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The recombination coefficient between electrons and ions in triple collisions in a neutral gas 
is calculated. The calculation is performed on the basis of the Boltzmann equation. The re
sult is close to the Thomson value. 

IN a highly rarefied plasma the main mechanism 
of recombination is radiative. In a rather dense 
plasma, recombination processes with participation 
of a third particle become dominant. For a high 
degree of ionization, electrons constitute third par
ticles of this type. [1-41 

In a weakly ionized gas a triple collision of the 
recombining particles with a neutral atom is the 
most probable. An elementary calculation of the 
recombination coefficient a for this case was first 
made by Thomson.[5l The same problem was solved 
by Pitaevski'i'[s] by means of the Fokker-Planck 
equation. Pitaevskil' s result differs from that given 
by Thomson by a numerical factor. 

In the work being presented the recombination 
coefficient will be calculated on the basis of 
Boltzmann's classical kinetic equation for elec
trons. For the classical description to be possible 
it is necessary that the electron energy E be small 
in comparison with the first Bohr level 
mie4Z2/n 2IEI » 1 (m1 is the electron mass, eZ is 
the ionic charge, n is Planck's constant) .[71 We 
will limit the discussion to the case of a plasma in 
thermal equilibrium, E ~ T (E is the thermal en
ergy of the electrons, T is the temperature of the 
neutral gas and ions) . 

To calculate a it is necessary to find the elec
tron flux to an ion moving with a velocity vi in the 
plasma, and then to average this flux over the 
thermal distribution of the ions: 

Fi(v;) =('::crY'' exp( _m~;2 ), (1) 

where m 2 is the mass of the atom and the mass of 
the ion. 

The motion of an electron in the field of a posi
tively charged ion can be both infinite (E > 0) and 
finite (E < 0). In a rarefied plasma, if we neglect 
collisions, the kinetic equation for electrons in a 
Coulomb field is easily solved; the corresponding 

distribution function depends on the integrals of 
motion-on the energy and momentum. In this ap
proximation there is no flux of particles to the 
center. [B l When collisions are included, if they are 
rather infrequent, the concept of finite particles is 
preserved. However, as the result of collisions, 
they can now fall on the center. The flux arising in 
this way is proportional to the frequency of colli
sions. To calculate this flux for oe4Z2jT2 Z2 « 1 
(o = 2m1/m2, l is the electron mean free path in the 
neutral gas) we will simplify the kinetic equation 
by means of the method of Budker and Belyaev, 
which consists of averaging over the fast motion of 
finite particles. [9, 10 l 

It is convenient to carry out the entire discus
sion in a coordinate system tied to an ion moving 
with respect to the gas with a velocity vi. In the 
kinetic equation for the electron distribution func
tion f(r, v, t), 

at Q at 
-+ (v'V)f+--= St., at ml av 

(2) 

there remains only the integral of elastic collisions 
with the neutral gas: 

St= ~U(v{)F(vz')-j(v1)F(vz)]avodvzdo. (3) 

Here v0 = v 1 - v2 is the relative velocity of the 
colliding particles, do = sin xdxdrp is the element 
of solid angle into which the scattering occurs, 
u(v 0, x) is the differential cross section for scatter
ing, and Q = e2Zr/r3• 

We will assume the distribution function of the 
molecules to be Maxwellian: 

, ( m2 )'/, ( mz(ve+v;) 2 ) ( 4) 
I' (vz) = nz -- exp - ZT , 

1. 2:rtT 

where n2 is the number of molecules (atoms) per 
cubic centimeter. 

The particle velocities before the collision 
(v1, v2) and after the collision (vJ., v;) are related by 
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expressions based on conservation of momentum 
and energy: 

1 
vz' = Vz- -A., 

mz 

Vo = vo' = (vt2 - 2(vtvz) + Vz2fh, 

( 5) 

v~ = v~ - v2 is the relative velocity of the particles 
after the collision. The momentum transfer D. is 
expressed in terms of the reduced mass 
M = m 1m 2/(m1 + m 2), the unit vector v = (v0 - v0)/v0, 

and the scattering angle x by the simple formula 

A = - 2Mvov sin.!._. 
2 

The electron energy E changes in a collision 
with a molecule by an amount 

( 6) 

, .x"' M 2 2·•x 
B = E - E = - 2Mvov2 sm .2 cos (v2v)- 2 11!; Vu SIW 2-

2M . 'X ("')+2M 2·2'X ( = - V,,Vl Slfi - 2 COS V1V - V1 Slll --o- . 7) 
m1 "" 

In the collision of an electron with a molecule, 
the electron velocity changes markedly (by the or
der of magnitude of unity), and the momentum 
changes correspondingly. The energy changes 
insignificantly (by the order of magnitude v'in1/m2). 

For this reason a small number of collisions is 
sufficient to attain the equilibrium value of the mo
mentum JJ,. The rapidly established equilibrium 
value of J1, is completely determined by the electron 
energy, J1, = e2Z(m1/21Eil 112 . Consequently, the only 
slow variable on which the distribution function de
pends is the energy of the electron relative motion 
E. 

By averaging Eq. ( 2) over the rotational motion, 
we obtain the equation for the distribution function 
of finite electrons f(E, t): 

af r ~ -at= .J [f(E')F(E2')- j(E)F(E2 )]av0dv2do. (8) 

Since f does not depend on the direction of the 
velocity vi, we can also average over this direction 
in Eq. (8). Here 

Vz = (2E2/mz) 'I•, 

---- 1 1 ~ 
F(Ez) = 2 ~ F(vz)dcos (v2v;) 

-1 

_ ( mz )''• T ( mzV;Vz ) -nz -- ---sh ---
2nT m2v;v2 T 

(9) 

In finite orbits 

(10) 

where k and n are arbitrary. 
If we utilize the fact that --./r--m-1---,/-m-2 is small, the 

accurate formulas (5) and (7) can be converted to 
the following approximate formulas ( e is the angle 
between v2 and v0): 

Vo ~ Vt- V2COS8, (11) 

(12) 

The first of the three terms in formula (12), desig
nated as E1, is of the order of magnitude ~m1/m2 E, 
and the remaining two terms ( E2) are of order 
(m1/m2)E. 

We will now perform an expansion in the param
eter ~m 1/m2 in the right-hand part of (8). The 
terms of zero order are missing, since in this ap
proximation f' F' - fF = 0. The terms of first order 
fall out on integration. Therefore we will calculate 
the following nonvanishing terms of order (m1/m2)E: 

+raj s1F+ aF (-Bt)f l(-v2cos8) )_/~dv2do. 
L_oE aE2 J 4n 

In order not to complicate the calculations we will 
omit here terms containing au I BE, limiting our
selves to the hard-sphere model, for which u(v, x) 

= u0j4n = const; u0 is the total cross section, which 
is the same as the transport cross section. For 
low electron energies where the scattering is 
mainly s wave, this model is suitable. 

Omitting the intermediate calculations including 
substitution of Eq. (9) and integration, we write out 
the result obtained: 

aj = ovE2T' ~f --1 ( a_[_ + !_ t)l 
at aE L 1 E 1 \ aE T' J 

The effective collision frequency is 

v(E) = nzcro(2jEj/mt)'!., 

The stationary solution of this equation has the 
form (E < 0) 

(13) 
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f(E) = C1(E- T') + C2exp(-E/T'). (14) with inclusion of the thermal motion of the ions: 

The constants C1 and C2 are determined by the 
boundary conditions. [6 J One of them is the absorp
tion condition f(E 0) = 0 at large negative energy 
values I E01 » T' (E0 does not appear in the answer). 
The other is the condition on the boundary of the 
regions of finite and infinite motion for E = 0. In 
the region of infinite motion E > 0 the electron dis
tribution is of the Maxwell-Boltzmann type: 

/ _(2 T)-'l ( m:(v1 +v;)2) - nm1 'exp - -----'--
2T ' 

(15) 

where the normalization in momentum space is to 
dp1. 

For E = 0 the distribution of finite electrons 
must agree with the function (15) averaged over the 
finite motion: 

The constants C1 and C2 are easily found: 
( 2nm1T) -'lz 

C~=---~, C2=-C1E 0 exp(E0/T'). (17) 

Equation (13) has the Fokker-Planck form: 

8jfat+A(E)8j/8E= 0, 

where j is the particle flux in energy space: 

. (at 1 ) 
J = - B DE+ ytf . (18) 

The coefficient A is determined from conservation 
of the number of particles and, for normalization 
of the distribution function to one particle, is [6 J 

A= IEI'Iz(-y2n3e6Z3m1'f,)-1. 

The coefficient B is now determined automatically 
from Eq. (13): 

(19) 

where l = (na0f 1 is the electron mean free path. 
Calculating the flux j by means of Eqs. (14) and 

(18), we obtain 

. E nl"2n oe6Z3 
1 (v;) =- BC1 T' =- 2 m/hlT'h(i + m 2vN3T) 

(20) 

The recombination coefficient of a stationary ion 
o: 0 is 

. nf2n Oe6Z:J 
ao =- J(O) = -2- mllf,zT';,. (21) 

Averaging the flux (20) over the ionic distribution 
function (1), we find the recombination coefficient, 

where 
2 X 

cD ( x) = --= ~ e-t'dt 
l":::: 

0 

is the probability integral. 

(22) 

We note in conclusion that the coefficient a: cal
culated from formula (22) is close to the Thomson 
value and roughly six times smaller than that ob
tained by Pitaevskil. The fact is that in calculating 
the coefficient B from formula (12) Pitaevskil[6J 
used Eq. (14), which does not follow from the 
theory. Bates and Khare[ll] have made a numerical 
calculation of the recombination coefficient of elec
trons in helium according to the mechanism He+ + e 
+ He - 2He with direct inclusion of the discrete 
nature of the spectrum for E < 0. The result of 
this calculation, as the authors themselves note, is 
close to the Thomson value over a substantial range 
of temperature and density. 

The author sincerely thanks L. P. Pitaevski'i' 
who provided the initiative for this work, for his 
constant help and advice in carrying it out. 
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