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We consider the stationary interaction between a prepolarized molecular beam and a high 
frequency field, with account taken of relaxation. An expression is obtained for the polari
zation of such a beam, and it is shown that it contains convective, proper, and mixed polari
zation components that differ from one another in phase. Account is taken of the reaction 
exerted on the beam by its own field in a closed cavity by neglecting relaxation relative to 
the small parameter. The singularities of such an interaction are described in a linear 
approximation, and the role of each of the polarization components is explained. The re
sults can serve as a physical basis for a rigorous nonlinear description of the experi
mentally observed effects. 

A detailed investigation of the phenomena first 
observed by Higa [1] and by Reder and Bickart l2J 
enabled Strakhovskil and Tatarenkov to observe 
experimentally[3] the very interesting effects des
cribed in detail in[4J. The experiments reported in 
these papers recall Ramsay's well-known experi
ments l5] with separated oscillating fields, except 
that they made use of active molecular beams at 
absolute temperature To < 0, that the oscillating 
field in one of the resonators was self-excited, and 
that the coupling between the two oscillating fields 
was not independent of the polarized beam. Indi
vidual singularities of the Strakhovskil-Tatarenkov 
effects were considered by Basov and OraevskiJ:lS] 
(see also [?1 under the assumption that the change 
in the population difference during the time of b.. 

travel of the molecules through the second oscil
lating field can be neglected (see [B]). These phe
nomena were qualitatively considered also by 
Wells [9J. 

It is perfectly obvious that the group of ques
tions outlined above is closely related to the singu
larities of the interaction between a prepolarized 
beam and a high-frequency electromagnetic field. 
It is therefore advantageous to investigate in 
somewhat greater detail the singularities of such 
an interaction, without resorting beforehand, 
where possible, to the limitations used in [5- 7• 9], 

and under assumptions that admit of sufficiently 
simple intuitive physical interpretation of the re
sults. It is apparently sensible to (!Onfine oneself 
to two basic physical problems-the polarization 
of the prepola1 'zed beam in the specified field, 
and the reaction of such a beam on the field pro-

ducing its polarization. The first problem is a 
feature of interaction in an unbounded space, 
where the proper radiation field has, by virtue of 
the radiation principle, the form of diverging 
waves and its reaction on the beam can be 
neglected. The second problem is essential in 
cavities bounded by conducting walls - resonators 
- where the beam's own radiation field cannot be 
neglected, since the radiation is also localized in 
the same bounded region of space. 

Consequently, within the framework of the 
problem posed above, it is perfectly sufficient to 
consider the influence of an extraneous homo
geneous field E ( z, t) directed along the beam on 
the prepolarization of the latter, and then find the 
field excited by the beam with due allowance for 
this influence. For a single molecule the first 
half of such a general problem was first considered 
in part in [5], but important physical features of 
the interaction remained, unfortunately, unnoticed 
and will be obtained further from more general 
cons ide rations. 

Assume that the molecule is acted upon by an 
electric field 

{ E0ei<M 0 :0::::: z :S:: L 
E(z, t) = 0, ' z:: 0,-: > L (1) 

directed along the beam, whose complex polariza
tion [to] in the two-level approximation is 

P (z, t) = Pop12 (z, t) exp (iffi21t), 

and the difference of the level populations of the 
component molecules is proportional to 

D (z, t) = pu (z, t)- P22(z, t), 

607 

(2) 

(3) 
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where w 21 is the transition frequency, and 
Pik ( z, t) the density-matrix elements determined 
from the Klimontovich-Khokhlov equations [11 ] with 
account of relaxation. [10J When z < 0 the beam is 
polarized, and therefore we have at the point 
z=O 

Elo(Pk) =[(ph+ 8)2 + ~2] [ fi (Pk- Pm) r1
• 

m=!=h 

IDh(Pk) = [YJt(8 + Reph)- 'YJ2~ 

+ i'Yjt lmpk] [ v IT (Pk- Pm) rf 
m=!=k 

D (0, t) =Do, P12(0, t) = P21" (0, t) = poeiat, 

6 = (!)- ffi21· 

(the products are taken over all m = 1, 2, 3, ex
(4) cept m =k), 

In the general case it is obvious that D0 and 
Po are time-dependent, but if we take this circum
stance into account, then the final expressions for 
P(z, t) and D(z, t) becomeverycumbersome 
and require a special detailed analysis. We shall 
henceforth consider only case (4) of a stationary[11 ] 

distribution of the molecules over the levels. 
If the beam enters the field (1) from a source 

that is in thermodynamic equilibrium, then the 
distributions of the phases Jf Pik is random [1 2] 

and p0 [(Eq. (4)] is known only accurate to value 
of the phase. In the case of interest to us the 
beam either interacts initially with the extraneous 
field [S] or is transformed into a state with r 
< 0 and then participates in the self-oscillating 
process [1- 3J. As shown by Tolman [12 ], this leads 
to phase ordering of Po or, what is the same, to 
the appearance of polarization. Therefore Po in 
(4) is a definite and known complex quantity. Re
garding ( 4) as the boundary conditions for the 
solution of the Klimontovich-Khokhlov equations 
for z 2: 0, we put 

D(z,t)=D1(z)+D2(z), (5) 

P12(z, t) = [Rt (z) + R 2(z) + R3 (z)] ei61 , ( 6) 

where 

3 ['De J Dt(z)= ~E>o(Ph) -(eP•Z-1)+DoeP•z '· 
k=l Ph 

( 7) 

3 

D2(z) =- 2 ~ cDh(Pk)eP•z; ( 8) 
h=l 

A 3 {'D• [ rh 1 Ri(z) =- ~ E>o(Ph) - . - -;--
2v k=t Pk Ph+ 8 + l~ 8 + l~ 

X ( 1 - e-<•+t~lz) ]+ Dorh . }, ( 9) 
Pk + 8 + Lj3 

R3 (z)=poexp[-(8+i~)z]. (11) 

The functions entering in (7)-(11) are defined by 

rk = eP•Z- e-(e+iBlz, Pt = 2Ft- flo- 8, 

P2 = -Ft + q73F2- flo- 8, P3 = pz" 

F1 = 3/2!J.o(1/3-P2/a2) +O(!-lo2), F2=WJ13a+O(flo2), 

where 0 ( ~~) are terms of order of ~~ and 
higher. The parameters of the problem are 

2 
A= in P12Eo 

( p12 is the matrix element of the dipole moment), 

a=l'P2 +x2, ~=6/v, x=IAI/v, 
'Y)t = ReApo\ 'Y)z= lmApo"; 

De is the equilibrium value of D ( z, t), and v is 
the average molecule velocity in the beam. The 
quantities E and T are inverse to the relaxation 
distances and are expressed in terms of the re
laxation times T1, 2 [10]: 

T = (vTt)-1, 8 = (vT2)-1, 

and ~0 denotes their difference: 

flo=(o:-8)/3. 

It is easy to verify, by direct substitution in 
the Klimontovich-Khokhlov [H] equations with re
laxation taken into account [10], that expressions 
(5) and (6) are solutions of these equations when 
the ~ 0 are sufficiently small, and satisfy the 
boundary conditions ( 4). In the limiting case as 
T 1 E 1 /~o ~ 0 we get from (9)-(11) 

R1 (z) =~Do [sin az- i J3 ( 1- cos az) J, ( 9a) 
2av a 

~ • .~ •A] 
1 - s1n az - l~- e-''"' , (lOa) 

R3(z) = poe-i~z. (11a) 

By virtue of the neglect of the relaxation processes, 
expressions (5) and (6) satisfy in this limiting case 
not only the conditions ( 4), but also directl1 the 
initial Klimontovich-Khokhlov equations [1l , and 
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when Po = 0 they go over, apart from the differ
ence in notation, into the solutions obtained in that 
paper. Formulas (9a)-(11a) can also be obtained 
from the solutions of [5] by changing over in the 
latter to a description of the moving molecules in 
the laboratory frame, and then carry out a suit
able averaging. With such an operation, the form 
of formulas (9a)-(11a) is not obvious beforehand, 
and it is therefore appropriate to emphasize once 
more that they have been derived as a particular 
case of the more general solutions (9)-(11), and 
are thus free of the limitations assumed in [5l, 
i.e., they are suitable, according to (2) and (6), 
for a direct description of the polarization in 
molecular beams. 

Substituting (5) and (6) in (2), we conclude that 
the polarization of a prepolarized beam in an 
extraneous field breaks up into three terms. Each 
of them has a clear-cut physical meaning which 
does not depend on the relaxation processes 
(compare (9)-(11) with (9a)-(lla)). 

We shall call the component (2), whic:1 is pro
portional to R1, the proper polarization. It is 
produced in the beam under the influence of the 
field (1), vanishes when E0 = 0, and does not de
pend on Po [Eq. (4)]. The component proportional 
to R3 is, in turn, independent of D0 [Eq. (4)] and 
of the field ( 1), and is carried by the moving 
molecules of the beam. R3 vanishes with p 0, i.e., 
}Vith the vanishing of the prepolarization. Finally, 
that part of the polarization which is proportional 
to R2 is likewise independent of E 0, but depends 
on Po and E 0, i.e., it appears as the result of the 
interaction between the prepolarization and the 
field ( 1); we shall therefore call it mixed polari
zation. 

Such a breakdown is physically advantageous 
also because when (9a)-(11a) are expanded in 
powers of E 0 the convective polarization (which 
does not depend at all on (1)) appears in the 
zeroth order, then the proper polarization appears 
in first order, and only in the second and higher 
orders do the proper and mixed polarizations 
again appear. It is therefore clear that when Po 
~ 0 the linear part of the interaction is deter
mined by the convective and proper polarization, 
while the nonlinear part depends both on the proper 
and on the mixed polarization. 

Consequently, the prepolarization (Po ~ 0) 
leads not only to the appearance of convective 
polarization, but also to a substantial change in 
the nonlinear part of the interaction, owing to the 
presence of mixed polarization. If we note in ad
dition that each polarization component is charac
terized by a magnitude and a phase shift, then it 

becomes obvious that in cavities bounded by 
metallic surfaces (resonators), when the proper 
field of the beam radiation can no longer be 
neglected, the prepolarization can greatly change 
the character of the interaction between the beam 
and the field. 

Let us assume that a prepolarized beam enters 
such a cavity and the natural modes of the cavity 
are known. We shall seek the field (1), assuming 
the polarization (2) to be known, in the form 
E ( z, t) = x ( t) E ( z), where E ( z) is the one 
cavity mode coinciding with the direction of the 
beam molecules. From Maxwell's equations we 
have 

Ws 4:n; ~ d2P x+2-Q x+w02x= -- -E(z)dV, 
N dt2 

v 

(12) 
v 

where V is the volume of the cavity, w0 

= ws ( 1 + Q-2 )11 2 (the Q is assumed to be large 
enough to put henceforth w0 f:::: ws). 

Let the prepolarization P be either the result 
of a self-oscillation process [til or the result of 
the action of an extraneous field [5] interacting 
with an identical mode in another similar cavity 
of length L2• The distance between the two cavi
ties is L1• Then P in Eq. (12) contains only com
ponents coinciding in direction with E ( z). Substi
tuting (6) and (9a)-(11a) in (2) and (12) we obtain, 
in the case of sufficiently thin beams, an equation 
for the stationary amplitude of the forced oscilla
tions at the frequency w, in the form 

x + w2x =- (wo2 - w2)x- 2 :;x + f-tw2(R)ei<M, (13) 

where 
1 L 

(R) =- \ R(z)dz, L . 
0 

E 0 = E ( z) is the homogeneous field and Vn the 
volumE occupied by the beam. 

To determine (R) we assume that the condi
tions in the auxiliary cavity correspond exactly to 
the Klimonotvich-Khokhlov conditions [tl] (Po = 0 
and D0 = D2 ~ 0). Then, taking account, with the 
aid of ( 9a), of the polarization at the exit from the 
first cavity and its behavior (lla). in the gap be
tween the cavities, we put x = ae1wt, after expand
ing ( R) in powers of a: 

(R) = Foo + aFot + a2F02 + O(a3), (14) 

where 

Foo =A exp {i[£ +'I'- ~(Lt + L/2)]}, (15) 

F01 =Bexp{i[£+'l'tl}, (16) 
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with ~ = 1r for To > 0 and ~ = 0 for T" < 0, 

f/02 = IAol 2 {i[(~Luo- vo) + i(~L- ~Lvo- 2uo)] lmpo'ei<P 
262 

+ [~L(1- uo)- i(~Lu0 - vo)] Re p0*ei<P} e-i<P, 

1\ > JaJJAol, F 02 = (i JAoj 2 Im po* ei<P) e-i<P, 6 = 0, (17) 
' 6v2 

and the quantities entering in these expressions 
are defined by 

1- cos ~L 
Uo= 

~L 

sin ~L 
Vo=1-BL, 

- ~L sin ~L) + ~2 £2]'/•, 

Uo 
tg'¥1 = -. 

Vo 

Putting further n0 = w - 2 ( w~ - w2 ) and m 0 

= 2w 0 (wQ)-1, we get from (13) and (14) in the 
linear approximation 

ao =I a I ei<Po = I!Foo(no + imo- !!Fot) -t, 

where, according to (15) and (16), 

I ao I= 11A [(no+~ cos '¥1) 2 + (mo + 11B sin 'I't) 2]-'/,, 

qJg = ~ + 'I' - 'I' a - ~ ( L1 + ~ ) , 
mo + 11B sin 'I' 1 

tg 'I' a = -----'--=--
no + 11B cos 'I' 1 

(18) 

( B > 0 if To > 0 and B < 0 if To < 0). In this ap
proximation, the field is determined entirely by 
the convective and the proper polarizations. 

Inasmuch as F 02 is proportional to 
L2 j A j2v[2 « 1 when 6 = 0, we shall estimate the 
influence of the mixed and the nonlinear part of 
the proper polarization by the small-perturbation 
method. Putting a = a 0 + E 0 and neglecting terms 
of order I E 0 12 and higher in ( 13), we obtain 

Bo = JeoJ ei<P = !lao2Foz(no + imo- 11Fo1- 2aoFoz)-t, (19) 

where according to (16) and (17) we have for 
6 = 0 

llziAoj2A2£2 ( :n:) 
Jeo I = 11 12v2 sin 2'¥ a cos 'I' a cos rp - (Po + T , 

( :n: \ 11zA2JA0 j2£2 
tg qJ - q!o + -2- } = tg 'I' a + 6 2 ( + B nr ) 2 sin 2'¥ a. 

' · Vno !!COS-ri 

However, when the field amplitudes determined by 
(18) and (19) are sufficiently small, they can be 
regarded as extraneous self-consistent fields, if 
the spectrum of the proper modes of the cavity is 
so sparse that it is reasonable to neglect the 
neighboring oscillations. It becomes possible in 
this manner, in an approximation where JJ, is 
small, to observe the characteristic singularities 
of the interaction with the field of a closed cavity. 

When a- 0 we have (R)- F 00 [Eq. (14)], 

and therefore if n0, m 0 » JJ,B [Eq. (18)] then the 
interaction occurs only with the proper field of 
the beam radiation, which is determined entirely 
by the convective polarization. If n0, m 0 ~ JJ,B, 

then the proper polarization is significant. When 
To > 0 [5J, this polarization only increases the ab
sorption (18) in the beam, since B > 0. To the 
contrary, when T" < 0 [1- 3] we have B < 0 and the 
growth of the field amplitude ( 18) is limited by the 
terms of order O(a2 ) [Eq. (14)], i.e., by the 
proper and mixed polarizations. Consequently 
when To < 0, other conditions being equal, the 
nonlinear character of the polarization is more 
important than when To > 0. 

Expression (19) provides an estimate of the 
region where the nonlinearity has little influence. 
It turns out here, as can be readily verified, that 
the effects observed in [1- 3] are described in the 
linear approximation by Eq. ( 18). When To < 0, 
however, as already emphasized above, the inter
action is essentially nonlinear, and therefore such 
an approximate description cannot explain satis
factorily the experimental observations in all re
spects. 

Nonetheless, it is quite evident that the singu
larities of the polarization of a prepolarized beam 
are quite sufficient for the development of a rigor
ous nonlinear theory of interaction in a cavity. The 
solution of such a problem is bound to be very 
cumbersome, and its investigation is therefore 
beyond the scope of the present paper. 
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