent and which 
can lead to an error in a number of cases. 

Thus, for example, in the indicated approxima­
tion, transitions to a level whose energy lies out­
side the interval (-IWI; -IWI + EF) are shown to 
be impossible, while in the theory which takes into 
account the motion of the ion, the energy conserva­
tion law does not hold (the perturbation is time­
dependent), and also the transitions can exist. In 
particular, for a transition to the ground state, we 
find from (3.6) and (3. 7): 

(3.10) 

and finally, 

w(v) = < (£v)2 + (:~ 1/2 kpv)2 ltv+ gvh~ro) 12). (3.11) 

In view of the complicated character of this ex­
pression, we consider two limiting cases, v » vF 
and v « VF, for which we can find 

(ro)_ {to+go ~ 2i/ko2, V~VF 
tv+ gvhv - -2ijkp2 V ~ VF • 

(3.12) 

The expression (3.11} can be represented in the 
form 

wt">= ~ (~)5(~)3 F (..!:_), 
3:rt ftvF I WI VF 

( V ) < ki· ko4 ltv+ g,h~ro) 12 ) 
F vF = kF2 4 q2 +(e/EF- zp)2 .. 

(3.13) 

We have here introduced the following notation: 

ft£v ft~v 
q=--~--. 

eF eF 
I WI-I +mv2/2 

Zp= . 
eF 

For small velocities, and with account of (3.12), the 
function F(v /vF) takes the form 

1 
F {..!:_) _ 1 ~ dzz'l• 

'wp -2 0 q2+(z-zp)2 
(3.14) 

and remains finite even as v- 0. Figure 2 shows 
a plot of F(v /vF) for typical values of the parame­
ters: I= 13.5 eV, IW I= 10 eV, EF = 6 eV, and 

0.2 r 

0.1 

0 

I 
I 
I 
I 
I 
I 
I 
\ 
\ 

2,0 3.0 
ufuF 

FIG. 2. Dependence of the recombination probability on the 
velocity of the ion. The dashed curve corresponds to the asymp­
totic formula (3 .15). 

~ = 1.25/a0• Here the value of w1 is seen to be 
~ 10 for v = 0, which indicates the inadequacy of the 
first-order perturbation theory for velocities close 
to zero (according to the meaning of probability, w 
cannot be larger than unity). Therefore, we can use 
Eq. (3.13) only for w « 1. 

In Phillips' experiments, [Zl the passage of pro­
tons with energy in the range Ep = 5-200 keV 
through a thin metallic foil was studied. The corre­
sponding value of v was (0. 7-4.5)vF. It is clear 
that under these conditions the fixed-ion approxima­
tion can lead to large errors. In the opposite limit­
ing case, v » vF, we find (with the help of (3.12)) 

(3.15) 

This curve is shown as the dashed line in Fig. 2. 
The asymptote of (3.15) gives correct values only 
beginning with v /vF ~ 4; therefore comparison 
with experiment is difficult. 

Let us compare the resultant w~v> dependence 
with the data of Phillips. Figure 3 (solid curve) de­
scribes the experimental dependence of the number 
of unrecombined protons on their energy Ep. The 
dashed curve (1- w1v>) corresponds to the approx­
imate formula (3.14). Comparison shows that the 
recombination probability w1 (v) (3.14) gives a 
somewhat lower value than experiment. Evidently 
this is explained by the fact that there exist other 
mechanisms responsible for the change in the 
charge ratio of the particles coming from the foil, 
for example, Auger recombination, connected with 
the emission of a secondary electron, and also 
triple recombination. [ 11 1 

4. TUNNEL TRANSITION OF AN ELECTRON TO 
THE n-TH LEVEL OF A HYDROGEN A TOM 

Up to now we have considered the tunnel transi­
tion of an electron of a metal to the first level of a 
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FIG. 3. Comparison of the theoretical data (dashed curve) 
with the experiments of Phillips.[ 2 ] 

proton moving with velocity v. However, there is a 
finite probability of a tunnel transition to the sec­
ond, third, etc. levels, with formation of an excited 
hydrogen atom. Limiting ourselves for simplicity 
only to spherically symmetric states ( l = 0), we 
write down the eigenfunction of the n-th level in the 
form (see [ 10 • 12 ]) 

• exp [u/i-1 (lfnz- mv2f2) + ikpx] 
'¢n (r, t) =-

2l',;ao n! l'n 

X {( ~ r n-t [exp {-lr- vtj (2y -1)fnao} }} ' 
, dy ! 'Y I r - vt I 

(4.1) 

where y is a parameter which, after differentia­
tion, must be set equal to unity. Substituting ( 4.1) 
in (3. 5) and integrating with respect to time, we 
get 

2l'n e2mAb11. ( d )n . 1 \ d"' 
~n(oo)=- \- yn- J w 

/i2l"aon! l"n dy <I>n=(2Y-1)/na, 

X {[ylllz + kj_2(kp- U3 + i 1"<1>2 + kj_2) (2kp l"<I>z + kj_z 

+if (nao)2 - ikp2- ik02 + ik2]-1 + 2i {[(kp- i6)2 + kj_2 

+ <1>2) (2kpb + i/ (na0) 2 + ikpz- ik02 + ik2) )-1 

- (kp + ib + i 1"<1>2 + kj_2)[l"<l>2 + kj_ 2 

X( (kp + il'<l>2 + kj_2)2- kx2) (2kp 1"<1>2 + kj_2 +if (nao)2 

- ikp'l.- ik02 + ik2) ]-1}. ( 4. 2} 

In view of the complicated character of this ex­
pression, we limit ourselves to the highest veloci­
ties of the proton, v » vF. Then (4.2) takes the 
form 

2il';e2mAbk ( d )n <I>n- ikp 
~n(oo)= - yn-qn . 

/i2l'ao kp3n! l'n dy <I>n + ikp 
(4.3) 

In particular, 

= - ( n - 1) ! [( 1 - ~ )n -1 .] . 
1- mkpao 

(4.4) 

In the limit of high velocities (i<pa0 » 1), one gets, 
approximately, 

Similarly, 

2i 
M_(n)~(n-1)!-k . 

pao 
( 4.5) 

( d )n 2i 
M+(n)=- yn-iJn(<I>n+ikp)~-(n-1)!-(4.6) 

'' dy. kpao 

and then 

Computing I .Bn (00 ) 12 and averaging over the 
Fermi distribution, we get 

(v) (v)/ 3 
Wn = W1 n, 

(4. 7) 

(4.8) 

where w~V) is determined by Eq. (3.13), while one 
must use the asymptote (3.15} for F(v/vF). We note 
that the 1/n3 dependence holds also for the radiative 
recombination of the electron in a gas. [ 13 J 

In conclusion, the authors express their sincere 
gratitude to M. A. Leontovich and V. I. Kogan for 
interest in the work and valuable discussions. 
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