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The dielectric constant of a gas of resonant atoms is found for frequencies corresponding to 
the transition between a zero-momentum ground state and a unity-momentum excited state; 
pair collisions involving resonance energy transfer are assumed to make the main contribu­
tion. The interaction between the atoms is assumed to be of a dipole-dipole nature. It is 
shown that the shape of the spectral line is only approximately of the Lorentz type; broadening 
as well as a line shift occur. The line wings are also considered. The case of a transition be­
tween two excited states of which the lower is resonantly coupled to the ground state is inves­
tigated. The inverted population of the levels is considered and the frequency band in which 
generation occurs is determined. 

1. INTRODUCTION 

WE determine in this paper the dielectric con­
stant of a gas of resonant atoms at frequencies cor­
responding in the main to a transition between the 
excited and the ground states. We consider a phy­
sical picture in which a dielectric constant is de­
termined completely by pair collisions of excited 
and unexcited atoms, with resonant energy trans­
fer. The role of these collisions in the determina­
tion of the line shape was first noted by Vlasov and 
Fursov. [1J We shall show that the line shape is 
only approximately Lorentzian, and the line not only 
broadens but is also shifted. No such shift occurs 
for lines corresponding to a transition between two 
excited states. We assume that the angular momen­
tum of the atom is equal to zero in the ground state 
and to unity in the excited state. The ground and 
excited levels are connected by an optical dipole 
transition, and consequently the interaction leading 
to the resonant energy transfer is dipole-dipole. In 
addition, in the greater part of the article we as­
sume that the number of atoms in the excited state 
is small. 

The region of applicability of the results is de­
termined by a number of inequalities that follow 
both from the physical picture of the processes and 
from the analysis methods. The most stringent of 
these inequalities is the requirement that the Dop­
pler width be small compared with the collision 
width, and that only pair collisions be taken into 
account. As is well known, [ 1• 21 an important role 
in collisions with resonant energy transfer is 

played by impact parameters p of the order oft> 

Po= g;-y;; (1.1) 

where v is the relative velocity of the colliding 
atoms and g the reduced matrix element of the 
dipole transition of the individual atom. Thus, the 
condition for the collisions to be paired is 

(1.2) 

where n is the density of the gas. The condition 
for the Doppler width to be small compared with 
the collision width is 

(1.3) 

From inequalities (1. 2) and (1. 3) it follows that our 
analysis is valid in the following range of varia­
tion of the gas density n: 

(1.4) 

(T is the temperature and M the mass of atom, 
w0 is the transition frequency). This region exists 
for temperatures 

(1.5) 

In those cases when the number of atoms in the ex­
cited state is assumed to be small, the temperature 
is also bounded from above by the inequality 

T~roo. (1.6) 

We note also that conditions (1.2) and (1.3) lead 

l)we use an atomic system of units, 1i = m = e = 1. 

894 
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to the inequality nX3 » 1, denoting that the collision 
width ng2 is much larger than the natural width 
'Y = % g 2/~3 (~ = c/w0). This leads to the inequality 

(1. 7) 

2. FUNDAMENTAL RELATIONS 

The determination of the dielectric constant 
E (w) reduces, as is well known, [ 31 to a determina­
tion of the polarization operator IT. In a transverse 
gauge (divA = 0) the dielectric constant is con­
nected with the scalar part of the polarizability 
tensor n00 by the equation 

k2 
IIoo (k, ffih) = 4n [1- e (ij ffih I)] (2.1) 

(we shall henceforth omit the subscripts of n ). 
The values of E on the real axis obtained by 

analytically continuing (2.1) from the discrete set 
of points iwk = i27TnT (n-integer) on the positive 
imaginary axis to the entire upper half-plane. The 
dielectric constant can be expressed also in terms 
of the transverse part of the polarizability tensor. 
To find the polarizability tensor we shall use the 
temperature Green's function technique. 

The Hamiltonian of the system of resonant atoms 
with dipole-dipole interaction in an external elec­
tric field with a scalar potential 

qJ = <Jlk,roei(kR-rot) +C. C. I 
is 

+ gkrx ~. (ib!, rxaP-k <Jlk, co e-iwt + c.c.), (2.2) 
p 

where ap and bp are the annihilation operators of 
the normal and excited atoms, a is a vector index 
(a = 1, 2, 3) characterizing the state with angular 
momentum j = 1, Q is the volume of the system, 
M is the mass of the atom, V a{3 (q) is the matrix 
element of the dipole-dipole interaction operator, 
and g is the reduced matrix element of the dipole 
transition between the excited and ground states: 

N 

~ ~ 1jl*rrx; 'l)l~ dr1 dr2 ... drN = gi)u;~. (2.3) 
i=1 

For small I q I (I q I« 1), the interaction poten­
tial V a{3 (q) takes the form 

(2.4) 

In the coordinate representation, the region of 
small I q I corresponds to distances much larger 
than the dimension of the atom, where the potential 
is equal to 

V (R) = - 2 iJ2 1 = 2 R26s~- 3RJlr. (2 5) 
" 11 g oRrx oR11 R g Rs • • 

The temperature Green's functions of the non­
interacting particles of the ground and excited 
states are respectively 

1 
G<Ol(p)= ' 

iwp - p2/2M + 1..1. (2.6) 

G (0) ( ) _ Brxll 
ttiiP-. I ' ~Wp - p2 2M + 1..1.- (J)o 

(2. 7) 

where J1. is the chemical potential and wp = 2mT. 
(We use the formulas for Bose particles. The gas 
is henceforth assumed to be nondegenerate.) 

The diagrams are constructed in the usual fash­
ion, with the aid of the vertices of interaction with 
the external field and resonant interaction of the 
atoms with one another. 

P•IJ p'-IJ,t!t 

';¥~ 
p.jJ p' 

p,a. 

Jr!--
p-lr 

a b 
FIG. 1. 

The diagrams of Fig. 1a correspond to interac­
tion with the external field 'Ya = ikag. Lines with­
out an index correspond to the Green's function of 
the ground state, and the line with index to the ex­
cited state. Repeated indices in the diagrams im­
ply summation. The diagram of Fig. 1b corre­
sponds to resonant transfer of excitation from an 
atom with momentum p' to an atom with mom en­
tum p. For small transfers q, the potential 
V a{3 (q) takes the form (2.4). In this case the dia­
gram of Fig. 1b can be regarded as made up of the 
vertices 'Y ~ and 'Yf3• as well as the dashed line 
corresponding to the usual Coulomb interaction, 
with the D-function equal to 

D ( q) = 4n/q2• (2.8) 

We introduce a two-particle Green's function 
which is irreducible with respect to the Coulomb 
interaction: Kaf3(P, k, p') (Fig. 2), where p etc. 

FIG. 2. 
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denote the 4-momentum p(p, wp)· The function 
Ka./3 is determined by a set of diagrams which 
cannot be broken into two parts joined by a single 
dashed line. The polarization operator n (k, Wk) is 
connected with the function Kaf3 by the relation 

II(k)=-kak~g2T ~· ~dpdp'Ka~(p,k;p'). (2.9) 

We assume dp = dpxdPydPz/(27r) 3 throughout. The 
summation is over the fourth-components of the 
momenta p and p'. Thus, the problem reduces to 
the determination of the two-particle Green's 
function Kaf3· 

3. THE FOUR-POLE r 

Inequality (1.2) allows us to use the gas approx­
imation for the determination of the two-particle 
Green's function (the approximation of paired col­
lisions). In this approximation, the diagrams are 
constructed with the aid of a reducible four-pole r, 
which is calculated in the ladder approximation. [ 41 

In our case there are two such four-poles, rW and 
r<2> (see Fig. 3), describing collisions without and 
with transfer of excitation, respectively. Since the 
elementary interaction (Fig. 1b) leads to transfer 
of excitation, the four-poles r<i> and r<2> satisfy 
the following system of equations: 

r~~ (q, q'; P) = V,.~(q- q')- T ~ ~ dxVav(x) 

( p ) (2) XG<0> 2 -q+x r6~ (q-x,,q';P). (3.1) 

Adding and subtracting these equations, we obtain 
independent expressions for the quantities r<±>: 

:£'{±) = :£'{1) + f(2). (3.2) 

These equations have the usual form corre­
sponding to non-exchange interaction with potential 
+Va{3 for r<+> and -Va./3 for r<->. The four-poles 

r<±> can be expressed directly in terms of the am­
plitudes f(±) for the scattering by these poten­
tials: [ 41 2> 

faf3(q,q';P)= ~~a~(q,,q')+ ~2 ~ dxfav(q,x) 

[( x2 )-1 ( ~ q'2 )-1] 
Xif3/(q',x) ,E-M + M-M-i/5 , 

(3.3) 

where E = iwp + 2J.L - w0 - P2/4M and wp is the 
fourth component corresponding to the 4-vector P. 

The amplitude fa./3 is defined as follows (this 
definition differs from the customary one by a fac­
tor - 1/47r) 

far> (q, x} = M ~ dR e-iqRVay (R) '\jlx, 13 (R, y). (3.4) 

Here l/J K, f3 is the solution of the Schrodinger equa­
tion for the relative motion with potential V 0'.'}'• 

corresponding to a momentum K and a polarization 
{3 prior to scattering. To calculate the amplitude 
faf3• we shall use a method previously developed by 
Va1nshte1n and one of the authors. [ 51 We seek the 
function l/J K, f3 in the form 

'\jlx, 13 (R, a.)= eixRSar. (R, x). (3. 5) 

Substituting (3. 5) in the Schrodinger equation 
and neglecting the second derivatives of the func­
tion S, we obtain 

X 
2;i M V Sar.(R, x) = Vav(R)Svr.(R, x) (3.6) 

with boundary condition Sa./3 (-co) = o a./3. 
The foregoing approximation is valid for ener­

gies much larger than the potential V. [ 61 Taking 
the potential at the most important distances 
p ~Po, we obtain the condition 

(3.7) 

which is satisfied in all cases of practical interest. 
The value of the amplitude f is determined by the 
region of the impact parameters p ...., Po which are 
much larger than the dimensions of the atom. We 
can therefore use the approximate expression (2.5) 
for the potential in (3. 6). 

It is convenient to seek the solution of (3.6) in a 
coordinate frame in which the x axis is directed 
along the relative-velocity vector v = 2K/M, and 
the xy plane coincides with the collision plane. 

Introducing the variable ; = x/R, we rewrite 
(3.6) in the form 

2 )we shall henceforth present all the relations for r<+) and 
omit the superior index. The relations for r<-) can be obtained 
by reversing the sign of the potential. 
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oSxu. [ 1 3 J , iu -- = - - + - ( 1 - 2s2) Sx~ - 3s ( 1 - £2) '' Syp o£ 2 2 ' 

asy~ , [ 1 3 J iu-- = -36(1- 62) ''Sx~+ ----(1-262) Syp 
86 2 2 ' 

as.p 
iu -f)- = s.~. 

£ 
(3.8) 

These equations contain a single parameter 
u = vp 2/g2, and therefore appreciable changes in 
the wave function S take place when u ,.., 1. This 
confirms the foregoing assumption regarding the 
existence of impact parameters p ""Po = g/..fV. The 
essential region of the variable ~ is also of the 
order of unity and consequently values x ""p ""Po 
are important. 

Substituting (3. 5) in the determination of the 
amplitude (3. 4) and going over to integration with 
respect to x and with respect to the impact param­
eter p, we write (3.4) in the form 

fap(qx)=M~dp ~dxe-i(q-x>RVav(R)Svp(R, x). (3.9) 

We consider first the amplitude for zero-angle 
scattering, K = q. Using (3.6) and the boundary con­
dition 801{3(-oo) = 60113, we obtain 

(3.10) 

(S01{3(oo) = S0113(R, q) as x- oo). 

Thus, to determine the amplitude it is sufficient 
to know the solution of the system (3. 7) only for 
~ = + 1. The value of S at this point depends on the 
parameter u, and after averaging over the azi­
muthal angle q; contains a single a single vector­
the particle relative-motion momentum q. 

Going over to integration with respect to the 
parameter u, we obtain the final expressions for 
the zero-angle scattering amplitude: 

(3.11) 

Re fap (q, q) = - ng2M[j..ta'6aj3 + j.L{ qaqp/ q2], (3.12) 

where IJ.t • ~J- 2 , !J-3 are numerical coefficients. 
The solution of Eqs. (3.8) and the subsequent in­

tegration with respect to the parameter u were 
performed with an electronic computer. The fol­
lowing values were obtained for the coefficients: 

!Lt = -2.62, !La'= -0,543, 

Jl2 = 0.875, !J.{ = 0.967. (A) 

We shall henceforth be interested also in the 
amplitude for scattering with momentum transfer 
k (I kl = 1/~). In this case the integral in (3. 9) can 
be broken up into two regions 

p, "" 

fap(q + k, q) = M ~ dp ~ dx e-ikR Vav(R)Svp(R, q) 

"" "" 
+M ~ dp ~ dxe-ikR Vav(R)Sv~(R,q), (3.13) 

P1 -co 

where 

(3.14) 

In the first of these integrals we can, by using 
the right side of the inequality (3.14), neglect the 
argument k • R of the exponential. The resultant 
integral can be extended to infinity, since the re­
gion of significance in the integration is p .$ p0• The 
integral obtained in this fashion represents the 
zero-angle scattering amplitude. For the same 
reasons, we can replace 80113 in the second inte­
gral by its unperturbed value 60113: 

/a~(q+k,q)=/a~(q,q)+M ~ dRe-ikRVap(R). (3.15} 

The latter integral can be easily calculated by 
using (2. 5). It turns out to be insensitive to the 
lower limit and is equal to 

~ I I qaqp ka.kp ) 
M dRe-ikRVap(R)=-2ng2M 6ap----2-- . 

q2 k2 
P>Pt (3.16) 

The last term in this expression is proportional to 
the Fourier component of the exact potential (see 
(2.4)) and coincides with the scattering amplitude in 
the Born approximation. The first two terms are 
equal to the integral of the exact potential over the 
internal region of the cylinder p < Pto as can be 
verified by direct calculation. 

Thus, the amplitude for scattering with transfer 
of small momentum k is equal to 

Im/a~(q + k,q) = Im/ap(q, q), 

( qaq~ kakp) 
Refap(q+k,q)=-ng2M j.Lalla~+IL4--q2-4~, 

(3.17) 

where 

!La= !La'+ 2 = 1.457, /L4 = j.L{- 2 = -1,033. (B) 

We see that the real part of the amplitude is not 
an analytic function of the scattering angle. We note 
that the forward scattering amplitude is infinite for 
the potential V (R) = 01 /R3 which is independent of 
the angles. [ 71 

Let us estimate now the angle interval within 
which the amplitude differs noticeably from zero. 
This estimate can be readily obtained by comparing 
the total cross section u ""p~ with the forward-
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scattering amplitude. We have 

1 1 
'(j-eff'""- ,..., -- ~1. 

qpo gM-yv 
(3.18) 

The smallness of the effective angles follows from 
the inequality (3. 7). We obtain an upper estimate 
for the amplitude for scattering through angles ex­
ceeding Oeff, particularly for the scattering through 
an angle 1r: 

(3.19) 

Thus, the amplitude for large-angle scattering is 
small compared with the forward-scattering am­
plitude. 

Let us consider now the role of the quadratic 
term (with respect to the amplitude) in the expres­
sion for the four-pole r (3.3). We are interested in 
its behavior in the case of analytic continuation to 
the real axis with respect to the variable iwp. On 
approaching the real axis from above we have on 
the mass shell 

p2 q'2 
iffip = - 2J.t + ffio + 4M + M + ii) 

( q'2 ) 
E=-+UI 

\ M 

and the quadratic term vanishes identically as a 
result of the elimination of the two terms in the 
curly brackets, so that 

p2 q'2 ) 1 
l'all (q,q';P,(J)o-2J.t+ 4M+M+il) = Mfap(q,q'). 

(3.20) 

We note that the imaginary part of the four-pole r 
reverses sign on going through the real axis, 
whereas the real part is continuous (this follows 
from (3. 3) with due allowance for the condition for 
the unitarity of the amplitude f01[3)· 

On going off the mass shell, expression (3.20) 
acquires a certain increment. Let us estimate this 
increment, assuming for concreteness that we go 
off the mass shell into the upper half-plane. When 
the deviation amounts to D..E, the elimination of the 
terms in the curly brackets in (3. 3) ceases. It is 
easy to see that for small differences between the 
vectors q and q' the quadratic term can be written 
in the form M-1f(q, q)>¥, where >¥ is a certain func­
tion of D..EpV!f. For small values of this argument 
the quadratic term is of the order of 

1 po3 
-f(q q)-L\e. 
M ' g2 

(3.21) 

This estimate allows us, as shown henceforth, to 
neglect under certain conditions the quadratic term 
and to use for r the expression r 0!{3 = M-1f01{3. 

Let us proceed to determine the quantities rW 

and r< 2>. From relation (3.6) it follows that s<ab 
= (S~J>· For small-angle scattering it therefore 
follows from (3.10) and (3.15) that 

f (-}_ (/(+)). 
c.j!-- c.j! • (3.22) 

Taking the foregoing into account, we obtain the 
following final expressions for the four-poles r<t> 
and r<2>, when the region near the mass shell is 
important: 

(i) i 
fall (q+k,q;P) = Mlmfap(q+k,q) 

= ing2 ( J.tt()ap + J.t2 q;;ll ) , (3.23) 

f~(q + k, q; P) = ~Refap(q + k, q) = 

(3.24) 

4. DIELECTRIC CONSTANT 

Let us determine the Green's function G of the 
atoms. In this section we shall consider a region of 
temperatures satisfying the inequality (1.6). The 
number of excited molecules is then small. There­
fore the influence of collisions on the distribution 
of the unexcited atoms can be neglected. Conse­
quently, the Green's function of the unexcited atoms 
retains the form (2.6). For the excited atoms, the 
self-energy part is determined in the gas-approxi­
mation by the two diagrams of Fig. 4, or, analyti­
cally, 

~afl(P) =-T~ ~ dp'G(p')[f~1l(q,q;P)+f~~(-q,q;P)], 
(jjp, (4.1) 

where q = (p- p')/2 and P = p + p'. 

fi FIG. 4. 

p,p p.a 

The second term contains the backward­
scattering amplitude and can be discarded. The 
summation over Wp, in ( 4.1) reduces to replace­
ment of G(p') by the Maxwellian distribution func­
tion ncp(p') and replacement of the variable E in 
the expression for r (3.3) by the quantity iwp + J.L 

+ w0 - p2/2M + q2/2M. Therefore the characteris­
tic features of the dependence of r on the fourth 
component of the momentum will be valid also for 
1:. In the analytic continuation in the variable iwp 
from the upper half-plane to the real axis on the 
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mass shell iWp = -J.L + w0 + p2/2M, so that we can 
use the expression (3.24) for r<n. Integrating with 
respect to p', we get 

( Pa.PP) Pa.P!I ~a.p(p)= 6a.p----;;2 ~~+--pz---~2; (4.2) 

~~ = ing2n[fli + fl2(1- x(x) )/2], 
~2 = ing2n [!J.i + fl2X(x) ]. (4. 3) 

X (x) stands for 

1 1 :IC 

:x,(x)= 1--+-e-:x:' \ eY'dy, 
x2 xs J ( p2 )''• X= -- (4.4) 

2MT . 
0 

On approaching the mass shell from the lower 
half-plane, r~~, and consequently also ~af3• re­
verses sign. When t::..E is off the mass shell by an 
amount of the order of the line width ng 2, the rela­
tive value of the correction to ~ is, in accordance 
with the estimate (3.21), of the order p~g-2t::..E "'np~ 
« 1. The expression obtained for ~ when the devi­
ation from the mass shell is t::..E > g 2/p~ will be 
given in Sec. 5. 

Substituting (4.2) in the Dyson equation 

G (0) (0) 
a.p = Ga.p + Ga.v ~vo Gop, 

we obtain the Green's function Ga{3 of the excited 
atoms: 

(4.5) 

Let us proceed to calculate the two-particle 
Green's function Ka{3 which enters in the defini­
tion (2. 9) of the polarization operator IT(k). The 
function Ka[3 is determined by the graphic equation 
of Fig. 5. 

p-k 
a f3 •v<" ' p0,~ , , p,a. --5P Pol P • 1 1 p,a 

p, -H. B. p-11=-- + . -4 ) 
o p-11 ~-II p'k 

FIG. 5. 

The analytic form of the equation is 

Ka.p(p, k;p0 ) = K~~ (p,k) (2n) 3 6(p- Po)6"' "' 
P Po 

-K~~(p,k)T ~ ~ dp'f~ ( q-~,q+~,P- k) 
"'P• 

><.K,. 11 (p', k; p0), (4.6) 

(see (4.5) and (2.6)) and q = (p'- p)/2. We have 
left out from Fig. 5 diagrams corresponding to non­
exchange scattering. It is easy to see that these di­
agrams will contain rU>(-q + k/2, q + k/2; P- k). 
It follows from (1. 7) and (3.18) that 

k ,...., 1 I t. < 1 I Po ,...., pt}err r (4.8) 

On the other hand, the relative momentum of the 
colliding particles q = (p' - p) /2 is of the order of 
the thermal momentum of the atom and is conse­
quently much larger than k. Therefore the non­
exchange diagrams will contain the amplitude of 
scattering through angles close to 71'. By virtue of 
the same inequality (4.8) we can use for the ex­
change four-pole r<2> the expression (3.24). We 
omit here the term quadratic in the amplitudes. In­
deed, the main contribution to the exchange four­
pole is made by the real part of r, which remains 
continuous as it goes through the real axis. Since 
the function K<o > has a maximum of width ng 2 with 
respect to the variable wp, the relative magnitude 
of the quadratic term in this region is of the order 
of np~ « 1. 

The four-pole (3.24) contains the Born ampli­
tude 47rg 2kak[3 /k 2• Diagrams corresponding to 
this amplitude (see Fig. 1b) are reducible and 
should be discarded. We shall henceforth use for 
r< 2l the expression 

(2) ( k k ) ( qa,qp \ r a.p q- 2 , q + 2 ; P - k . = -ng2 \ fl36a.p + fl~ T J. 
(4.9) 

We note that in calculating the transverse part of 
the D-function the Born terms drop out from the 
equation automatically. 

Since r<Z> (Eq. (4.9)) does not depend on Wp'• 
Eq. (4.1) can be summed with respect to this vari­
able. Summing also with respect to the variables 
pertaining to the initial momentum p0, we obtain an 
equation for the function Ka[3(P, k), defined by the 
equality 

(4.10) 

K ( k) = -n ( ) ( 6a.v- Pa.Pv/P2 + Pa.Pv/P2 ) 
a.p p, cp p . "' . "' 

~w,.-wo-""i ~w,.-wo-""2 

X { 6 + ng2 \ dp' r 6 + (p - p') v (p - p')" J 
Yll J L fl3 yv fl~ (p- p')2 

X Kvp(p', k)}, (4.11) 

where ~ = ~(p, iwk- J.l. + p2/2M) and cp(p) is the 
Maxwellian distribution function. 

where 
(0' 

Ka.p(p, k) = Ga.p(p) G<Ol(p- k) 
In accordance with the initial assumption, we 

( 4. 7) have left out from the denominators of ( 4.11) the 
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terms p· k/M, which lead to Doppler broadening 
of the lines. Consequently, in this approximation 
the function K0!{3 does not depend on the vector k, 
i.e., KO!f3 (p, k) = KO!{:l (p, iwk). Expression (4.11) is 
defined on a discrete set of points iwk = i27TTn. 
According to the Blaschke theorem, [BJ we can per­
form an analytic continuation from the set of points 
wk > 0 to the entire upper half-plane, the coeffi­
cients of the equation being analytic functions in 
this half-plane with a discontinuity on the real axis. 
Consequently, the analytic continuation of the solu­
tion of (4.11) will also be analytic in the upper half­
plane, and will satisfy the equation with analytically 
continued coefficients. Therefore the analytic con­
tinuation of K0!{3 to the real axis will be sought as 
a solution of Eq. (4.11) in which iwk is replaced by 
w. 

Let us consider the values of w lying in a region 
of width of the order ng2 near w0• This region cor­
responds to the mass shell, where we can use for 
.2: and r< 2> the expressions (4.3) and (4.9). It is 
convenient to seek the function K0!{3 in the form 

K ( PaPf> ) PaPf> afl(p,w)= &af>---p2 Ki(jpj,w)+TK2(jpj,w). 

(4.12) 
Substituting ( 4.12) in ( 4.11) (with the changes as in­
dicated above) and integrating along the direction 
of the vector p' , we obtain the system of equations 

F ( x. w) [ w - wo - i ( fli + !l2 1 - x_ \) J 
nng2 2 

= 1- ~ ~ dye-Y'y2{a1 (!__)F(y.w) 
1n 'Y 

+a2(;)<D(y,w}}, 

where 

K (IPI ) (2n )'/, 1 x'F( ) x2=L 
1 'w = - MT ng2 e- x, w ' 2JJ!IT' 

(4.14) 

K2(jpj,w)=- { = )'1'-1-e-x'<D(x w)· 
1MT ng2 ' ' 

ai(z)= 2J.ta_ J.t•+ u(z) a2(z)=~+~- J.t•v(z). 
3 24 16 ' 3 6 16 ' 

b2(z) = ~ + 5p,, - J.t•u(zl 
3 12 8 . 

(4.15) 

The functions u(z) and v(z) are given by 

1+z• 1(1-z2)(1-z4) I 1+z \ 
u(z)=--- ln --

z2 2 z3 1- z ' 

z•- 1 1 (1- z2) 3 11 + z I 
v(z)=--2 -+-2 ln -1-- . (4.16) 

z z3 -z 

The function X (x) was defined earlier (see (4.4)). 
Using (2.1), (2.9), (4.12), and (4.14) we obtain an 

expression for the dielectric constant directly in 
terms of the solution of the system ( 4.13): 

16 00 

E ( w) = 1 ~--= ~ x2 e-x' [2F (x, w) + <D (x. w)] dx. (4.17) 
31n 0 

Equations (4.13) contain a single parameter s, 
equal to 

s = (w- w0)/nng2• (4.18) 

Consequently, the dielectric constant is a universal 
function of this parameter E(s). To determine this 
function it is necessary to solve the system (4.13). 
We were unable to obtain an exact analytic solution 
of this system. An approximate solution can be ob­
tained by using the slow variation of the functions 
u, v, and X. Replacing these functions with their 
values at zero argument, we obtain for E(s) the ex­
pression 

e ( s) = 1 - 4/ ( s + 1.11 + 2.33i). (4.19) 

When the functions u, v, and X are replaced by 
their values at unity argument, the numbers in the 
denominator of (4.19) are 1.16 + 2. 36i. Expression 
( 4.19) can also be obtained when the tensor 
qO!q{3 /q2 is replaced by its angle-averaged value 
60!{3/3 in the expressions (3.23) and (3.24) for r<1> 
and r< 2 >. After this substitution, Eq. (4.11) can be 
solved exactly (see also [ SJ ). The system (4.13) 
was solved numerically with an electronic compu­
ter. The numerical solution agreed with (4.19) 
within 1-2%. 

We note that, as seen from (4.11), the function 
K0!{3• and consequently also the polarization opera­
tor II, are odd and not even functions of wk This 
is connected with the following circumstance. It is 
necessary to add to the obtained function K0!{3 a 
quantity which is determined by a system of dia­
grams which differ from those employed above in 
that all the line directions are reversed and k is 
replaced by -k. It is easy to see that the function 
obtained in this manner is K0!{3(p, - iwk), so that 
the polarization operator will be even. The resul­
tant expression for E satisfies all the necessary 
requirements. However, the additional term aris­
ing in the expression for E does not have a pole 
character at w ::::; w0• Its order of magnitude in this 
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region is ng 2/w0 and it can be discarded. 
The imaginary part of the dielectric constant 

Im E, as is well known (see, for example, [ 10 1 ) de­
termines the absorption-line shape. 

5. GENERALIZATION OF RESULTS 

The results of the preceding section admit of a 
number of generalizations. We consider first the 
wings of the spectral line. At large values of the 
difference w- w0 (I w- w0 I» ng 2) the integral 
term of (4.6) can be discarded. This means that 
the polarization operator is determined by a sim­
ple loop. The quantity Im E, which is of greatest 
interest, can then be written in the form 

4:rt2g2 n2 I 
Im e = -- J dp dp' cp(p)cp(p') · 

3 (ffi-ffio) 2 

1 1 ( qz xz ) (+) 
X 2M2 J dxll (J)-ffio+ M -M [iJav(q,x) 12 

(5.1) 

where cp (p) is the Maxwellian distribution function. 
This expression can be obtained from (4.1) by tak­
ing into account the second term in the curly brack­
ets of (3.3) and the imaginary part of the amplitude 
(we have carried out an analytic continuation to the 
real axis with respect to iwk)· 

As seen from (5.1), the imaginary part of E is 
determined by the total collision cross section off 
the mass shell. The departure from the mass shell 
is equal to w- Wo· 

As follows from Sec. 3, when I w- w0 I « g 2/p~ 
this cross section coincides with the cross section 
on the mass shell. In this case, Im E is obtained 
from (4.19) with s » 1. When I w- w0 I » g 2/p~, im­
pact parameters which are much smaller than Po 
are significant in the collision. This makes it pos­
sible to use the quasiclassical solution of (3. 8) 
(see ( 51 ). The principal term of the cross section 
is then independent of w- w0, so that the imaginary 
part of E retains the previous dependence on 
w - w0, but with a different coefficient: 

8:rt2g2n2 2.79 
lme = 4:rtg2 = 4-. (5.2) 

9(ffi- ffio)2 s2 

We note that the departure off the mass shell in the 
collision cross section, as shown by Yakimets, [ 101 

corresponds to a transition from the impact to the 
statistical mechanism of line broadening. As is 
well known, for a potential V ~ R - 3 the statistical 
theory leads to a quadratic decrease in the line in­
tensity (see, for example, [ 111). It should be noted 
that formula (5.2) is valid also in the case when the 
central part of the line is determined by the Dop-

pler broadening. In this case, the region of appli­
cability of (5.2) is given by the inequality I w- w0 I 
» kVT/M. 

Let us consider now a case corresponding to a 
transition between two excited states, the lower 
level being connected with the main resonant tran­
sition 1-0 (0 -1). We assume as before that 
the temperature is small compared with the dis­
tance between the ground and excited states. Under 
these conditions, only the lower excited level is 
broadened by collisions (with the unperturbed at­
oms). The upper excited state cannot be trans­
ferred by resonance to another atom. This means 
that the mass operator ~ differs from zero only 
for the lower excited state, and the integral term 
of (4.6) can be discarded. The expression for E 

can then be obtained for an arbitrary ratio between 
the Doppler line width kVT /M and the collision 
width ng 2: 

e=1~4:rtg2n~dp q>(p) ·(53) 
ffi - ffio + 2.33 i:rtnogo2 + kp/ M ' · 

Here n0 and n are the densities of the atoms in 
ground state and at the lower excited level, re­
spectively; g0 and g are the reduced matrix ele­
ments of the dipole transitions between the ground 
and excited states and accordingly between the ex­
cited states. If the transition between the excited 
states is not dipole, this leads only to a corre­
sponding change in the numerator of (5. 3). 

Expression (5. 3) does not contain a line shift; 
this is a direct consequence of neglecting the inte­
gral term of (4.6). Formula (5.3) is based on the 
assumption that the Doppler width is small com­
pared with the width of the energy surface, kVT /M 
« g 2/p~. In the opposite limiting case, and also at 
large values of I w - w0 I, the coefficient 2. 33 pre­
ceding the imaginary part of the numerator in (5.3) 
should be replaced by 2. 79 (see (5.2)). 

The dispersion width corresponding to such a 
transition was measured for helium by Kuhn and 
Vaughan[ 121 and for argon by Stacey and 
Vaughan, [ 131 and less accurately by Hindmursh and 
Thomas.£ 141 Our results (5.3) correspond to a co­
efficient K = 1.48 in the formula given for the line 
width in £ 12 • 13J. The results agree with the experi­
mental data for helium when the oscillator strength 
f = 47rg3 c/A. corresponding to the resonant transi­
tion 11s - 21P with A= 584 A is equal to 0.275. 
This value is very close to that calculated by Shiff 
and Pekeris[ 151 (f = 0.276). The agreement with the 
data on argon, A = 1048 A, is obtained when 
f = 0.24, whereas it follows from the calculations 
(Knox£ 161 ) that f = 0.20. The poorer agreement in 
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this case is possibly due to the influence exerted on 
the transitions by the neighboring weak resonance 
line ;>. = 1067 A. In addition, the oscillator strengths 
themselves can be calculated for argon with lower 
accuracy than for helium. 

Finally, let us consider the case when the tran­
sitions under investigation occur between levels 
whose populations are comparable in magnitude. 
We shall take into account collisions between atoms 
at these levels, with resonant energy transfer. Un­
der these conditions, the mass operators of both 
states differ from zero. Assuming, for concrete­
ness, that the angular momentum of the upper and 
lower states are unity and zero, respectively, we 
rewrite ( 4.4) in the form 

Ka.p(p, k) =- (no- ~~) <p(p) 

( c'lav- PaPv/P2 + Pa.Pv!Jfl' ) 
X ' ro - roo- ~(o)- ~~1) ro - roo- ~(O)- ~~!) 

x{ c') + ng2 s dp' [ c') + (p- p')v(p- p')v] 
'I'll J..t3 vv J..t~ (p- p')2 

X Kvll(P', k)}, (5.4) 

where no and n1 are the densities of the atoms in 
the lower and upper states, and 

(5.5) 

The expressions for ~F ~ are obtained from ( 4. 3) 
by replacing n with n0.' 

Using the procedure for the approximate solu­
tion of the equation, we obtain the following ex­
pression for E: 

e = 1 - 4ng2 (no- 1/ani) [ro- roo + (J..t3 + 1/3J,.t4) 
Xng2 (no- 1/3nt} -i(J..tt+ 1/Jf12)ltg2 (no+nl)]-l. (5.6) 

For large w- w0 (I w- w0 I » g 2/p~ ), the ex­
pression for Im E is 

4n2g4 
Im e = {1.55 non1 + 2.79(no2- 1/J n12)]. (5. 7) 

(ro- roo) 2 

Formula (5.6) is valid also for the inverted level 
population n_ = nd3 - n0 > 0. Considering for this 
case the dispersion equation for transverse waves 

ro2e(ro) = ro1<2, ro"' = lkjc, (5.8) 

we can easily show that the imaginary part of w 
becomes positive in a definite interval of I k I , i.e., 
generation of electromagnetic waves takes place. 
The generated waves lie near a value of wk, equal 
to 

in an interval 
(5.10) 

This result coincides, apart from a numerical 
coefficient, with the results obtained by Alekseev 
and the authors. [ 171 

We present also the frequency interval of the 
generated waves and the growth increment b, and 
also the gain K at the center of the generated line: 

(5.11) 

w = roo+ ng2n-(fl.3 + 1/3J,.t4- 2); 

X= 
2 n- ro 

( + 1/ ) -for n=(no+n1)~n-. (5.12) 
1-t1 31-t2 n c 

6. CONCLUSION 

The influence of resonant collisions on the shape 
of the spectral line was considered recently by Ali 
and GriemUBJ and by Byron and Foley.[ 191 These 
results pertain actually to transitions between two 
excited states. fu addition, resonant collisions were 
considered in these papers by approximate methods, 
which give rise to appreciable errors. D'yakonov 
and Perel ,[ 201 investigated the influence of resonant 
collisions on the equalization of the populations of 
Zeeman sublevels. The cross sections for excita­
tion transfer by collision were calculated by Wata­
nabe,[21J Omont,[ 221 , and in [ 51 . Before submitting 
this article, we also became acquainted with a pre­
print by Kazantsev, [ 91 which was graciously fur­
nished to us by the author. He obtained a general­
ized Boltzmann equation for the density matrix, 
and a value close to ours (see (4.19)) for the tran­
sition line width. However, the line shift obtained 
by him is apparently in error, since no account was 
taken of the non -analyticity of the real part of the 
amplitude (3.17), and an error was made in the sign 
of the coefficient corresponding to our J1. 4• 

The authors are grateful to V. I. Perel' for dis­
cussion of a number of problems pertaining to this 
work. 
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