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The mechanism, connected with the shape of the caustic surface, of the damping of relaxation 
oscillations in a spherical resonator is investigated. It is shown that under certain conditions 
the damping can be quite strong and can lead to stationary generation. The conclusions of the 
theory are confirmed by results of experimental investigations conducted with a laser having 
a ruby rod and lenses (similar to a spherical resonator). 

1. INTRODUCTION 

REGULAR relaxation oscillations of radiation 
generated in a spherical resonator were obtained 
and investigated by many authors. [1-4] Regular 
damped oscillations were investigated [5] in a 
plane-parallel resonator equipped with lenses and 
similar to a spherical resonator. The oscillation 
damping observed in the cited papers was so weak 
that no stationary state could set in during the 
time of the pump pulse. This experimental fact is 
in good agreement with the results of the 
theory [S, 7]. 

It is shown in a number of papers, however, [B-tt] 

that in some cases the radiation oscillations in a 
spherical resonator experience a strong damping 
which leads to establishment of a steady state 
during the greater part of the generation time. 
The mechanism of this damping has not been 
satisfactorily explained in any of the foregoing 
papers. 

The present paper is devoted to an investiga
tion of a new mechanism of relaxation-oscillation 
damping, which is much more effective under cer
tain conditions then the presently known damping 
mechanism and makes it possible to observe sta
tionary generation even in the case of pulsed 
pumping. This damping mechanism is connected 
with the singularities of the shape of the caustic 
surface within which the electromagnetic field is 
localized in a spherical resonator. The theory of 
this process is presented as applied to a spherical 
resonator, and the experiments were carried out 
on a resonator with lenses, which is similar to a 
spherical resonator but is much more convenient 
from the point of view of the experimental tech
nique. 

As shown by Va1nshte1n [12], the electromagnetic 
field in a spherical resonator is concentrated in
side a caustic surface whose equation, in cylindri
cal coordinates, is 

~ 2z2 l 
~- ZR =i- 2R. (1) 

Here R is the radius of curvature of the reflec
tors, and a and l are the radius of the reflectors 1> 

and the distances between them. The position of 
the axes r and z is shown in Fig. 1. 

We shall assume for simplicity that the inten
sity of the generated light is uniformly distributed 
over the cross section inside the caustic surface 
and is equal to zero outside this surface. (The 
question of the validity of this assumption will be 
discussed in Sec. 4.) Then the intensity of the 
light I ( z, t) is inversely proportional to the cross 
sect:ion S ( z) and can be represented in the form 

I z t =I 0 t ~~= p2I(O,t), (2) 
( ' ) ( ' ) S ( z) p2 + 4z2jl2 ' 

where 

p2 = 2R/l-1. (3) 

Formula (2) can be extended to include the entire 

r 

FIG. 1 

flin the case of a resonator with external mirrors, a must 
be taken to be the radius of the region with negative absorp
tion coefficient. 
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interval -Z I 2 :::; z :::; l I 2, if we neglect the sag of 
the reflectors compared with l . 

In calculating the generation kinetics it is 
usually assumed that the intensity I depends only 
on the time t. In our case I depends not only on 
t but also on z. If p !?: 1, then allowance for the 
latter dependence does not lead to essentially new 
results; but if p « 1, then a sharp dependence of 
I on z leads to a strong damping of the intensity 
oscillations. 

2. KINETIC EQUATIONS 

We denote by T the lifetime of the photon in the 
unexcited resonator, and write for the gain, when 
the light is amplified by an excited active medium, 

n/n•·w, (4) 

where n is the number of excited luminescence 
centers per unit volume2>, n* the threshold value 
of n, and v the speed of light in the medium. The 
proportionality coefficient for n in (4) is chosen 
such that when the generation threshold is reached 
( n = n*) the gain compensates for the light loss, 
the magnitude of which per unit length is 1/Tv. 

Taking (2) and (4) into account, we write the 
balance equation for the number of excited atoms: 

hwo an (z, t) = N _ nftw0 _ ___!!__ p2J (0, t) (5) 
at T n*-r p2 + 4z2/l2 . 

Here w0 is the laser operating frequency, N the 
pump power absorbed per unit volume, and T the 
time of spontaneous de-excitation. The first term 
in the right side describes the excitation of the 
atoms by the pump, the second the spontaneous 
de-excitation, and the third the induced de-excita
tion of the excited atoms (the last term is the 
power drawn by the light from the excited active 
medium). 

We also write the equation for the light in
tensity: 

1/2 r dz 
ii(t)= J n(z, t)-. 

-1/2 l 

( 6) 

( 7) 

Equation ( 6) has been written out for I ( 0, t) ac
curate to within a constant factor equal to the total 

2)We consider for concreteness a four-level system. In the 
case of a three-level system, n must be taken to mean 
n - no/2, where n0 is the total volume density of the active 
centers (excited and unexcited). 

optical energy in the resonator. This equation 
contains the gain averaged over the resonator 
length, since light propagating at small angles to 
the optical axis traverses equal intervals of z in 
equal time intervals. 

Changing over in the kinetic equations (5) and 
(6) to more convenient dimensionless variables 

v (z, t) = [n (z, t)- n*]/n*, w (t) = p2J (0, t) T /-rftw 0n*, 

we rewrite these equations in the form 

( 8) 

T~:=~- p2+:z2/[2-v(1+Pz+:z2j[2)' (9) 

-r:dw/dt = Wv(t). (10) 

Here 

l/2 d 
v (t) = ~ v (z, t)__!_, 

l 
-1/2 

t is the relative excess pump power above 
threshold. 

(11) 

We consider first a stationary mode, in which 
the left sides of (9) and (10) vanish. We denote by 
w0 and v0 (z) the stationary values of wand v. 
From (9) we have 

~(p2 + 4z2jl2)- Wo 
vo(z) = . 

p2 + 4z2/l2 + Wo 

(12) 

Recognizing that v0 = 0, we get for the constant 
w0 the equation 

1/2 
\ dz wo(~+ 1) --
J v0 (z)- = ~- -~...c.-...=-arctgyp2 +wo = 0. 

l lP2 + Wo -1/2 

(13) 

We now consider small oscillations of the in
tensity. We put 

v(z,t)=vo(z)+vt(z)eHlt, w(t)=w0 +w1ei01 , (14) 

where v1 and w1 are small oscillation amplitudes. 
Substituting this in Eqs. (9) and (10) and linearizing 
the latter with respect to v1 and Wt. we obtain 
equations that are homogeneous in v1 and w1: 

vo(z)+ 1 [ Wo l 
- iQTvt = p2 + 4z2/[2 Wt + 1 + pz + 4z2jl2 .\ V~t (15) 

l/2 dz 
iQ-r:wt = Wo 1 Vt(z)T. 

-l/2 

(16) 

To find the oscillation frequency, we solve the 
first of these equations with respect to v1 and 
substitute in the second. We get 

l/2 
. ~ v0 (z) + 1 dz 

- lQ-r: = Wo • w0 + (iQT + 1) (p2 + 4z2/l2) T · (17) 
-1/2 
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Combining (17) and (13), we simplify the integrand 
of ( 1 7), after which the integral can be readily ob
tained. We transform (17) finally into 

TTQ2 = - (1 + ~)wo 
~ p[(1+iQT)(1+iQT+w0/p2)]'h 

[ 1 + iQT J't. X arctg . 
(1 + iQT)p2 + Wo 

Equation (18) must be solved simultaneously 
with Eq. (13) for Wo. 

3. DAMPING OF OSCILLATIONS 

(18) 

Usually the time of spontaneous de-excitation 
T is much longer than the period of the intensity 
oscillation, so that 

( 19) 

(for a ruby or neodymium laser QT ~ 100). 

We shall take 1/ QT to be the small parameter 
of the theory. In the zeroth approximation with 
respect to this parameter we have from (18) 

Q=1Vr:T. (20) 

In the zeroth approximation the frequency is real, 
i.e., there is no damping. The imaginary part of 
the frequency, which determines the attenuation, 
can be calculated in the first approximation, by 
substituting (20) in the right side of (18). To sim
plify the result, we shall assume that p is not too 
small: 

(21) 

As will be shown later, this region of p is of 
greatest practical interest. Usually w0 ~ 1, so 
that the conditions (10) and (21) allow us to neglect 
the quantities 1 and w0/ p2 in (18) compared with 
m T. Thus we get for the logarithmic damping 
decrement of the osciJlations 

ImQ 1/T 
6 = 2n-- = n(~'h + ~-'f•) V K- 611K, 

ReQ T 
(22) 

where 

K = ( w0/~p) arcctg p. (23) 

Here o 11 is the logarithmic damping decrement of 
small oscillations in a plane-parallel resonator 
and K is the factor by which the damping is in
creased by the bending of the caustic surface. 

The quantity w0 in (23) is determined from 
(13). The latter can be solved in explicit form in 
the limiting cases of large or small relative ex
cess over the threshold !; • We ultimately get the 
following asymptotic formulas for the coefficient 
K: 

K = j_ f 1 + 1 I 1 + ( np )zl 
np L V ~ _ for ~~ 1, (24) 

K = c + p2 ) arc~tg p for ~ ~ 1. (25) 

A plot of (24) and (25) is shown in Fig. 2, which 
shows that the damping increases monotonically 
with decreasing p. When p- 0 the coefficient K 
increases in accord with the hyperbolic laws 3>: 

K= S/np 
J( = Jt/6p 

for ~~1, p~~/n; 

for ~~ 1, p~ 1. 

(26) 

(27) 

Let us examine the physical meaning of the re
sult. We recall first that the parameter p charac
terizes the form of the caustic surface shown in 
Fig. 1: the smaller p, the narrower the neck of 
this surface (when p = 0 the caustic surface de
generates into the surface of a circular cone). 

o 0.2 0.4 o.s 0,8 p. p/l. 

FIG. 2. K vs. p for small and large ~: 1-K = f(p/ !;), 
~ << 1; 2-K = f(p), ~ » 1. Dashed-asymptotic behavior as 
p _.. "", corresponding to the transition to the limit of a 
plane-parallel resonator (K _.. 1). 

Let us examine the process of formation of the 
intensity peak. With increasing light intensity, the 
inverted population in the resonator becomes de
pleted and the gain decreases accordingly. The 
intensity reaches a maximum at the instant when 
the gain is comparable with the loss of light per 
unit length, after which it begins to decrease. 
During the intensity growth, the inverted popula
tion becomes depleted first in the region of the 
neck of the caustic surface, where the density of 
the light energy is highest. But the region of the 
neck makes a noticeable contribution to the aver
age gain (proportional not to the volume but to the 
length of this region). Therefore the average gain 

3 )Whenp _.. 0 the damping remains finite, since the region 
of applicability of formulas (24)- (27) is bounded by the in
equality (21). When p = 0 the decrement is of the order of 
(r/T)'4. 
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decreases to the value of the loss before the in
verted population is depleted in the greater part 
of the volume, which is far from the neck. Conse
quently, the intensity reaches a maximum before 
the main reserve of the excited luminescence 
center becomes exhausted; this decreases the in
tensity peak compared with the case of a plane
parallel resonator. The unutilized reserve of in
verted population is further de-excited during the 
time that the intensity decreases, smoothing out 
this decrease and bringing the generation mode 
closer to stationary. 

The greater the amplitude of the intensity os
cillations, the greater the difference between the 
inverted population in the neck region and that in 
the more .remote region, and the more pronounced 
the described effect and the associated damping 
should be. Therefore in real cases, when the in
tensity oscillation amplitude is large, the coeffi
cient K, which charact@rizes the damping, should 
be in any case larger than in the case of small 
oscillations considered above. 

The foregoing analysis pertains to a four-level 
system, but the results can be generalized directly 
to the case of a three-level laser by substituting 
for !; the quantity !; q, where !; is the relative 
excess above the pumping threshold power and q 
is the ratio of the loss of light in the unexcited 
resonator to that part of the loss which is not 
connected with the absorption of light by the active 
medium. 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

We did not compare quantitatively the foregoing 
theory with the experimental data because of the 
difficulty of satisfying in real experiments the 
conditions used in the calculation. The calculation 
is based on the assumption that the resonator is 
spatially homogeneous; this homogeneity is vio
lated in the case of external reflectors, which are 
usually employed in experiments involving changes 
in the geometric parameters of the resonator. The 
calculation was carried out for small oscillations 
and not for the large-amplitude oscillations ob
served in customary experiments. 

However, these circumstances do not prevent 
us from comparing the qualitative deductions of 
the theory with the experimental results, all the 
more because (as noted at the end of Sec. 3) the 
investigated effect is more pronounced in the case 
of strong oscillations than in the case of low in
tensity oscillations. 

The experiments on the generation kinetics 
were made with a ruby laser (length of ruby rod 

l = 120 mm, diameter d = 12 mm). As in our 
earlier investigation [5], the resonator consisted 
of two plane-parallel mirrors and two short
focus positive lenses ( F = 18.5 em) placed near 
the reflector coaxially with the active rod and 
symmetrically with respect to the latter. The 
emission was recorded with a photocell (F -5) 
whose signal was fed to the input of an oscillo
scope (OK-17M). 

The spectral composition was investigated 
simultaneously with the generation kinetics, using 
a Fabry-Perot interferometer (IT-28-30) with 
different intermediate rings. 

We investigated the dependence of the genera
tion kinetics on the distance between the foci of 
the lenses; this distance characterizes the bending 
of the caustic surface5). At the minimum distance 
between the lenses, the distance between their foci 
was about 20 em, corresponding to a slight bending 
of the caustic surface ( p > 1). At this lens posi
tion we observed the usual picture of regular 
slowly damped oscillations (Fig. 3a). We see from 
this figure that no steady-state manages to set in 
during the course of generation. If the distance 
between lenses is increased (leaving them sym
metrical relative to the rod), then the foci come 
closer together and the curvature of the surface 
increases (the parameter p decreases); this in
creases the damping. Figure 3b shows an oscillo
gram of the oscillations observed at a distance of 
5 em between the lens foci ( p < 1). We see that 
at this lens position the damping increases so 
much that a practically steady state is obtained 
during the greater part of the generation. The 
experiment thus confirms fully the deductions of 
the theory. 

Bringing the foci closer together should lead 
to an even greater damping. We were unable, how
ever, to perform the corresponding experiment, 
since the oscillations become random when the 
distance between the foci is too small (Fig. 3c). 

The irregularity of the oscillations is usually 
attributed to independent generation of several " 
modes. In a spherical resonator (or in an equiva
lent resonator with lenses) the spectrum of the 

4 )A lens of focal length F placed inside the resonator 
ahead of the end mirror is practically equivalent to a 
spherical mirror with curvature radius F (the light passes 
through the lens twice in one reflection). 

5 )In the cited papers [9- 11 ] the shape of the caustic sur
face did not change during the course of the experiment 
(in [ 8] the surface of the active rod has the same shape as 
the caustic surface, so that the latter was fixed). 
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FIG. 3. Oscil!ograms of the output emission: a) p > 1, 
b) p < 1, c) p -> 0. 

natural oscillations is given by the well known 
Va1nshte1n formula [i 2l 

w = c l :n:m11 + 2m.l. arcsin V l l , (28) 
ll 2R_ 

where m 11 and m 1 are the integer indices of the 
longitudinal and transverse modes. The regularity 
of the oscillations observed when l ~ R is ap
parently due to the fact that the interval between 
the longitudinal modes is comparable with the in
terval between the transverse modes. This causes 
interaction between the systems of the longitudinal 
and transverse modes, causing the modes to lose 
their individuality and the radiation to be emitted 
as one entity6>. 

The regularity of the oscillations becomes dis
turbed in the case of concentric mirrors or 
confocal lenses n, when l = R, and formula (28) 

6 )The theory of this question is developed in [5]. 

7 )The position of the foci in a resonator with external 
mirrors must be determined with allowance for the active 
medium. 

FIG. 4. Fabry-Perot interference pattern: a) p > 1, b) p < 1, 
c) p -. 0. Thickness of intermediate ring 4 mm, focal distance 
of lens 800 mm. 

takes the form w = c1r ( m 11 + m 1)/l. We see there
fore that the transverse modes produce no changes 
in the spectrum, and consequently cannot interact 
with the longitudinal modes. Naturally, the regu
larity of the oscillation is disturbed also when the 
lens arrangement is nearly confocal. 

The regularity of the oscillations should be 
disturbed also in the case of long-focus lenses, 
when the interaction between the longitudinal and 
transverse modes is weakened by the smallness 
of the spectral interval between the transverse 
modes, compared with the spacing of the longitud
inal modes. Experiment confirms this conclusion. 

The interaction between the transverse and 
longitudinal modes affects also the spectral com
position of the radiation. In the case of a confocal 
(or near-confocal) arrangement of the lenses, the 
weakness of this interaction allows the longitudinal 
modes to retain their individuality; the emission 
spectrum consists accordingly of several lines with 
a total width of about 0.5 A (Fig. 4c). When the 
lenses are brought together (i.e., the distance be
tween their foci is increased), the longitudinal 
modes lose their individually; the multiple lines 
of the spectrum disappear gradually and the spec
tral emission width decreases (Figs. 4b and 4a). 
We note that in case of Fig. 4b a second weak line 
sometimes appears in the spectrum. 

At the optimal lens position it is possible to 
observe simultaneously stationary generation and 
a narrow line approximately 0.01 A wide. 
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