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A new method is developed for solving Boltzmann's kinetic equation for a fully ionized plasma 
situated in a magnetic field. The method is based on assumptions that are characteristic of a 
collision plasma and differ from the assumption of the ordinary theory of transport phenom
ena. A system of macroscopic equations is obtained for a zero-pressure plasma in a straight 
magnetic field; these equations describe "drift" processes in the plasma more correctly 
than Braginskil's system of equations [2 l. 

1. INTRODUCTION 

WE present in this paper a method of solving 
Boltzmann's kinetic equations for a fully ionized 
plasma situated in a magnetic field, under the 
following main assumptions: 

A. The characteristic time T of the problem 
is of the order of the "drift" time, i.e. 

(1.1) 

Here vT is the thermal velocity of the particles, 
p their Larmor radius (p ~ vT/WB, where WB 
= eB/mc is the cyclotron frequency, e and m the 
charge and mass of the particles, B the magnetic 
field, and c the speed of light), and a 1 is the 
characteristic transverse dimension of the plasma. 

B. The frequency v of pair collisions greatly 
exceeds the frequency (1.1): 

V~Wdr. (1.2) 

C. The magnetic field is sufficiently strong: 

(1.3) 

Assumptions (1.1) -(1.3) are typical of prob
lems involving the stability of a collision plasma 
in a strong magnetic field (cf., e.g., the review[il). 
The initial equations used in investigations of such 
problems are as a rule the system of transport 
equations derived by Braginskil. [2] The sufficient 
condition for the applicability of this system of 
equations is assumed to be smallness of the fre
quency of the investigated process compared with 
the frequency of the pair collisions and the rela
tive smallness of the spatial gradients. These are 
the very assumptions on which Braginskil's de
rivation is based. [2] However, when these equa
tions are used, sight is frequently lost of the fact 
that they were derived neglecting the second-ap-

proximation distribution function. We shall show 
in this paper that this assumption, which at first 
glance is natural, is not universal (this is also 
indicated in [3]). In particular, it is precisely in 
the case of processes having a characteristic time 
(1.1) that certain second-order terms can be 
comparable with first-order terms. Consequently 
the use of Braginski'l's equations in problems 
where the corresponding first- and second-order 
terms are significant may lead to physically in
correct results. 

Without using additional assumptions, in which 
account is taken of the specific features of the 
concrete problem, it would be very difficult to 
calculate the first-order corrections. Introduction 
of the limitations (1.1) and (1.3), and of a few 
others typical of stability problems (see Sec. 2), 
leads to appreciable simplification, and the deter
mination of the necessary number of higher ap
proximations becomes practically realizable. At 
the same time, in the presence of the foregoing 
additional assumptions we can construct a system 
of approximations that differs from [2l, in particu
lar, in the fact that terms making comparable 
contributions appear at frequencies of the order 
of (1.1) only in the same order of approximation. 
The main purpose of the present paper is to con
struct such a system of approximations. The 
method developed here is similar in principle to 
that used in one of Braginskii's papers [4] to cal
culate the particle and heat fluxes transverse to a 
strong magnetic field. 

2. APPROXIMATIONS USED IN THE PRESENT 
PAPER 

1. Basic approximations. The starting point in 
this paper, as in Braginskil's [2l, is Boltzmann's 
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kinetic equation for electrons and ions with a 
collision term in the Landau form [51: 

Sa= L} Sab 1 (2.2) 
b 

Sab = _ 2nA.ea2eb2~ ~ {fa(v) 8/b(v') 
ma OUa lnb ov~' 

(2.3) 

(2.4) 

The indices a and b denote here electrons (e) or 
ions (i), f is the distribution function, A. the 
"Coulomb logarithm," and E the electric field. 
The remaining symbols have already been defined. 
Where possible, we shall omit the electron and 
ion subscripts. 

We shall solve (2.1) under the assumption that 
the following parameters are small quantities and 
have the same order of smallness E: 

( v (!) p a..L VIle- VIIi v..L eE..L eErr I 
t--;;;-;• --;• .a..L-, ~' -~ -;;;• lnWBVT' Tn\'VT f 

(2.5) 

Here v is the frequency of the pair collisions be
tween particles of the same kind; Err and E1 are 
the components of the electric field E parallel 
and perpendicular to the field B; V11 and V 1 are 
the mean velocities of the plasma components 
parallel and perpendicular to B (they will be de
fined rigorously later), and a11 is the dimension 
of the longitudinal inhomogeneity of the plasma. 

2. Simplifying assumptions. We shall assume 
that the plasma pressure p is negligibly small 
compared with the magnetic field pressure 
B2/ 87T, f3 = 81rp/B2 ....... o, and that the electric field 
is almost potential, E R:! -VI/!. We neglect the 
curvature and inhomogeneity of the magnetic field 
and put B II z, and oBz/ox =oBz/oy = o. We note 
that similar approximations are frequently em
ployed in the theory of stability of a collisionless 
plasma [sJ. 

3. Transformation of kinetic equation. Assum
ing that B II z, we introduce a Cartesian coordi
nate system in ordinary space, and a cylindrical 
system in velocity space, such that 

*[vB] ""v x B. 

r=(x,y,z), v=(v..Lcosa,V..Lsina,vz). (2.6) 

Expressing in (2.1) all the velocity functions in 
terms of v 1· vz, and a we write out separately 
the parts of this equation which do and do not de
pend on a. Putting 

f = 1 + f, S = S + S, (2. 7) 

where the superior bar and tilde denote respec
tively the functions that depend and do not depend 
on a, we get 

LHf + L..L1 + L..L[- (L..L[)- S = wB of /Oa, 
L111 + (L..L[) = S. 

We have introduced here the operators 

(2.8) 
(2. 9) 

a a e a 
L11 = ··-··· --r Vz- + -Ez ---, 

e a 
L..L = Vj_ v +-El.-, 

dt iJz m OVz m ov..L 

(2.10) 

and the symbol () denotes averaging with respect 
to a. 

Accordin&:.,to assumption (2.5), the terms S, 
L 11 f, and L1f in (2.8) are small quantities of first 
order, while Lrif is of second order compared 
with the right-hand side. As to Eq. (2.9), the term 
L1f is of the same order as the right-hand part, 
and Lrif is of the order of smallness of E. 

These estimates pertain only to the higher
order terms of each of the components. In order 
to develop a perturbation theory in terms of the 
parameter E, it is necessary first to separate in 
each of the terms of (2.8) and (2.9) the terms of 
different orders. 

We introduce the density n, the mean velocity 
V, and the temperature of each kind of particle, 
defining them by means of the relations 

n = ~ f dv =z ~ 1 dv, 

nV ..L = ~ v..Lfdv = ~ v..Lfdv, 

nV, = nVrr = ~ Vzfdv- ~ vzf dv, 

;) (' m(v-V) 2 (" mva2 _ mv_L~ 
-nT= \ fdv= \ ---jdv---n. (2.11) 
2 • 2 . 2 2 

In the last of the formulas we have introduced 

Va = v- ezVz, (2.12) 

where ez is a unit vector in the z direction. 
According to (2.12) we have Vol= v 1 and Vaz = Vz 
- V z• so that Vaz has the meaning of the "ran
dom" component of the longitudinal particle 
velocity [21 . 

We shall henceforth express all velocity func
tions in terms of the variables va. The operators 
L 11 and L 1 then take the form 
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L = ~ v !_ (!_E _ oaVz __ aVz v ) a 
II ot + za oz + m z ot oz az fivaz ' 

e a a 
L_L = Vj_ V +-E_t_-- -Vj_ 'VVz--·, 

m OVj_ OVaz 

aa- a v {} at- at+ z oz . (2.13) 

Using the smallness of the ratio me/mi, we 
separate the small terms in the crossing collision 
integrals, Sei and Sie· Following [2J, we represent 
the electronic integral in the approximate form 

Sei = S./ + S./', (2.14) 

where 

v'8 

v'= v- V· (2.15) 

We expand the function Caf3* in powers of V li 
and V ze- V zi· According to (2.5), each of these 
quantities, when reduced to dimensionless form, 
is of the order of E. Retaining only the first three 
terms of the expansion, we get 

• , oCa.p aca.P 
Ca.p = Ca.p- V;v---;--+(Vze- Vz;) --

iJuv OVz 

Here Caf3 = ( v~ 6 af3 - v ea v e{3 )/ v~, and the in
dices y and 6 take on only the values x and y. 

Using (2.2) and (2.14) -(2.16), recognizing that 
T e is of the order of the time of the electron
electron collisions, and assuming the ratio me/mi 
to be of the order of E2, we obtain the following 
series for Se: 

s.(e0, /.) = See[fe, fe] + s.{(e0, /.), s.(e,fe) = S./(e,j.), 

S.(e2, !e)= S./ (e2, /e)+ S./' (f.), (2.17) 

where the expressions for S~i (En) are obtained 
in obvious fashion from (2.15) and (2.16). At the 
assumed degree of accuracy, we can replace the 
quantity v' in the expression for S~i by Ve· 

The expression for Sie will be simplified in 
exactly the same manner as in [2]. We represent 
the result in the form 

(2.18) 

where 

S . ( 2 /·)- m.n. ~_!_(. f·+ Te of;) R;(e2) iJf; 
te E ' 1 - - Vta t --- - -----, 

m;n; 'te ova. m; ova m1n1 fJv 

(2.19) 

We represent the distribution function in the form 
of a series in powers of E: 

co 

(2. 20) 
n=O n=O 

Following [7], we assume that the zeroth approxi
mation f<o> gives the exact values of the zero
order magnitude-the density, average longitudinal 
velocity, and temperature: 

~ J<0ldv = n, ~ J<0luzdv = n Vz, 

i mvo2 - 3 (2 21) j 2 - j<0ldv = TnT. . 

Then, as follows from (2.11), we shall have for the 
n-th order functions the following additional con
ditions: 

~ f"ldv = 0, ~ Vazf<nldv = 0, 

(2.22) 

The last expression has from the point of view 
of classical theory [5] an unusual form. The reason 
is that the mean velocity V 1 transverse to the 
magnetic field, was assumed to be a small quantity 
[see (2.5)] and does not pertain to the zeroth ap
proximation. This quantity can be represented in 
series form: 

(2.23) 

where 

(2.24) 

The absence of a term with n = 0 from the sum in 
(2.23) is equivalent to the assumption that 

~ v.J<Oldv = 0, (2.25) 

which must be verified later. 
According to (2.21) and (2.22), the quantities n, 

V z• and T, determined in the zeroth approxima
tion, actually contains terms of all orders in E. 
Therefore the derivatives an/at, a V z /at, and 
aT/at will also be series in powers of E. In ana
logy with [51, we shall retain in these series the 
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full values of n, V z, and T. Then we get, say for 
on/at, 

a"n av, ~ r~<J at = -nfh- Ll div(nV1. ) . 
h=l 

(2.26) 

Following[ 5l, we shall denote by (an/at)(k), 
(aVz/at)(k) and (aT/at)(k) the sum of the terms 
of k-th order of the right side of equations such as 
(2.26), and introduce the symbol 

a<••.) = (an )<"J !__ ( av, )<"l _!__. (~~ )<"J!__ 
at at an + at av, + at aT' k;_,-1. 

(2.27) 

Recognizing that the operator a/at in (2.1) acts on 
a function f that depends on n, V z, and T (and 
also, in particular, on E), and using the definition 
(2.27), we shall represent the operator L 11 in the 
form of the following series in E: 

0 8~0) () ( e a~O) Vz av, f) 
L11(e )= -+ Uaz-+ -E,-----. -Vaz)--, at ()z m at i)z aoaz 

a(n) a<nJVZ a 
Lu(en)=-+-~f----, n~1, (2.28) 

at iJt avaz 

where 

( ar)<o)~. + fJt iJT 
(2.29) 

Using Eqs. (2.8) and (2.9), in which we can 
separate in unique fashion the terms of any pre
scribed order in E, using the foregoing relations, 
we can readily obtain equations for any term of 
the series (2.20). 

3. SOLUTION OF EQUATIONS (2.8) AND (2.9) 
ACCURATE TO E2 INCLUSIVE 

In the zeroth order in E we get from ( 2. 8) 

a[<0ljaa = o. 
this means that 

[<0l=0. 

The condition (2.25) is thereby automatically 
satisfied. 

(3.1) 

(3.2) 

Taking (3.2) into account, the zeroth approxi
mations of (2.9) for the electrons and ions re
spectively are 

See (Je<0l, fe<0l) + Se/ ( e0, fe<0l) = 0, 

Sii (J/0l, fl0l) = 0. (3.3) 

Each of these equations has a solution satisfying 

the conditions (2.22) in the form 

- (Ol ( rna )% ( mva2) fa = --.- exp --- -Fa, 
2;crT" 2T,, 

(3.4) 

Let us consider the higher-order equations. 
1. First approximation for f. In first order in 

E, we get from (2.8) 

From this we get 

a[<1l 1 
-=-L.l.F. 
aa Wn 

[ e, eE.1. mvaz l 
f\11= FvL -, V lnF ---+--- VV . 

Wn T T •J 

(3.5) 

(3.6) 

By integrating (3.6) with respect to the veloci
ties we find that the following quantities differ 
from zero in first order: the transverse velocity 
v~)' the transverse heat flux q~)' and the com
ponents of the viscosity tensor rr a{3 with indices 
( x, z) and ( y, z). (For a definition of q and 
rr a{3 see, e.g., [2, 3• 7l .) 

2. First approximation for f. Substituting 
(3.6) in (2.9), averaging the expression for L1'fUl 

with respect to a, and taking into account the 
assumptions of Item 2 of Sec. 2, we get in first 
order in E: 

e c 
VE = --[Ee.] = -[EB], (3.8) 

mwn B2 

and g<1l for the corresponding type of charge takes 
the form 

,se<1>,=See[Fe, j~1l] + Se/ (e0, j;l)) + S~i(e, Fe), 

'(1) -(1) 
Si =Sii[Fi ,fi ]+Sie(e,Fi)· (3. 9) 

Integrating (3. 7) over the velocities with weight 
1, Vaz• and mv~/2 we obtain the relations be
tween the derivatives a 0 ( n, V z• T )/o t which re
sult from the differentiation of F with respect to 
t (see (3.4)) on the one hand, and the remaining 
quantities of order E, on the other. Carrying out 
this integration, we obtain 

( ~~ a ) a~ 
-+V,-+VEV n+n-=0, 
iJt az . ()z 

(a<oJ +V.~ +VEV)V,=-=-E.-~- ap + R,(~l. 
' iJt dz , m rnn az rnn · 

3 (a<o) a ) av. -n --+V,-+VEV T+p---=0. (3.10) 
2 at (jz flz 

The expressions for the quantities Rze (E) 
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= - Rzi ( E), which stand for the friction forces 
between the corresponding plasma components, 
has according to (2.15), (2.16) and (2.19) the 
following form: 

1 _ 3l'rt ( 2Te)% 8~) 
Rze (e)- --8- - m0 ~ Czz-·- dv. (3.11) 

'te me 8Vez 

The friction force contains the function 1 <1 >, as a 
result of which it can be determined only after 
solving Eq. (3. 7) for f <o (see also [a]). 

If Eqs. (10) are represented in the form used 
in the classical theory of transport phenomena [7, 21, 
then we get, accurate to terms of order E: 

dan 
-+ndivV= 0 

dt ' 

da Vz 8p 
mn---= enE ----(Vrt) +R dt z 8z z z, 

3 daT -n--+ pdivV =- divqi 
2 dt 

where da/dt =olot + (V·V). 

(3.12) 

Comparing (3.12) with the zeroth- and first
approximation equations of [7•21, we arrive at the 
conclusion that terms which are referred to dif
ferent orders ( V, q, 1r) in the usual scheme are 
included in our scheme in the same order in E. 

When these terms are summed, some of their 
components cancel one another. Therefore when 
equations of the type given in [7•2] are used in 
problems where these components are appreciable, 
the latter must be taken into account not only in 
the largest but also in the higher-order terms. As 
to Eqs~ (3.12) they contain in accordance with 
Braginskil's scheme terms of zeroth and first 
order. The calculations made in [2] take both 
orders into account. Therefore, by reclassifying 
the orders of magnitude of the quantities in the 
final results of [2J and retaining in them only terms 
of order not higher than E, we arrive at Eqs. 
(3.10). Since our approximations correspond, ac
cording to (2.6), to processes having frequencies 
on the order of the drift velocity, it follows from 
the foregoing that Braginskil's equations [2] can be 
used to describe drift processes, at least accurate 
to E. The degree to which these equations take 
correct account of the higher orders in E will be 
discussed later. 

With the aid of (3.10) we exclude from (3. 7) the 
derivatives a 0/a t, after which the equation for 
each kind of charge takes the form 

Fe{[(mev::=--~) alnT_.,_ 
2Te 2 ilz 

me ( 3f'n ( T. )';, 1 ) . +-.--=-- -~ -1 (Vez-l';z) 
1 e'te l'2 me Vi 

, Rz'(e)] . n~e( 2 Ve2 )8Vez}- -(1) 
-r n/fc- Vez + Te IJez - 3 Tz - See [F •• t c ] 

+ S '( -(1)) 
ei Eo,fe; 

(3.13) 

The difference between (3.13) and the similar 
equations of Braginskil [2] for the first-order cor
rection (which does not depend on the angle in 
transverse-velocity space) consists in the fact 
that the left sides of our equations do not contain 
the divergence of the transverse velocity, div v r). 
This result is connected with the fact that in the 
case considered by us, that of a straight and 
homogeneous magnetic field and a nonsolenoidal 
electric field (see the assumptions of Item 2 of 
Sec. 2), the contribution made by the second-ap
proximation terms that were unaccounted for in [2] 

is exactly offset by the contribution connected 
with div V 11 l. This is proved in the Appendix of 
the present paper. 

The solution of Eqs. (3.13) reduces to the ex
pression obtained in [2] for the first-approxima
tion function. It is only necessary to make in the 
corresponding results of [2] the substitution 

div V- 8Vz/8z. (3.14) 

The expression for R~e (E) (see (3.11) turns out 
to be exactly the same as in [2]: 

Rze' = -0.71ne!!}'e. (3.15) 
ilz 

3. Second approximation for f. Substituting in 
(2.8) the results of the zeroth and first approxi
mations, we get 

where 
(2). 1 8 

[1 = --- (L.J_J(1)- $(1))' 
(J)B 8a 

(3.16) 

(3.17) 

and the function 'f2<2l contains cos 2a:: and sin 2a::, 
and will be of no use to us in the present work. 

The function f <2l is a correction to f <1 l of 
order p/al and v/wB. Since 

Pi~ Pe, (v/ (J)B) i ~(V/(J)B)e, (3.18) 

we can confine ourselves to calculation of the 
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ionic correction only. The expression S fP can 
be replaced with the same degree of accuracy by 
s<tJ 

4. Second-approximation equation for f. From 
(2.9) we have in the second-order approximation 
in: 

( o<1J a<1W- mv ) (2) 
Lu(e0)f<1J+ -, ---· ~ F+(LJ}t )=S<2J. 

aL at T (3 .19) 

The operator L1[J E 0 ) is defined by (2.28). The 
mean value (L1ff2>) denotes, according to (2.13) 
and (3.17) 

(LJ]/'4i) = V E (vt(1>- V Vz aJ<11 ) 
avaz I 

-l ez e a a J + -, v +--- vv.-- (v.LS<1l). 
WB m ae.L avaz 

(3.20) 

For the electrons and the ions, the expression for 
s<2> has, in accord with (2.14)-(2.17) and (2.20), 
the form 

- .,{2) ( r ,.(1) J(1) ) - -(1) Se=S •• [Fa,f •. J+ See!Je, e] +S.e[fe,fe] 

+ S.;' ( e.O, J~2>) + S.;' ( e, J~1>) + S.;' ( e2, Fe)+ Se/' (Fe), 

-- S {F -(2> ] (S [f (tl f (t)J) S U (1) -11)} "-~i = ii i/i + ii i ' i + ii i 'fi 

(3.21) 

5. Summary of the results of the first two ap
proximations. With the aid of (3.19) we can find 
expressions for a (1 ) ( n, v Z• T). Combining this 
result with (3.10), we arrive at the following 
system of macroscopic equations 

D.n, avze 
---l-n.--= 0 

Dt I az ' 
D;n; aVzi 
/5t + n; ---a;:- = 0, 

D. Vze ap. neme 
m.n.-D = e.neEz------ (Vze- Vzi) 

t az 't'e 
aT. 

-0,71ne--, az 
D; Vzi api neme aT. 

mn·---=e·n·E --+--(V -V ·)+071n-z z Dt z z z f)z 't'e ze zz , e (}z 

3 D;T; fJVzi . 4 ( fJVzi ) 3 
-n;--+p;---= dnr(x_uV.LTi)+-Y)oi -·-
2 Dt & 3 & 

a ( aTi) 3me n, 
+ YJ2i(V .LV:;) 2 + -8 x11;-a- +-- (T.- Ti), 

z z m; 't'e 
(3.22) 

where 

and the quantities 1J oi· 1J 2i, K 11 i• and K li were cal
culated by Braginskil [21: 

lloi = 0.96n;T;T; 

n;Ti 
XJ_i= 2---

m;WBi2l·; 

6 niTi 
1]2·=----

, 5 WBi2Ti ' 

niTiTi 
X[[i = 3,9 ---·, 

lnj 

(3.23) 

In deriving (3.22) we neglected small terms of 
order veiWBe· In particular, the equations for 
aT/at do not contl;tin, for the same reasons, the 
terms corresponding to the heat transfer due to 
the transverse friction force between the com
ponents (these terms and their like do not differ 
from those given in [21). 

4. DISCUSSION OF RESULTS 

Equations (3.22) differ from Braginskil's [2] in 
the following respects: 

1. The component of the viscosity tensor does 
not contain the divergence of the transverse 
velocity. This is caused by the presence of a 
compensating term in the second-order approxi
mation, a term discarded by Braginskil [2] 0 . In 
addition, part of div V 1 drops out by virtue of the 
assumptions of Item 2 of Sec. 2). For the same 
reason, the equations for the heat contain, in lieu 
of the full product 1f af3a V a /a Xf3, only the terms 
containing the derivatives of the longitudinal 
velocity, but not the transverse one. 

Our analysis leads to the following prescrip
tion for using the equations of [2] in problems cor
responding to the assumptions of Items 1 and 2 of 
Sec. 2. If the investigated effects are only of 
order E, the equations of [2] can be regarded as 
fully corresponding to the conditions of the prob
lem. When account is taken of effects of order E2 

it is necessary and sufficient to omit from the 
quantities 1f afj and 1f a{3 a V a /a Xf3 contained in 
these equations the derivatives of the transverse 
velocity which make up the combination div V 1· 

2. Equations (3.22) do not take into account 
terms of order E3 and higher, whereas in [21, 
owing to the use of a different set of expansion 
parameters, some of these terms are retained. 
These terms describe such effects as, say, the 
transverse inertia and transverse viscosity of the 
ions, and can be significant in problems where the 
ratio a1/ all is assumed to be very small [1 1: 

l)The second approximation is taken into account in[ 8 • 9]. 
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(4.1) 

In order to obtain macroscopic equations for a 
comprehensive set of problems (within the scope 
of the assumptions of Item 2 of Sec. 2) it is neces
sary to supplement (3.22) with higher-order terms. 
To this end it is necessary to find the solution of 
the kinetic equation in higher orders, namely E 3 

and E4• Such a solution has been obtained. It turns 
out that all the physically interesting effects taken 
into account in orders E 3 and E 4 are contained in 
Braginski'L's equations [21. (Details of the calcula
tions are not presented in this article.) Therefore 
the prescription for using the system of equations 
of [2), with due allowance for the terms in E 3 and 
E4, remains the same as when allowance is made 
for terms of order E2 only. 

I am grateful to S. I. Braginskil and S. S. 
Moiseev for a discussion of the results of the 
work. 

APPENDIX 

The result (3.18) was obtained under the as
sumption that the transverse velocity is a quantity 
of first order of smallness. We shall show that 
the very same result can be obtained also in the 
usual manner [2•31 when V 1 is a quantity of zeroth 
order. 

Making in (2.1) the substitution v = c + V, we 
transform it to Eq. (4.2) of Braginskil's paper [3]: 

S-[cron]-ofa = dafa +cVfa+(~Ea*_daVa) i}j.::_ 
ac dt ma dt oc 

oVa~ ofa 
-Ca.·----

OXa de~ ' 

where 
dn 0 
Cit=-at+VaV, 

(A.1) 

• 1 { Ea =E+-- VaB]. 
c 

We shall assume for simplicity that (A.1) per
tains to ions, and S does not contain Sie· Just as 
in [21 , we assume as the zeroth approximation for 
f (c) the Maxwellian distribution F (c). For that 
part of the first-order correction which oscillates 
with respect to the angle in the c 1 space (I <1> 

= F~< 1 >) we get from (A.1): 

(A.2) 

where 

(A.3) 

and q2 and 1r z1 are defined by 

(A.4) 

Substituting in t~e right side of (A.1) in lieu of fa 
the sum F ( 1 + .p<il) we arrive at the following 
equation for the distribution-function increment 
that does not depend on the angles in c1-space: 

-·- { (mc2 5 )oinT 
S [F, Fa>]= F .c, 2T - 2 --a;,-

(A.5) 

where 

The expression for ~ contains terms of the first 
order ( ~ div V 1) and of the second; the latter are 
connected with the vector a, which, according to 
(A.3) is expressed in terms of q and 1r. According 
to this attribute, equation (A.5) can be represented 

"'< ) ~(2) as a set of two equations, for <P 1 and <P (the 
number of the approximation corresponds to the 
scheme adopted in [21). The first term of the right 
side should be assigned here to the first approxi
mation, and all others to the second. On the other 
hand, substituting in (A.5) the explicit forms of 
q1 and rr z1 recognizing that according to [2 J 

V 1.. = - 1- [e., Vp- eE], (A.7) 
mron n 

and taking into consideration the conditions of 
Item 2 of Sec. 2, we get 

6. = 0. (A.8) 

We have shown by the same token that the 
"excess" first-approximation terms of the 
scheme adopted in [21 actually are cancelled by the 
second-approximation terms that were not ac
counted for there. 
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