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Nonstationary perturbations acting on an electron and leading at a certain time instant to the 
appearance of a bound s state are considered. The capture probability and the momentum 
distribution in the continuous spectrum are determined in the adiabatic approximation. A 
relation between this problem and the formation of negative ions in slow collisions is demon
strated. 

IN the present paper we consider the triple colli
sion between a monochromatic electron and two 
neutral atoms. The deBroglie wavelength of the 
electron is assumed to be much larger than the 
atomic dimensions, and the velocities of the atoms 
are regarded as small compared with the velocity 
of the electron. Such a collision either leads to the 
formation of a negative ion, or else the electron 
remains in a state of the continuous spectrum but 
gets "smeared out" in the energy. If the colliding 
atoms are different and the electron is sufficiently 
slow, this problem can be solved within the frame
work of a spherically symmetric model, by replac
ing the colliding atoms by a narrow potential well 
with variable parameters. Indeed, the instantaneous 
terms E0(R) and E1(R) of a weakly bound electron 
in the field of two neutral atoms are given by the 
following equationsl1J (n = m = 1): 

k = Xa + Xb _ [.( Xa- Xb \ 2 exp ( -2koR) ]''' 
0 2 \ 2 ) + R2 , 

k = xa+Xb+ [(Xa-Xb\2 exp(-2k1R)J'~, 
1 2 2 ;+ R2 

(1) 

Here k5, 1 == -2E0, 1, K~,b == -2Ea,b• where Ea,b is 
the binding energy of the negative ion formed by the 
atom a and b, respectively; R is the distanee be
tween the atoms. It is seen from (1) that the upper 
term E 0(R) merges with the continuous speetrum 
for R = R0 == (KaKb)-112. It is clear that it is this 
point which is most important in the capture of the 
electron into a bound state. Since the energy E 1(R) 
does not become anomalously small for any R, the 
absorption goes mainly into the term E0. Thus the 

electron is much larger than the distance between 
the atoms in the region most important for the cap
ture. Hence the perturbing potential is localized 
near the origin in a region which is small compared 
with the wavelength of the electron. Therefore the 
s wave will predominate in the ground state wave 
function, since the higher spherical functions van
ish at the origin and cannot interact effectively 
with the perturbation. 

Let us now discuss the character of the wave 
function of the final state (bound electron) near the 
transition point. 

The function corresponding to the term E0 has 
the form 

•h() t [exp (-kora) + exp (-koR-korb) J 
'Y r =cons · 

~ ra R(ko-xb)rb ' 

ra = I r - : I , rb =I r + ~ I· 
At the transition point we have R = (K a• Kb)- 112 and 
k0(t) - 0, therefore the wave function has the form 

( Y~ Yxa ) 
1jJ(r) ~ lr-R/21- lr+R/21 · 

We shall, however, keep in mind that 1/J(r) decays 
exponentially for values of R ;::, 1/k0• Let us expand 
1/J(r) in terms of Legendre polynomials and estimate 
the importance of the different spherical harmonics: 

1jJ (r) = 1Jls (r)Po(cos 8) + 1jlp (r)P 1 (cos 8) + ... 
After simple calculations we obtain 

- - { 2/ R 0 for r < Ro/2 
1Jls ~ (Yxa- Yxu) 1/r for r > Ro/2. 

formation of the negative ion with the lowest energy (Since we only want order-of-magnitude estimates, 
is the most probable. We shall assume that the we omit the numerical coefficients.) Let us esti-
momentum of the electron k is much smaller than mate the contribution of the s wave to the full norm 
min (K a• Kb). Then the de Broglie wavelength of the of the function 1/J and take into account the fact that 
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the integral jllf!sl 2r 2dr must be cut off for r ~ k(r 
Since in this region k0R0 « 1, we find 

~ IIJlsl 2r2dr ~ (fxa-fXb) 2/ko. (2) 

Analogous calculations for 1/Jp(r) lead to the re
sult 

""- - { 8r/R02 for r < R0/2 
'ljlp (r) ~ O'xa + l"xu) 'Ro/r2 for r > Ro/2 

The corresponding normalization integral conver
ges even without cut-off, and we obtain 

J l'¢pl 2rdr'""' (Yxa+l"xb) 2Ro. (3) 

If 

(4) 

in the transition region, then (2) and (3) show that 
the s wave plays the predominant role in the wave 
function of the final state. The condition ( 4) is 
clearly not fulfilled when the colliding atoms are 
identical. In the following we shall be concerned 
with nonidentical atoms. In this case the right-hand 
side of ( 4) is in general of order unity, so that the 
condition ( 4) is satisfied in the transition region. 
Outside this region the effect of the higher harm
onics increases, but the system develops adiabatic
ally, i.e., the electron remains in the state corre
sponding to the term E0(R). 

It is clear from what has been said above that 
the s wave plays the dominant role in the total wave 
function of the initial and final states. This justi
fies the use of a spherically symmetric model. 

We shall assume that in the initial state, i.e., 
for t -- 00 , the electron is located in the field of a 
scattering potential and has the definite energy 
E = k2/2. The parameters of the potential vary 
slowly with the time. At t = 0 there appears a dis
crete level E0( t) = - k~( t) I 2. For t = 0 the level 
energy E0(t) vanishes and goes to some constant 
negative value at t - + 00 • The energy scale is 
chosen such that the scattering potential vanishes 
at large distances. Let us assume that the potential 
has spherical symmetry for all values of t and that 
the level E0(t) corresponds to the angular momen
tum l = 0. The initial state of the particle also has 
vanishing angular momentum. Then the wave func
tion evidently has l = 0 for all values oft. 

Let us make the requirements on the character
istic parameters of the problem more precise. We 
denote the time during which the potential changes 
appreciably by T. It is clear that the sudden ap
proximation is valid if the distance traversed by 
the particle with momentum k during the time T is 

much less than the deBroglie wavelength. 
Consider now the opposite limiting case: k2T 

» 1. Let us moreover restrict the momentum from 
above by the condition ka « 1, where a is a char
acteristic dimension of the potential well. From 
these two inequalities we find T » a2, which is the 
adiabaticity condition for the states of the discrete 
spectrum, since a-2 is equal in order of magnitude 
to the distance between the discrete levels in a 
well of width a. 

As is usually the case in adiabatic problems, 
only a small neighborhood near the transition point 
t = 0 is of importance. In this region one has k0(t) 
=- {3t, where {3 is a positive constant. (k0(t) goes 
linearly to zero for an s state.] From this we ob
tain an estimate for the transition region ltl ~ {3- 213• 

For these values of t we have k0( t) a « 1, so that the 
approximation for resonance scattering of slow 
particles is valid. Thus the details of the scattering 
potential are not essential, and its presence is ac
counted for only by a phase in the asymptotic wave 
function. It is therefore sufficient to solve the 
nonstationary Schrodinger equation for a free par
ticle with the boundary condition 

a Dr ( rljJ ( r, t) I r=O = + ko ( t) ( rljJ ( r, t) ) I r=O ( 5) 

(the idea for this approach is due to L. P. Pitaev
skil). 

The "ionization" problem in this approximation 
has been solved by Demkov .l2 J Using his results, 
we may obtain the probability for the capture of an 
electron into a discrete level with the help of the 
principle of detailed balance. However, the energy 
distribution of the electrons in the continuous spec
trum remains unknown. When this distribution is 
found, the complete S matrix of our problem is de
termined. In our case the initial condition imposed 
on the wave function has the form 

( 1 sin (kr + 6) 
ljlr,t-+-oo)= , 

fV kr 
( 6) 

where o is the scattering phase. This corresponds 
to keeping only the s wave part of the plane wave, 
normalized to unity in the volume V. 

As usual, we introduce the function x(r, t) 
= ri/J(r, t), which satisfies the Schrodinger equation 

(i~+.!_ az;\<r t) = 0 at 2 ar2 , 
( 7) 

and the above-mentioned boundary condition (5). 

Following Demkov, we continue the solution to 
the negative half-axis with even parity and take ac
count of condition (5) by introducing the potential 
k0(t)o(x): 
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i ox.+~ 02x.= ko(t)6(x)x.. 
at 2 ox2 

(8) 

Using the Green's function of ( 7), we obtain the fol
lowing relation between x(x, t) and x(O, t): 

e-3ni/4 t k (t') (t' 0) 
X. (X, t) = --=- \ o X. ' eix'/2(t-t')dt' 

y'2Jt _::00 y't - t' 

-too 

the region where the linear approximation for k0(t) 
holds. Equation (12) is solved by the Laplace 
method: x(t) = Jz(u)eiutdu, where Z(u) must satisfy 
the equation C 

~ [ Z(u) + iB Z' (u) J eiu1du = ae-ih't/2 

c 'Jf2u 
(13) 

+ ~ qJ(p)eipx-ip't/2dp, (9) It can be seen that the solution of (13) is 

where cp(p) is an unknown function which is chosen 
such that the initial condition (6) is fulfilled. 

For large negative times ltl » {3-213 we have 
k0(t) = k0 = const. Fixing the time at a value in this 
region, we find for the Fourier transform of (9) 
with respect to x 

<p (p) = akb (p2 - k2) , (10) 

where o_ is the initial scattering phase, tan 6-
= k/k0. The linear approximation for k0(t) is valid 
in the region ltl « T, while the integral in (9) starts 
at- oo. We therefore proceed in the following fash
ion: we assume that k0(t) = k 0 = {3T fort< -T and 
k0(t) = -{3t fort> -T (T » {3-2/ 3); the final result 
will not depend on T. The error incurred in this 
way is connected with the neighborhood .6.t ~ 1/k2 of 
the corner point t =- T. 

Thus we obtain the following equation for x(O, t): 

e-3ni/4 -'{ sin i\_e-ih't/2 
x.(O,t) =--ko.) dt' 

V2n -oo 'Jft- t' 

e-3nii4 t ( P.t') (t' O) +--=- ~ - P X. ' dt' + ae-ih't/2• ( 11) 
'Jf2n -T }'t- t' 

The exact solution of (11) can only be obtained if 
the lower limit in the second integral is -co. Let us 
extend this integral to - oo and neglect the terms 

e-:i/4 -r kosin i\_e-ih't'/2_ ( -~t') X. (0, t')dt'. 

}'2:rt _00 l' t - t' 

ak e-h'/3~ r { v3 v2t } 
x,(t) = . .) exp !-+l- ln(v2 +k2 )vdv, 

(-2m) ~ 3~ 2 
c (14) 

where the contour C encloses the logarithmic cut, 
running from the point ik to infinity in the sector 
21r /3 < arg v < 1r ( cf. the figure). In the dashed reg
ion the exponential has a modulus larger than one. 

Using (9) we find .. 
ak ( fc3 ) ''!-"" { v3 

X. (x, t) = ia sink I xI e-ih't/2 + [3 exp - 3 B ) exp i3iJ 

vzt } +i 2 + vlxl vdv. (15) 

It is easy to verify that x(x, t) satisfies the 
Schrodinger equation ( 7), the boundary condition ( 5), 
and the initial condition ( 6) at t = - T with an accur
acy up to terms of order k/ {3T. This holds only for 
x « kT, which is of course a consequence of the 
causality principle. 

u 

Projecting x(x, t) for t - + oo on the eigenfunc
tions corresponding to the discrete level and the 

By solving the resulting equation 

e-3ni/4 r (- j3t') X. ( t') dt,. 
x.(t) = ----=- .) + ae-ih't/2, 

'Jf2:rt -00 }'t- t1 

(12) continuous spectrum, we obtain the capture proba
bility 

where x(t) = x(O, t), we estimate the magnitude of 
the neglected term. 

The calculations show that this term is of the 
order (k/{3T) 2 for values oft far from the corner 
point t + T » k- 2. We shall assume that k « {3T and 
keep only terms of first order in this ratio. This 
last condition implies that the slope of k0(t) with 
respect to the time axis must be large for t = 0. 

In the opposite case, the region where the adia
baticity is violated will not be small compared to 

:n: ( 2k3) 
w = ~Vexp - 3B (16) 

and the momentum distribution in the continuous 
spectrum 

Jt[(2 4\ v(p)= 2V nV-'j3!o(p-k) 

+ 4p2 exp{ ~ (p3- l£3) }l. 
B2 3B J. 

p<k; v(p)=O, p>k. (17) 
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The vanishing of v(p) for p > k is evidently due to a 
special feature of our model: the o-function-like 
well with an amplitude which depends linearly on 
the time. If we assume that k0(t) tends to a constant 
fort-+ 00 , we obtain a power-type "tail" v(p) ~ p-4 

for p » k. 
It is seen from (16) that the capture probability 

is inversely proportional to the volume, since the 
initial wave function of the electron is a plane wave 
normalized to unity in the volume V. Let us as
sume that there are N = n V electrons with momen
tum k in the volume V. For the capture probability 
of one of the electrons we easily obtain with the 
help of combinatorial theory: 

W = 1- (1- w)nv = 1- exp(- ~n e-Zh'/3~ J. (18) 

However, we must restrict ourselves to small val
ues of n/{3, since the problem has been solved 
without account of the Pauli principle. On the other 
hand, the captured electrons are effectively char
acterized by such values of the deBroglie wave
length A ~ {3- 113 that the average distance between 
the particles becomes comparable to A precisely 
when n ~ {3. Thus we must expand (18): 

:n:n ( 2k3) 
W = [3 exp - 3 B . (19) 

In the same way the explicit dependence on V is 
eliminated from (17). The order of magnitude of the 
quantity {3 is estimated in the following way: 

B = ( dko ) = r dko v ( R) J ' 
dt L dR R=Ro 

where v(R) is the radial velocity of the atoms, and 
R0 is the root of the equation k0(R) = 0. From this 
we obtain {3 ~ aJ:3v(R0) /v e. Here ai is of the order 
of the radius of the negative ion, and v e is the orbi
tal velocity of the "extra" electron. 

During one collision the critical point R = R0 is 
passed through twice. As the atoms approach each 
other, the inclination of the term k0(t) corresponds 
to the transition of the discrete level into the con
tinuous spectrum. Therefore the passing through 
this point leads only to a smearing-out of the mo
menta of the electrons. In this case the problem 
leads again to Eq. (12) with the opposite sign of {3. 

The solution is again given by (15), but with a 
contour C which encloses the cut going from the 
point - ik to - i oo. As a result we obtain 

v (p) = ~ [( 2 V-i_ )6 (p - k) + 4P2 exp .. ~ ( k3- p3)1 
2V :n: B ~z 3B ' 

p > k; "(p) = 0, p < k. 
(20) 

The term with the o-function in (20) describes the 
particles which do not change their energy (there 
is always an elastic component in any inelastic 
process). [3 ] The second passing through the criti
cal point leads to capture and an additional smear
ing-out of the momenta. 

If the impact parameter does not lie in a narrow 
region near the point of closest approach in the 
nuclear coordinate, then the two critical points can 
be considered independently, assuming that the sys
tem develops adiabatically in the intermediate reg
ion. 

Neglecting the quantities (n/{3) 2, we obtain 
formulas (19) and (17) for the capture probability 
and for the smearing-out effect, respectively, for 
p < k. Thus the final momentum distribution after 
one collision has the form 

"(p) = ( 1- 2:n: ; ) 6 (p - k) 

exp L~~ (p 3 - k3) J , p < k 

+ 2nnp2 

·Bz 
exp[32~(k3-p3)J, p>k. 

(21) 

The cross section for the collision of two atoms 
with formation of an ion is obtained by integrating 
W over the impact parameter p from 0 to R0• For 
p > R0 the capture probability is negligibly 
small. [t, 4J The parameter {3 depends on p accord
ing to the formula 

(dko) Voo --B = - -iRoz_ pz, 
dR Ro Ro 

where v 00 is the relative velocity of the atoms be
fore the collision (we neglect the curvature of the 
trajectories). Then 

4;n2 nk3 r e-z J 
O"cap = 3Ro\oo2(ko')2l-;- + Ei(z) , 

2k3 I dko) 
z = 3v,ko' ' ko' - dR Ro (22) 

[Ei(z) is the exponential integral]. 
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