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Quasilinear effects due to acceleration of a beam of runaway electrons by an external electric 
field are studied. It is assumed that initially a low density beam of high energy electrons ex­
ists in the plasma, Coulomb collisions between the electrons and the plasma electrons and 
ions being insignificant. The electric field is assumed to be small compared with the critical 
Dreicer field at which all plasma electrons begin to accelerate with respect to the ions. A 
solution of the quasilinear equations is found by taking into account the effect of the external 
electric field and collisions between the plasma electrons and ions. The time dependence of 
the noise spectrum excited by the beam is determined. The results of the theory may be use­
ful in interpreting the experiments performed on installations of the "Tokamak" and 
"Stellarator" type. 

1. INTRODUCTION 

THE purpose of the present work was to investi­
gate certain collective effects accompanying the 
formation of a beam of runaway electrons in a 
plasma. 

We consider a plasma situated in an external 
electric field E which is weak compared with the 
Dreicer critical field[t] Ec ~ mvTv(vT)/e, where 
e and m are respectively the charge and mass of 
the electron, vT is the thermal velocity of the elec­
trons, and v(vT) is the effective frequency of the 
electron-ion collisions, corresponding to the 
thermal velocity vT. The electric field E leads to 
the appearance in the plasma of a quasi-stationary 
current, and the current velocity u can be estima­
ted with the aid of the relation u ~ eE/mv(vT) « vT. 
This is precisely the situation realized in experi­
ments on Joule heating of a plasma with devices of 
the "Tokamak" and "Stellarator" type.r2•3] 

However, even when E « Ec part of the elec­
trons in the plasma can go over into the continuous­
acceleration mode (the so-called electron "run­
away"). The possibility of continuous acceleration 
is connected with the fact that the frequency of the 
Coulomb collisions decreases rapidly with increas­
ing electron velocity: v(v) = v(vT) (vT/v) 3 . There­
fore, if the electron velocity exceeds v0 

~ vT[mvTv(vT) /eEJ1 12 at the initial instant of time, 
then the electron begins to accelerate[4, 5J. The 
runaway electrons experience practically no pair 
collisions; only collective processes, connected 
with the buildup of Langmuir oscillations, can 
greatly influence the motion of such electrons. The 

condition for the excitation of Langmuir oscillations 
is the formation of a second maximum on the plot 
of the velocity distribution of the electrons (in 
other words, the formation of a beam of runaway 
electrons). The concrete mechanisms that lead to 
the formation of the beam will be considered later. 
For the moment we focus our attention on the in­
vestigation of those collective effects, which become 
manifest when an electron beam, with velocity 
greatly exceeding v0, has already been produced in 
the plasma for some reason or another. 

The evolution of the distribution function of the 
beam electrons is described by quasilinear equa­
tions. We succeeded in carrying through to conclu­
sion only the investigation of the case when we could 
confine ourselves to the one-dimensional variant of 
the quasilinear theory[6•7J. Such a situation is real­
ized, for example, if a strong magnetic field0 

parallel to the electric field exists in the plasma. 
The equations of the quasilinear theory are then 
written in the form 

iJj + !__E iJj = 4n2e2 ~ .. ~ w (~ l iJj 
iJt m iJv m2 iJv v v / iJv ' ( 1) 

iJw (k) 
-8~t- = [y(k)- v(vr)] w(k), ( 2) 

n' ( iJj )I y(k) = nwp- v2- I . 
n iJv 1 v=wp 1t 

(3) 

Here f is the runaway electron distribution function 
normalized to unity, w(k) the spectral energy den-

l)such that the electron cyclotron frequency greatly ex­
ceeds the electronic plasma frequency. 
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sity of the Langmuir oscillations, n the plasma 
electron concentration, n' the beam electron con­
centration, which is assumed small compared with 
n, and wp the electron plasma frequency; the re­
maining notation is standard. For convenience, we 
have chosen the direction of the electric field op­
posite to the direction of the velocity axis. 

Assuming that the beam-electron velocity greatly 
exceeds v0, we neglect completely the pair colli­
sions in the equation for the runaway-electron dis­
tribution function. On the other hand, allowance for 
the collision damping in the equation for the spec­
tral energy density of the oscillations is essential. 
This effect is determined by the collisions between 
the plasma electrons and the ions, and is described 
by the last term of (2). 

It must be emphasized that we regard the con­
centration n' of the runaway electrons to be fixed, 
neglecting the accumulation effect connected with 
the presence of a stationary flux of runaway elec­
trons in velocity space[4•5l. Therefore the proposed 
theory is valid only so long as the increment of the 
runaway-electron concentration due to the accumu­
lation effect is small compared with their initial 
concentration. 

2. SOLUTION OF QUASILINEAR EQUATIONS 

The quasilinear equations for beams in a homo­
geneous plasma without an external electric field 
were dealt with in a large number of theoretical 
papers [6- 10 l. Our case has a principal singularity 
connected with the fact that the problem includes 
continuously acting energy source and energy sink, 
namely an external electric field and collisions. 
Therefore the energy conservation law that follows 
from (1)-(3) is written in the form 

mn' as a \ \ 
- 2-iit V2fdv+fitJ w(k) dk=en'EJ vfdv 

-v(vT) ~ w(k) dk. (4) 

The left side of ( 4) is the rate of change of the en­
ergy of the system consisting of the beam electrons 
and the Langmuir oscillations. The first term in 
the right side describes the increase in the energy 
of this system under the influence of the electric 
field, and the second term the decrease of the en­
ergy as a result of the collision damping of the os­
cillations. 

We solve the problem of the temporal evolution 
of the distribution function under the assumption 
that the external electric field is small. Let us con­
sider first the case when the electric field is equal 
to zero. Then the system acquires as the result of 

quasilinear relaxation a stationary state: The dis­
tribution function takes such a form that the insta­
bility increment vanishes in a certain interval 
k 1 < k < k2 of the wave vectors: y(k) - v(vT) = 0. 
The limits of the quasilinear-relaxation region in 
velocity space are determined by the equations 
v1 = wp/k2 and v2 = wp/k1; outside the velocity in­
terval [v1, v2] the distribution function remains un­
changed and equal to the initial distribution function 
f0(v) (see Fig. 1). 

f(u) 

lJ 

FIG. 1. Relaxation of the distribution function as E -> 0. 

By means of the substitution k = wp/v we can re­
write the equation y(k) - v(vT) = 0 in the form 

aj =~ a= 'V(VT) .!!:._ (5) 
av V2 ~ :rtWp n' ' 

whence 

( 1 l) f =a --- , vi::::;;; v::::;;;; v2• 
Vi V 

(6) 

To determine v 1 and v2 it is necessary to use the 
continuity of the distribution function at the point v2 

and the conservation of the total number of parti­
cles in the beam: 

(7) 

( 
V2 V2 ) r a --ln--1 +Jfo(v)dv=1. 
Vi vi 

v, 

(8) 

Equations (6) and (7) allow us to obtain v1 and v2, 

and by the same token to determine completely the 
distribution function in the stationary state. The 
energy of the oscillations in the stationary state 
will be equal to zero. Indeed, as seen from the en­
ergy conservation law ( 4), the relation f w(k) dk = 0 
should be satisfied when E = 0 and the time deriva­
tives vanish, thus leading to the statement made 
above. 

Let us proceed to investigate the problem in the 
presence of an external electric field E. It is clear 
that if the electric field is sufficiently weak, then 
the electron distribution function at each instant of 
time differs little from the stationary distribution 
defined by formulas ( 6)- ( 8). But now the points v 1 

and v2 are no longer stationary, for in the presence 
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of a nonzero electric field, albeit small, the elec­
trons to the right of the point v2, i.e., to the right 
of the region of quasilinear relaxation, accelerate 
freely and the distribution function varies when 
v > v2 in accord with 

Accordingly, when E ;" 0, formulas (7) and (8), 

which determine v1 and v2, are written in the form 

(9) 

Formulas (9) and (10) define implicitly the time 
dependence of v1 and v2. In order to trace the gen­
eral tendency of the variation of v1 and v2, we cal­
culate with the aid of these formulas the values of 
the derivatives v1 and v2: 

. Vt e 
Vt=--E, 

Vz m 

. e [ v2f0 (v2 - em-1 Et) l 
v2 = - E 1 + ---- - . 

m a- Vz2 afo/av I v-,·,-em-1 Et-

It is seen from (12) that 

liz> eE/m, 

since 

:~0 I v=v2-em-1Et < O. 

(11) 

(12) 

(13) 

On the basis of this result we can show that the 
number of electrons to the right of the region of 
quasilinear relaxation tends to zero as t - oo: 

lim ~ fo (v- _!_Et) dv = 0. 
t-+oo m v, 

(14) 

To prove this, we note that v 1 is an increasing func­
tion of the time, and consequently has a limit, 
whether it be finite or infinite. If v1 were to tend to 
a finite limit, then the ratio v2/v 1 would grow with­
out limit, and (10) could not be satisfied. We must 
therefore conclude that v 1 - 00 as t- 00 • We then 
get from (9) 

lim/0 (vz- !_Et \) = 0, 
t-+oo m 

from which, taking (13) into account, we get (14). 
The variation of the distribution function of the run­
away electrons is illustrated by Fig. 2a. 

We have established that in the long-time limit 
the integral in the left side of (10) becomes small 
compared with unity. Actually the transition to such 

Wp/X 

FIG. 2. Time dependence of the distribution function f(v) 
(a) and of the noise spectral density w(k) (b) in the asymptotic 
mode; t 3 > t 2 > t,. 

a mode, which we shall call asymptotic, is realized 
within a time on the order of several times v-1 

after the start of the two-stream instability. In the 
asymptotic mode, the ratio v2/v 1 does not depend 
on the time and can be obtained from the equation 

( Vz Vz ) a --ln--1 = 1. 
Vt Vt · 

We denote the solution of this equation by <P(a): 
v2/v1 = <P(a). Returning to (11), we find that as 
t-oo we get 

eE 
Vt=---t, 

mrp (a) 

eE 
Vz=-t. 

m 
(15) 

Formulas (6) and (15) solve the problem of the 
evolution of the distribution function of the ''run­
away" electrons. It is convenient to use for quali­
tative estimates the following expressions for the 
average velocity v and the effective thermal veloc­
ity (~v2) 112 of the beam electrons in the asymptotic 
mode: 

v = v1a(rp- 1) 2/2, 

!lv2 = 1/1 2v1 2a(<p- 1)2[2(2<p + 1) - 3a(rp- 1)2]. (16) 

We note that in the limiting cases a » 1 and a « 1 
the function <P(a) has a very simple form: 

1/2 2 
rp(a)=1+v-+-3 , a-+oo, 

a a 

<p(a)= 1/a, a-+0. 

It remains for us to find the spectrum of the Lang­
muir oscillations in the quasilinear-relaxation 
region. When E ;" 0 there should be established in 
this region an oscillation level such as to ensure 
maintenance of the quasistationary state (6) as a 
result of quasilinear diffusion. w(k) can be calcula­
ted explicitly with the aid of Eq. (1), in which it is 
necessary to substitute the distribution function (6): 

_ ~ dv1 + eE = 4:n;2e2 _!!._ ~w( ~) 
Vt2 dt mv2 m2 fJv v3 V . 
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Hence 

The value of the integration constant C can be 
determined on the basis of the following considera­
tions: In wave-vector space, the boundaries of the 
region of quasilinear relaxation are displaced in 
the directions of the small wave vectors 

Wp 
kt(t}=·--, 

v2(t} 

It is clear that on the left boundary of this region 
(k = k 1) the oscillation level is zero: w(k 1) = 0. 
Hence 

Wp dv1 eEkt 
C=-~----. 

ktVt2 dt mwp 

Taking also account of (15), we obtain ultimately 

neE 
w(k)= nk• (k-k!)(k2 -k). (17) 

Thus, the function w(k) vanishes on both boun­
daries of the quasilinear-relaxation region. The 
time dependence of the oscillation spectrum is 
shown in Fig. 2b. The total energy of the Langmuir 
oscillations W = f w(k)dk is 

W = neE(k2- kt} 3 / 6nk12k22. 

In the asymptotic mode, k 2 = cp(a)k1 and 

neE (q:>- 1)3 (q:>- 1) 3 
W= =E2 (wpt)-'--'--~ 

4rtkt ~ (jJ2 
(18) 

3. LIMITS OF APPLICABILITY OF THE THEORY 

All the calculations in Sec. 2 were based on the 
weak-field approximation. Namely, we assumed 
that the time of deformation of the distribution 
function under the influence of the electric field is 
long compared with the time of quasilinear relaxa­
tion. In calculating the distribution function in the 
region of the nonlinear relaxation, we have confined 
ourselves to the zeroth approximation in the elec­
tric field, assuming that the distribution function 
is determined from the quasilinear stationary con­
dition y = v. To determine the conditions of appli­
cability of this approximation, it is necessary to 
determine the error introduced into the distribu­
tion function by the presence of the electric field. 
Physically this error is connected with the follow­
ing circumstance: 

When E >" 0 the quasistationary distribution 
function is maintained by the quasilinear diffusion 
due to the Langmuir oscillations. As seen from 
(18), the oscillation energy should increase with 
time, in order that the diffusion velocity be main-

tained at the required level. Consequently, when 
E >" 0 the instability increment should have a cer­
tain nonzero value y - v = oy. Accordingly, when 
E >" 0 the distribution function must be determined 
not from the condition y = v, but from the condition 
y = v + oy. It is clear that the difference between 
this distribution function and the quasistationary 
one will be small if oy « v. The value of oy can be 
estimated with the aid of (18): oy ~ w /W ~ C 1. 
From this we get the condition for the applicability 
of the theory, namely, t » v-1. This means that the 
weak-field approximation begins to "work" at the 
instant when the asymptotic mode is attained, i.e., 
the limitation connected with the use of this ap­
proximation is not significant. 

One more applicability condition is connected 
with the possibility of using formula (3) for y. This 
formula is valid only in the case of sufficiently 
"broad" beams, such that D.v2/Vl » (n' /n)213. 
Turning to the formulas in (16), we find that when 
a « 1 this inequality is always satisfied, but if 
a » 1, then the inequality leads to a lower limit 
for the beam density: n' /n > (vI wp) 3. 

In conclusion, let us estimate the role of the 
nonlinear interaction of the Langmuir oscillations. 
The most essential under our conditions is the 
scattering of these oscillations by the plasma elec­
trons, since the decay processes are forbidden by 
the energy and momentum conservation laws. [11] 

Owing to the scattering effect, a correction depen­
dent on the oscillation energy appears in the ex­
pression for the increment (see, for example,[12 ·13 J): 

h, 

X~ dk'w(k')k'2(k+k')sign(k-k'). 
k, 

From this we get on the basis of (17) the following 
estimate: 

Oyscat/V ~(vT/Vt} 'eE/mv ( VT) VT. 

Inasmuch as we assume that E « Ec ~ mv(vT)vT/e 
and v 1 » vT, we get oy scatlv « 1. Consequently 
scattering has negligible effect on Eq. (2). 

Similar reasoning shows that scattering likewise 
does not affect Eq. (1). 

4. DISCUSSION OF RESULTS 

Let us compare now the results of the quasi­
linear theory with the case of free acceleration of 
the beam electrons, which would take place if the 
collective processes were completely absent. The 
average velocity of the accelerated electrons would 

' 
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then grow like v = eEt/m, and their effective 
thermal velocity would remain unchanged: D.v2 

= D.v2lt = o· 
The influence of the collective processes be­

comes most clearly pronounced when the parame­
ter a is small compared with unity (n' » nv/wp). 
In this case the average electron velocity increases 
at half the rate obtained in free acceleration: 
v = eEt/2m, and the thermal scatter turns out to 
be of the same order as the average velocity: 
(D.v2) 112 = eEt/v'12m, i.e., the beam spreads rapidly 
under the influence of the oscillations (see (16)). 
The oscillation energy increases linearly: 

W = .E2(ropt):rrropn' /v(vT)n, 

but remains small compared with the beam energy: 

2W/mn'(v2 + "Xv2)'""""' (vt)-1 ~ 1. 

On the other hand, if the parameter a is much 
larger than unity (n' « nv/wp), then the average 
electron velocity increases in practice in the same 
manner as in free acceleration, and the thermal 
velocity remains at all times much smaller than 
the average one: D.v2(V2 = 1/9a « 1. This case is 
essentially close to free acceleration. 

Under typical conditions prevailing in apparatus 
of the "Tokamak" and "Stellarator" type, namely 
at 10 eV ~ Te ~ 102 eV and 1012 cm-3 ~ n ~ 1013 cm-3, 
the ratio vfwp lies in the range 3 x 10-5-3 x Io-6, 
i.e., the parameter a is equal to (l0-5-l0-6)n/n'. 
Thus, as soon as the concentration of the beam 
electrons exceeds 10-5-10-6 of the plasma concen­
tration, the collective processes become important 
These processes are outwardly manifested by the 
occurrence of strong electromagnetic radiation in 
the wp range, connected with the transformation of 
the longitudinal oscillations into transverse 
ones. [ 14- 18 J To check on the proposed variant of the 
theory, it would therefore be desirable to measure 
simultaneously the microwave and x-ray emission2> 

in apparatus used for Joule heating of plasma. 
Let us stop to discuss the possible mechanism 

of production of runaway-electron beams. A great 
variety of such mechanisms can operate in real 
installations. The most important, in our opinion, 
are two of them. First, the beam can occur during 
the initial stages of the discharge, when the plasma 
density is low and the conditions for "runaway" 
are greatly facilitated. During this stage, the elec­
trons acquire a considerable energy, after which 
they experience practically no Coulomb collisions 
with the produced dense plasma. Second, if the 
plasma touches the walls surrounding it during the 
course of the experiment, then large electric fields 

2 >x-ray measurements would yield information on the dis­
tribution function of the runaway electrons. 

are produced at the points of tangency and lead to 
the appearance of electron beam, which can then be 
injected into the plasma. 

Of course, beams can be produced also by other 
causes: sharp changes of the electric field in the 
course of time[5J, production of local density in­
homogeneities in the development of large-scale 
turbulence, and finally injection of a beam from 
the outside. 

To investigate this aspect of the problem it is 
evidently necessary to analyze thoroughly the con­
ditions of plasma production and current excitation 
in each concrete installation. 

In conclusion, the author expresses deep grati­
tude to L. I. Rudakov for interest in the work and 
valuable advice. 
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