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The mechanism, connected with the shape of the caustic surface, of the damping of relaxation
oscillations in a spherical resonator is investigated. It is shown that under certain conditions
the damping can be quite strong and can lead to stationary generation. The conclusions of the
theory are confirmed by results of experimental investigations conducted with a laser having
a ruby rod and lenses (similar to a spherical resonator).

1. INTRODUCTION

REGULAR relaxation oscillations of radiation
generated in a spherical resonator were obtained
and investigated by many authors,!174] Regular
damped oscillations were investigated (5] jn a
plane-parallel resonator equipped with lenses and
similar to a spherical resonator. The oscillation
damping observed in the cited papers was so weak
that no stationary state could set in during the
time of the pump pulse, This experimental fact is
in good agreement with the results of the
theory (6,7,

It is shown in a number of papers, however,
that in some cases the radiation oscillations in a
spherical resonator experience a strong damping
which leads to establishment of a steady state
during the greater part of the generation time,
The mechanism of this damping has not been
satisfactorily explained in any of the foregoing
papers.

The present paper is devoted to an investiga-
tion of a new mechanism of relaxation-oscillation
damping, which is much more effective under cer-
tain conditions then the presently known damping
mechanism and makes it possible to observe sta-
tionary generation even in the case of pulsed
pumping. This damping mechanism is connected
with the singularities of the shape of the caustic
surface within which the electromagnetic field is
localized in a spherical resonator. The theory of
this process is presented as applied to a spherical
resonator, and the experiments were carried out
on a resonator with lenses, which is similar to a
spherical resonator but is much more convenient
from the point of view of the experimental tech-
nique.

[8-11]

As shown by Vainshtein “2], the electromagnetic
field in a spherical resonator is concentrated in-
side a caustic surface whose equation, in cylindri-
cal coordinates, is

r? 222 l

a? IR~ = R’ (1)
Here R is the radius of curvature of the reflec-
tors, and a and I are the radius of the reflectors’
and the distances between them. The position of
the axes r and z is shown in Fig. 1.

We shall assume for simplicity that the inten-
sity of the generated light is uniformly distributed
over the cross section inside the caustic surface
and is equal to zero outside this surface. (The
question of the validity of this assumption will be
discussed in Sec. 4.) Then the intensity of the
light I(z, t) is inversely proportional to the cross
section S(z) and can be represented in the form
S(0) _ P21 (0, 1), 2)
S(z) e 422/

)

I(z,t)=1(0, )
where
p?= 2R/l —1. (3)

Formula (2) can be extended to include the entire

r

[
——

FIG. 1

DIn the case of a resonator with external mirrors, a must
be taken to be the radius of the region with negative absorp-
tion coefficient.
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interval —1/2 < z <1/2, if we neglect the sag of
the reflectors compared with 7.

In calculating the generation kinetics it is
usually assumed that the intensity I depends only
on the time t. In our case I depends not only on
t but also on z. If p 2 1, then allowance for the
latter dependence does not lead to essentially new
results; but if p < 1, then a sharp dependence of
I on z leads to a strong damping of the intensity
oscillations,

2. KINETIC EQUATIONS

We denote by 7 the lifetime of the photon in the
unexcited resonator, and write for the gain, when
the light is amplified by an excited active medium,

n/n*tw, (4)

where n is the number of excited luminescence
centers per unit volume?®, n* the threshold value
of n, and v the speed of light in the medium. The
proportionality coefficient for n in (4) is chosen
such that when the generation threshold is reached
(n =n*) the gain compensates for the light loss,
the magnitude of which per unit length is 1/7v.
Taking (2) and (4) into account, we write the
balance equation for the number of excited atoms:

on(z,t) N— _n 0% (0, t) (5)

Ao = .
Y T n't p?+ 422/

Here w, is the laser operating frequency, N the
pump power absorbed per unit volume, and T the
time of spontaneous de-excitation, The first term
in the right side describes the excitation of the
atoms by the pump, the second the spontaneous
de-excitation, and the third the induced de-excita-
tion of the excited atoms (the last term is the
power drawn by the light from the excited active
medium).

We also write the equation for the light in-
tensity:

1(0,1). 0
—ao—ten[-<+T2] o
_ - dz
n(t)= S n(zt)—. (7

=12 !
Equation (6) has been written out for I(0, t) ac-
curate to within a constant factor equal to the total

2)We consider for concreteness a four-level system. In the
case of a three-level system, n must be taken to mean
n - n,/2, where n, is the total volume density of the active
centers (excited and unexcited).
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optical energy in the resonator. This equation
contains the gain averaged over the resonator
length, since light propagating at small angles to
the optical axis traverses equal intervals of z in
equal time intervals.

Changing over in the kinetic equations (5) and
(6) to more convenient dimensionless variables

v(z,t)=[n(z,t)—n'l/n*, w(t)=p(0,t)T/thoon®,
(8)

we rewrite these equations in the form

ov w w
e ’;—'p2+4z2/zz_v(1 + pZ+4z2/12)’ 9
dw/dt = wv(t). (10)
Here
/2 dz
vit)= { v, H (11)

—l/2
¢ is the relative excess pump power above
threshold.

We consider first a stationary mode, in which
the left sides of (9) and (10) vanish. We denote by
wo and vy(z) the stationary values of w and v.
From (9) we have

_ S(p*+42%/1) — wo

W= 2

Recognizing that vy = 0, we get for the constant
w, the equation

/2
§ i) Fmp— D eV Fwo=0. (13)

e Vp? + wo
We now consider small oscillations of the in-
tensity. We put

v (2, 1) = vo(2) + vi(z) €'%,
where vy and w; are small oscillation amplitudes.
Substituting this in Egs. (9) and (10) and linearizing

the latter with respect to v; and wy, we obtain
equations that are homogeneous in vy and wy:

w(t) = wo + wiei®, (14)

. _ vo(2)+1 wy
iQTv = m/_ZZW1 +[ 1+ m—/lzi\ Vi, (15)
2
iQTUJi = Wy ‘S Vi(Z)il%. (16)
—i2

To find the oscillation frequency, we solve the
first of these equations with respect to vy and
substitute in the second. We get

(7

— QT = wy ‘

K3 vo(z)+ 1 s
0, W0+ QT + 1) (o7 + 45°/) 1
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Combining (17) and (13), we simplify the integrand
of (17), after which the integral can be readily ob-
tained. We transform (17) finally into

(1+8)wo
TQ2=7(¢—
=T AR @r) (L 0T + w1
1+iQT fe
Xarctg[ (1+iQT)p2+wo] . (18)

Equation (18) must be solved simultaneously
with Eq. (13) for w,.

3. DAMPING OF OSCILLATIONS

Usually the time of spontaneous de-excitation
T is much longer than the period of the intensity
oscillation, so that

QT >1 (19)

(for a ruby or neodymium laser QT ~ 100).

We shall take 1/QT to be the small parameter
of the theory. In the zeroth approximation with
respect to this parameter we have from (18)

Q = y¢/=T. (20)

In the zeroth approximation the frequency is real,
i.e., there is no damping. The imaginary part of
the frequency, which determines the attenuation,
can be calculated in the first approximation, by
substituting (20) in the right side of (18). To sim-
plify the result, we shall assume that p is not too
small:

o> 1/YQT.

As will be shown later, this region of p is of
greatest practical interest. Usually wy~ 1, so
that the conditions (10) and (21) allow us to neglect
the quantities 1 and Wo/p2 in (18) compared with
i2T. Thus we get for the logarithmic damping
decrement of the oscillations

ImQ T
— (P A P = § K (22)
e a(gh+¢ )VTK e

(21)

6 =2n
where

K = (wo/Tp) arcctg p. (23)

Here 6 is the logarithmic damping decrement of
small oscillations in a plane-parallel resonator
and K is the factor by which the damping is in-
creased by the bending of the caustic surface.

The quantity w; in (23) is determined from
(13). The latter can be solved in explicit form in
the limiting cases of large or small relative ex-
cess over the threshold ¢{. We ultimately get the
following asymptotic formulas for the coefficient
K:
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k=2l Vi ()] tor t=t 2w
K:<,;+92)5r_cg§£ for z>1. (25)

A plot of (24) and (25) is shown in Fig. 2, which
shows that the damping increases monotonically
with decreasing p. When p — 0 the coefficient K

increases in accord with the hyperbolic laws®:

oL /m;
<1

Let us examine the physical meaning of the re-
sult. We recall first that the parameter p charac-
terizes the form of the caustic surface shown in
Fig. 1: the smaller p, the narrower the neck of
this surface (when p = 0 the caustic surface de-
generates into the surface of a circular cone).

K=1¢/mp
K = n/6p

(26)
(27)

for <1,
for £>1,

0 047 0% 06 08 p.plk

FIG. 2. K vs. p for small and large & 1-K = f(p/),
£ << 1; 2—K = {(p), £ >> 1. Dashed—asymptotic behavior as
p - %, corresponding to the transition to the limit of a
plane-patallel resonator (K - 1).

Let us examine the process of formation of the
intensity peak., With increasing light intensity, the
inverted population in the resonator becomes de-
pleted and the gain decreases accordingly. The
intensity reaches a maximum at the instant when
the gain is comparable with the loss of light per
unit length, after which it begins to decrease.
During the intensity growth, the inverted popula-
tion becomes depleted first in the region of the
neck of the caustic surface, where the density of
the light energy is highest. But the region of the
neck makes a noticeable contribution to the aver-
age gain (proportional not to the volume but to the
length of this region). Therefore the average gain

_?)Whenp » 0 the damping remains finite, since the region
of applicability of formulas (24) — (27) is bounded by the in-
equality (21). When p = 0 the decrement is of the order of
(/T
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decreases to the value of the loss before the in-
verted population is depleted in the greater part
of the volume, which is far from the neck. Conse-
quently, the intensity reaches a maximum before
the main reserve of the excited luminescence
center becomes exhausted; this decreases the in-
tensity peak compared with the case of a plane-
parallel resonator. The unutilized reserve of in-
verted population is further de-excited during the
time that the intensity decreases, smoothing out
this decrease and bringing the generation mode
closer to stationary.

The greater the amplitude of the intensity os-
cillations, the greater the difference between the
inverted population in the neck region and that in
the more .remote region, and the more pronounced
the described effect and the associated damping
should be. Therefore in real cases, when the in-
tensity oscillation amplitude is large, the coeffi-
cient K, which characterizes the damping, should
be in any case larger than in the case of small
oscillations considered above.

The foregoing analysis pertains to a four-level
system, but the results can be generalized directly
to the case of a three-level laser by substituting
for ¢ the quantity {q, where ¢ is the relative
excess above the pumping threshold power and q
is the ratio of the loss of light in the unexcited
resonator to that part of the loss which is not
connected with the absorption of light by the active
medium,

4, EXPERIMENTAL RESULTS AND DISCUSSION

We did not compare quantitatively the foregoing
theory with the experimental data because of the
difficulty of satisfying in real experiments the
conditions used in the calculation. The calculation
is based on the assumption that the resonator is
spatially homogeneous; this homogeneity is vio-
lated in the case of external reflectors, which are
usually employed in experiments involving changes
in the geometric parameters of the resonator. The
calculation was carried out for small oscillations
and not for the large-amplitude oscillations ob-
served in customary experiments.

However, these circumstances do not prevent
us from comparing the qualitative deductions of
the theory with the experimental results, all the
more because (as noted at the end of Sec. 3) the
investigated effect is more pronounced in the case
of strong oscillations than in the case of low in-
tensity oscillations.

The experiments on the generation kinetics
were made with a ruby laser (length of ruby rod

! =120 mm, diameter d =12 mm). As in our
earlier investigationm, the resonator consisted
of two plane-parallel mirrors and two short-
focus positive lenses (F =18.5 cm) placed near
the reflector coaxially with the active rod and
symmetrically with respect to the latter. The
emission was recorded with a photocell (F-5)
whose signal was fed to the input of an oscillo-
scope (OK-17M).

The spectral composition was investigated
simultaneously with the generation kinetics, using
a Fabry-Perot interferometer (IT-28-30) with
different intermediate rings.

We investigated the dependence of the genera-
tion kinetics on the distance between the foci of
the lenses; this distance characterizes the bending
of the caustic surface”. At the minimum distance
between the lenses, the distance between their foci
was about 20 ¢cm, corresponding to a slight bending
of the caustic surface (p > 1). At this lens posi-
tion we observed the usual picture of regular
slowly damped oscillations (Fig. 3a). We see from
this figure that no steady-state manages to set in
during the course of generation. If the distance
between lenses is increased (leaving them sym-
metrical relative to the rod), then the foci come
closer together and the curvature of the surface
increases (the parameter p decreases); this in-
creases the damping. Figure 3b shows an oscillo-
gram of the oscillations observed at a distance of
5 cm between the lens foci (p <1). We see that
at this lens position the damping increases so
much that a practically steady state is obtained
during the greater part of the generation. The
experiment thus confirms fully the deductions of
the theory.

Bringing the foci closer together should lead
to an even greater damping. We were unable, how-
ever, to perform the corresponding experiment,
since the oscillations become random when the
distance between the foci is too small (Fig. 3c).

The irregularity of the oscillations is usually
attributed to independent generation of several
modes. In a spherical resonator (or in an equiva-
lent resonator with lenses) the spectrum of the

4)A lens of focal length F placed inside the resonator
ahead of the end mirror is practically equivalent to a
spherical mirror with curvature radius F (the light passes
through the lens twice in one reflection).

5)In the cited papers [*'!] the shape of the caustic sur-
face did not change during the course of the experiment
(in [®] the surface of the active rod has the same shape as
the caustic surface, so that the latter was fixed).
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FIG. 3. Oscillograms of the output emission: a) p > 1,
b)p<1,c)p-0.

natural oscillations is given by the well known
Vainshtein formula 2

c A
0= [ wumy + 2m arcsinl/ﬁ] , (28)

where m| and m, are the integer indices of the
longitudinal and transverse modes. The regularity
of the oscillations observed when I ~ R is ap-
parently due to the fact that the interval between
the longitudinal modes is comparable with the in-
terval between the transverse modes. This causes
interaction between the systems of the longitudinal
and transverse modes, causing the modes to lose
their individuality and the radiation to be emitted
as one entitye)

The regularity of the oscillations becomes dis-
turbed in the case of concentric mirrors or
confocal lenses”, when I = R, and formula (28)

6)The theory of this question is developed in [°].

7)The position of the foci in a resonator with external
mirrors must be determined with allowance for the active
medium.

et al.

FIG. 4. Fabry-Perot interference pattern: a)p > 1, b) p < 1,
c) p ~» 0. Thickness of intermediate ring 4 mm, focal distance
of lens 800 mm.

takes the form w =cr(m; +m,)/I. We see there-
fore that the transverse modes produce no changes
in the spectrum, and consequently cannot interact
with the longitudinal modes. Naturally, the regu-
larity of the oscillation is disturbed also when the
lens arrangement is nearly confocal.

The regularity of the oscillations should be
disturbed also in the case of long-focus lenses,
when the interaction between the longitudinal and
transverse modes is weakened by the smallness
of the spectral interval between the transverse
modes, compared with the spacing of the longitud-
inal modes. Experiment confirms this conclusion.

The interaction between the transverse and
longitudinal modes affects also the spectral com-
position of the radiation. In the case of a confocal
(or near-confocal) arrangement of the lenses, the
weakness of this interaction allows the longitudinal
modes to retain their individuality; the emission
spectrum consists accordingly of several lines with
a total width of about 0.5 A (Fig. 4c). When the
lenses are brought together (i.e., the distance be-
tween their foci is increased), the longitudinal
modes lose their individually; the multiple lines
of the spectrum disappear gradually and the spec-
tral emission width decreases (Figs. 4b and 4a).
We note that in case of Fig. 4b a second weak line
sometimes appears in the spectrum.

At the optimal lens position it is possible to
observe simultaneously stationary generation and
a narrow line approximately 0.01 A wide.
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