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The problem of the validity of the adiabatic approximation for the analysis of oscillations of 
the electron-ion system in metals is considered. Determination of the phonon spectrum re­
duces to solution of an equation of the Born-Karman type; the part of the dynamic matrix 
related to the electrons and responsible for long-range interaction is found explicitly. Two 
particle and many-particle interionic interactions are analyzed. The method developed by 
the authors for separating long-range and short-range forces between ions is employed for 
calculating the phonon spectrum of tin. The five required parameters can be found in terms 
of the three elastic moduli and two characteristic spectrum frequencies. The spectrum of 
the purely ionic tin lattice is calculated. The contribution of the covalent part of the inter­
action is analyzed. The role of electrons in determining the shape of the tin spectrum is 
discussed. The results are compared with those of the experiments. 

1. INTRODUCTION 

UP to recent times, information relative to the 
spectrum of oscillations of crystalline lattices can 
be found only from quantities that are integrated 
over the spectrum, such as specific heat; these 
allow one to determine only certain averaged pho­
non characteristics. However, a method which has 
been intensively developed in recent years, based 
on the scattering of cold neutrons, allowed one to 
obtain the differential characteristics such as 
dispersion curves for definite directions in the 
crystal. 

For the theoretical analysis of the results and 
the construction of the phonon spectrum in all 
phase space, it is customary to use the model of 
lattice vibrations of the Born-Karman type. Here 
an assumption is made that the strong interactions 
between the atoms are quickly damped with dis­
tance, and the small number of independent con­
stants entering into the equation is determined by 
experiment. Such an approach, which is valid for 
dielectrics, is shown to be actually of little use 
for metals. This was recently shown especially 
clearly in the study of comparatively complicated 
lattices with two atoms per unit cell ( Zn [t] and 
Sn [2]). The analysis made by the authors [a] shows 
that for a reasonable description of the spectrum 
of the phonons in the tin lattice, it is necessary to 
take the interaction into account with at least six 
coordination spheres. 

Such a long-range interaction actually appears 
as a reflection of the important role of electrons 
in the formation of the phonon spectrum of metals. 

In the framework of the Born-Karman theory [41, 
it leads to correlation between the force constants 
which correspond to different coordination spheres, 
and they cease to be independent. Therefore, the 
natural idea arises of isolating of this long-range 
interaction in explicit form. Then the only force 
constants which correspond to the nearest neigh­
bors will be independent force constants that are 
subject to determination by experiment. 

The accomplishment of such a program is to a 
great extent connected with the possibility of re­
ducing the interaction in the electron-ion system 
to an effective interaction between the separate 
atoms, in essence, this is equivalent to the use of 
the adiabatic approximation. Although adiabaticity 
in the trivial sense does not hold for electrons in 
a metal, nevertheless, as will be shown below, the 
presence of the small parameter w/EF together 
with the Pauli principle leads to the result that 
the adiabatic approximation is realized with great 
accuracy. Furthermore, it is shown to be possible 
to separate systematically the "adiabatic" pho­
nons, the renormalization of which (due to the 
electron phonon interaction) is negligibly small, 
and also the form of the matrix element for this 
interaction. This is the more important since, in 
the use of a Hamiltonian of the Frohlich type, in 
which there is no possibility of giving the "bare" 
frequency of the phonon or the constant of elec­
tron-phonon interaction, an illusion arises about 
the strong renormalization of the phonons [5) (see 
also [SJ), which also leads to instability of the 
lattice in some cases. 

As a result, we obtain a systematic method of 
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analysis of the phonon spectrum in metals, using 
a very limited number of parameters. The effec­
tiveness of this method is demonstrated in the 
last section of the work, where results are given 
of the calculation of the phonon spectrum of tin, 
the most complicated spectrum of the metals in­
vestigated to date. 

2. THE VALIDITY OF THE ADIABATIC APPROX­
IMATION IN METALS 

As the initial Hamiltonian of the many-particle 
problem, which describes the electron-ion system 
of the metal, we choose the following: 

P;2 1 1 Z2e2 1 
H= ~ 2M;+Z~j IR;-Rji+Z .. cp(Ri,Rj) 

I I IJ 

+ L; Pv2 +~ ~~ e2 + ~ V(rv-R;). (2.1) 
v 2m 2 vv' I fv - r.vll iv 

Here standard notation is used for the coordinates 
and momenta of the ions and the conduction elec­
trons. 

In the expression for the Hamiltonian in Eq. 
(21), we assume that the internal electrons are 
localized close to the nucleus, forming an ion 
"core" rigidly connected to them. These elec­
trons, together with the nuclei, create an effective 
potential for the conduction electrons (the last 
term in ( 2 .1)). The direct Coulomb interaction 
between the ions (second term) is separated in 
explicit form and the interaction between them is 
of a different nature (third term). 

Furthermore, carrying out the usual procedure 
for the adiabatic Born-Oppenheimer approxima­
tion (see, for example, [4] ), we first separate the 
problem for electrons in the fixed potentials of 
the ions: 

[He(r)+He;(r, R)]'P'm(r, R) = Em(R)'P'm(r, R). (2.2) 

(Here symbolic notation is used for the different 
terms of the Hamiltonian (2.1) .) Then the oscilla­
tions of the nuclei will be described by the set of 
equations 

[H;(R) + En(R)] <Dn(R) + ~ Cnm<Dm(R) = E<Dn(R),(2.3) 
m 

where 

Cnm = Anm + Bnm, 

Anm=- it ~ dr '¥ n * (r, R) Va'Y m (r, R) Va, 

Bnm =- 2~ ~ dr 'Yn * (r, R) Va2 ¥ m (1.7, R). (2 .4) 

If we neglect the diagonal terms Cnm• then we 
get an "adiabatic" equation for the determination 
of the energy levels a of the vibrational problem 

for fixed values of n ( Ena0 ) • For the clarification 
of the role of correction terms in (2.3), it is 
customary to make a rough estimate of their con­
tribution to the total energy of the electron-ion 
system. However, we shall be interested in the 
explicit form of the renormalization of the fre­
quencies of the "adiabatic" phonon spectrum (for 
arbitrary value of the wave vectors). Simultane­
ously, the renormalization of the electron spec­
trum will be found in explicit form. 

For this purpose, it is necessary to calculate 
the matrix elements Anv; m{3 and Bnv; m{3 of the 
adiabatic equation ((2.3) with Cnm = 0). The inte­
grals in Eqs. (2.4) are not difficult to transform. 
We let the operator Y'R act on the left and right 
sides of Eq. ( 22) and, multiplying by >~tri_ ( r, R), 
we integrate over the coordinates of all the elec­
trons. Then we get for m ~ n, 

[V I = _ [VaHei (r, R)lnm (2 .5) 
R nm En(R)- Em(R) • 

For the calculation of the energy correction, it is 
sufficient to limit ourselves to the first term of 
the expansion of this matrix element in R - Ro, 
setting R = Ro in it. Then we can construct the 
many-particle wave function of the electrons from 
ordinary single-particle Bloch functions, which we 
shall characterize by the wave vector k. Using 
the explicit form for the operator Hei ( r, R), it 
is easy to see that the only matrix elements in 
(2.5) that differ from zero correspond to one­
electron transitions. Departing further from the 
symbolic notation, we make the substitution 

and get 

VR ~ 2] VRj 
; 

1 [Va.V (r, R;)]kk' ~· 
Akv; k'P = M ~ 1Ek _ Ek' J <D.0* (R) V'a1<D,g0 (R)dR. 

J 1(2.6) 

In writing down this expression, we have neglected 
the change in the vibrational spectrum, which 
arises upon excitation of the individual electron. 

For calculation of the remaining matrix ele­
ment in (2.6), it is convenient to transform to the 
representation of second quantization for phonons. 
Writing down the momentum operator of the ion 
Y'Rj in this representation, we find directly 

it ~ <D.o* (R) Va;<DB0 (R) dR 

-+ ± roql. (2Mwq~.N(1'eq~. (Nql. + 1/ 2 =F 1 / 2)'1• exp {± iqRJ0}. 

(2. 7) 

Here we use the usual notation of WqA.• eqA.• NqA. 
for frequency, polarization vector, and occupation 
number of phonons of momentum q and branch 



THE PHONON SPECTRUM OF METALS 367 

number A (for simplicity of writing, we consider 
the case of a single-atom lattice). As is seen 
from (2. 7), the matrix element corresponds to 
single-phonon transition; the upper sign corre­
sponds to absorption of a single phonon and the 
lower emission. 

As a result, carrying out summation over Rj, 
we can transform (2.6) to its final form: 

Wq1. 
AkNq).=!=l; k'Nq). = =F Ek- Ek' 

X Mkql. v Nq>.-t--}=t= ~ L1(k-k'=Fq). (2.8) 

Here the delta function describes the law of con­
servation of momentum with accuracy up to a 
vector of the reciprocal lattice, while MkqA 
represents the ordinary Bloch matrix element 

( N )''• I MkqA= -- J I!Jk*(r)[eqAVrV(r)]'IJ·I<'(r)dr. (2.9) 
2MwqA 

We now find the matrix element which corre­
sponds to the operator B. Making use of the com­
plete electron functions, and also Eq. (2.5), we 
transform the inner integral in (2.4) in the follow­
ing fashion: 

~ 'Pn* (r, R) VR2'1Jm (r, R) dr = [VR2 ]nm 

_ ~ [V'RHe;(r, R)]np [V'RHei (r, R,]pm 
- P [En (RJ- Ep (RJ] [Ep (RJ- Em (RJ] 

(2.10) 

Setting R = Ro as before, and carrying out inte­
gration over the ion coordinates, we obtain the 
result that the matrix element Bnv ; mf3 differs 
from zero only for diagonal transitions in the 
vibrational spectrum. So far as transitions in the 
electron spectrum are concerned, Bnv; m{3 differs 
from zero for n = m too. Therefore, the operator 
B give the energy corrections in the first order 
perturbation theory, whereas the operator A ob­
viously gives them only in the second. 

We calculate the diagonal matrix element of B, 
using both the single-electron representations 
above and also the identity 

~eqAaeqA~ = 6a~. 
A 

After simple transformations, we find 

BJ<.v; k" = :3wqAIMkQAI 2 (E~<.- E~<.+q)- 2 • (2.11) 

We now determine the energy correction of the 
adiabatic state connected with the operator A. 
Using second-order perturbation theory and the 
explicit form of Eq. (2.8), we get 

"' "" I I ( WqA )z{ N ql.. IJ.EA = LJ Li MJ<.ql.. 2 
\Ek- Ek+q Ek.- Ek+q + wq1.. ql.. k. 

Nql.. + 1 } + E E nk(1-nk+q). 
k.- k.+q- ())q).. 

This result can be directly transformed to the 
form 

IJ.EA = ~ (Nql.. + ~) ~ ( Wq~ )z 1Mkql..l2 
ql.. 2 k , Ek. - Ek.+q 

(2.12) 
WqAnk ( 1 - nk+q) 

(Ek- EkH)Z- ulq1..2 

We proceed to the calculation of the energy 
correction associated with the operator B. Taking 
it into account here that the operator B, as was 
shown, gives the energy shift even in first order 
perturbation theory, and using (2.11), we get 

IJ.EB = ~ ~ IMk.qAizwql..nk (1- nk.+q). (2.13) 
k q).. (Ek- EkH)Z 

Finally, for the energy correction of the adi­
abatic state, we get the following expression: 

L1E=L1EA-t-L1Es= ~ ( Nq1..-t-~) 
q).. 

X~ IMkQAI 2 (~~~Y 
k Ek- Ek.+q 1 

x2(Ek -Ek.H)nJ<(1----::- ai<H) 

(E~<- E~<HF- WqJ.2 

+ '5' ~ IMMJ.I 2Wqi.nk(1-ni<H) 
;;;:' k (Ek-EkH)2-,Wq1..2 . 

(2.14) 

Now, for the determination of the frequency 
shift of the phonon with wave vector q and branch 
number A, it is necessary to vary the occupation 
number of the phonons NqA· As a result, after 
simple transformations, we have 

(2.15) 

The meaning of the latter expression is not 
difficult to understand. The second term in it 
actually describes the adiabatic contribution of 
the electrons to the phonon frequency, i.e., the 
contribution associated with account of the elec­
tron energy En ( R) in the expression. However, 
the nonadiabatic renormalization proper is al-
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ready very weak. Actually, computing the inte­
grals in (2.15), we obtain, in the principal region 
of phase space 1 > 

(2 .16) 

For this reason, in particular, it is necessary 
to use the so-called Frohlich Hamiltonian with 
care if we are dealing with analysis of the phonon 
spectrum. Actually, introducing the bare phonons, 
as is usually done l51, (see also [S, 7] ), and then re­
normalizing them from the electron-phonon inter­
action with the matrix element Mkq A.• we actually 
take the contribution [which is equivalent to the 
second terms in (2.15)] into account twice in the 
renormalization of the frequency. Just this cir­
cumstance creates a representation of the strong 
renormalization of the phonon spectrum ( ~w) at 
the expense of the electron-phonon interaction and 
leads, in particular, to conclusions on the possible 
instability of the lattice [7, R]. 

Returning to the renormalization of the electron 
system, we vary the expression (2.14) with re­
spect to the occupation numbers of the electrons. 
As a result, we get 

Computing Eq. (2.17) for the shift in the chemi­
cal potential, we get 

(2.18) 

Thus, the renormalization of the chemical po­
tential as a result of electron-phonon interaction 
is a small quantity in comparison with w. At the 
same time, it follows from (2.17) that the re­
normalization of the velocity of the electrons close 
to the Fermi surface is appreciable, in agreement 
with the result obtained by Migdal [5]. 

We note that (2.16) and (2.18) are direct evidence 
that the usual vertex of the electron-phonon inter­
action is determined not by the matrix element 
Mkq A_, but by the quantity Mkq A. Wq A./ ( Ek - Ek+ q), 
which is important for virtual processes. For 
real processes, when Ek- Ek+ q = ± wqA.• all the 
results (damping, electron-phonon scattering 
cross section in the kinetic coefficients, and so 
forth) are the same as in the use of the Frohlich 
Hamiltonian. 

1)In a very narrow range of momenta, where [q- 2kF[ /kF­
w/EF, the smallness of the renormalization is shown to be 
weaker: Awp,\ ~ wp,\(w.,/ E F). 

Inasmuch as electrons with Ek - Ek+q :S WqA. 
take part in the pairing which takes place as the 
result of the virtual exchange of phonons and which 
leads to superconductivity, the effective electron­
electron interaction is also unchanged in compari­
son with the ordinary one. 

3. DETERMINATION OF THE ELECTRON 
ENERGY 

As follows from the previous section, for the 
determination of the phonon frequencies it is 
necessary to compute the energy levels of the 
electron system in the field of the fixed ions, i.e., 
En ( R1, •.. , Rn) in Eq. (2.3). Here one must take 
into account the interaction of the conduction 
electrons with the ion cores, which by itself is 
not weak. However, if the method of pseudopoten­
tial is used, which is actually the basis of the 
model of almost free electrons, then in place of 
the real interaction with the ion there appears a 
certain effective interaction, for which one can 
develop a perturbation theory. [9- 11 1 

In this method, the wave function of the conduc­
tion electron is represented in the form of a 
smooth function and a function which oscillates 
rapidly inside the ion core. The elimination of the 
oscillating part leads to the appearance in the 
Schrodinger equation for the smooth function of 
an effective repulsive potential which acts in the 
region of the core and in significant measure 
compensates the initial attractive potential. The 
resulting potential V * ( r · r' ) (it can be replaced 
with great accuracy by the local potential 
V* ( r)[tO,it]) is shown to be so weak that it is a 
characteristic smallness parameter Vi/ EF ( V k 
is the Fourier component of the pseudopotential, 
and K is one of the vectors of the reciprocal 
lattice of the crystal). 

In a metal, where it is necessary to consider 
the electron-electron interaction, the principal 
contribution in the corresponding matrix elements 
is made only by the smooth parts of the wave 
functions. Moreover, even the single electron 
spectrum can be found from the equation which 
includes only smooth parts (with the replacement 
of the real potential by the pseudopotential). There­
fore, we get for the effective Hamiltonian in the 
representation of second quantization in plane 
waves (the total volume of the system is set equal 
to unity throughout): 

Here we introduce the notation 
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The coordinate Rz describes the elementary cell 
of the crystal, and Ps the basis vectors of the 
atom in the unit cell. We have limited ourselves 
to the case of one-component metals, and there­
fore V~ does not depend on s. Furthermore, if 
in the Hamiltonian (2.1) we transform to the 
Fourier representation, then the terms with q = 0 
in the potential energy are mutually canceled, 
which is a consequence of the electrical neutrality 
of the system. Keeping this in mind, we have 
omitted the corresponding terms in the Hamilton­
ian (3.1) (sums with the prime). 

We emphasize that the Hamiltonian (3.1) is 
equivalent to the initial one in finding the energy 
levels of the system, determining at the same 
time only the smooth part of the real wave func­
tions (as is the case also in the problem for the 
single ion [9)). 

We shall carry out the calculation of the energy 
of the fundamental state in the form of an expan­
sion in powers of the pseudopotential, taking into 
account an arbitrary power of the electron-elec­
tron interaction in each term of this expansion: 

E = E<Ol + E<tl + ... (3.3) 

If we carry out the usual analysis, using as the 
perturbation the last two terms in (3.1), then we 
can prove directly that the change of the energy of 
the system (relative to the energy of the free 
electron gas) is equal to the sum of the diagonal 
(in vacuum) elements of the S matrix 

"" 
S= Texp( -i ~H'(t')dt'), (3.4) 

-oo 

corresr,onding to bound diagrams (see, for exam­
ple, [ 12 ) • Here it is necessary formally to intro­
duce in the integrand of each term of the series 
the factor i 6 ( t') -the delta function of one of the 
time arguments. 

Using the diagram technique, one can find the 
expansion (3.3) in explicit form. The zeroth term 
of this series describes the energy of the inter­
acting electron gas and is of no further interest. 
The terms linear in the pseudopotential V vanish; 
this is connected with the electrical neutrality of 
the system. For terms quadratic in V, the cor­
rection to the energy can be represented graph­
ically as follows: 

Here the effect of the external field is represented 
by the cross together with the wavy line; the 
dashed lines represent interelectron interaction 
and the unresolved block along the line of this in­
teraction is denoted by 1r (the polarization opera­
tor). 

As a result of summation of the diagrams, we 
find 

q, 

4ne2 

e(qt)= 1+-2-V n(qt). 
q 0 

(3. 7) 

In similar fashion, one can write down the ex­
pression for an arbitrary n: 

{ 1, q = 0 
!1(q)= 0 =1=0' 

' q 

(3.8) 

(The law of momentum conservation in this ex­
pression appears as a consequence of the homo­
geneity of space.) Here the n-pole r<nl is deter­
mined by the set of all connected diagrams ob­
tained from the expansion (3.4) and having n 
"tails" of the external field. Although the expres­
sion for r<n> with n > 2 cannot be obtained in such 
a simple form as (3.7), one can carry out a partial 
summation, introducing the ''heavy'' vertex of the 
external field with the help of the following ex-
pression: 

+ ~ + • + ... I 

~ I 
I (3.9) 
I I 
I I • • 

Then r <nl can be represented in the form 

(3.10) 

Here A <n> is determined by the set of diagrams 
with n inputs which have no parts which could be 
reduced to one of the "heavy" vertices of the ex­
ternal field. The simplest diagram of such a form 
is the following (the continuous lines as usual de-



370 E. G. BROVMAN and Yu. KAGAN 

note the electron G0 functions (see, for exam­
ple,[6J): 

(3.11) 

Analytically, the equation corresponding to (3.1) 
is written in the form 

A<nl ( qi, • • •' qn) (3 12) 
r<nl(qt, ... ,qn)= ( ) ( ) ' n>2. . 

e q1 ... e qn 

We note that the case n = 2 (3. 7) is distinct, 
since only one of the two external lines can be 
"heavy." 

4. EFFECTIVE INTERACTION BETWEEN IONS 
IN THE METAL 

We write down the expression for an arbitrary 
term of the series (3.3), introducing the coordi­
nates of the ions in explicit form, in accord with 
(3.2): 

I 

E<n) = ~ ~ f(nl(qt,.,,, qn) Vq 1°, .. V n.• 

!, ... In q, ... qn 

(4.1) 

We are interested in the usual problem of small 
vibrations of the ions; therefore, representing the 
coordinate of the s-th atom in the unit cell in the 
form 

res = Rc0 + P• + llJs = rcs0 + U!s, 

We shall seek an expansion of the electron energy 
in powers of Uls· We begin with the zeroth term. 
In this case, summation over l in (4.1) can be 
carried out in explicit form, as a result of which 
we get 
E(n)_ 

0 -

(4.2) 

Here Ki are the vectors of the reciprocal lattice 
of the crystal (K = 211'b). The series (3.3) with 
terms computed from (4.2) gives the value of the 
energy of the electron system in the case of a 
rigid regular lattice. It is easy to see that ac­
count of the term with n = 2 ( E0 m = 0 ) already 
leads to a dependence of the electron energy on 
the structure of the crystalline lattice and hence 
to the appearance of anisotropy in the dispersion 
law of the renormalized electrons. 

Let us now consider the term that is linear in 
the displacements; 

E<n> · ~ ~ r<n> (K K ) • * V* 1 = ln LJ LJ 1, ... , n-1, q VK, · · · VKn_1 q 
Is K, ... Kn_1, q 

• 0 (4.3) 
X exp {zq (Rc + p.)} (uc.q) 1:!. (K1 + ... + Kn-1 + q). 

If we make use of the fact that V_ q * = V ~· and 
hence, v_q* = (v~>comp.conj.• and also the fact 
that r remains unchanged upon replacement of 
all Ki by -Ki, then Eq. (4.3) can be transformed 
to the following: 

E~nJ = - n ~ ~ (u18Kn) r<n> (K1, ... , Kn) 
K, ... Kn""o Is 

X Im (v~, ... v~ _1V~/Knps) 1:!. (K1 + ... + Kn)• (4.4) 
n 

Hence it follows immediately that in the case of a 
lattice with a single atom in the unit cell, E~ 

1 
vanishes identically. This is natural, because, the 
total force acting on an arbitrary ion in such a 
lattice due to the direct interionic interaction also 
vanishes identically. In the case of a complicated 
lattice, when there is more than a single atom 
per unit cell, the force acting on an arbitrary ion 
on the part of the electronic liquid ( - aE 1 /auz s) is 
generally different from zero. It must be compen­
sated by the total force acting on the given ion 
directly on the part of the other ions, which in this 

case is also different from zero. This also guar­
antees the equilibrium of the nonsymmetric con­
figuration of the atomic distribution in the unit 
cell. 

We now determine the fundamental quantity of 
the vibrational problem, E2. 

We find directly from Eq. (4.1) that 

E(n)-- nfn-1) ~ a B ~ ~ r<n) 
2 - 2 L.! ulsul's' L.! L.! 

ll' qq1 K, ... Kn-2 
ss' 

X [t- l'Jll'l'lss' ~ exp {iq (R1°- Rl"0)- iq1 (Ps- Pa")} 
l"s" 

XI:!. (K1 + ... + Kn-2 + q + qt)J =: ~ ~ ur.ur. •. Ar.~~';'~ .. 
ll' 
••• (4.5) 

In the derivation we used the obvious relation 
n-2 

q1~o = - ( q + ~ ~) R1o = -qR1o + 2:rtm. 
i=i 

We note that in the general expansion (3. 7), the 
term with E <n> practically corresponds to the 
contribution to the electron energy from the n­
fold scattering of electrons by the ions of the 
system. In the vibrational problem these terms 
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are responsible for the n-particle interaction be­
tween the ions. Here the expression with n = 2 
leads to effective pair interaction between the ions, 
since that with n > 2 corresponds to unpaired 
interaction. However, the contribution of any of 
these terms to the vibrational matrix Azs;l 1s 1, by 
virtue of the translational invariance, depends on 
the vector Rf - R£~, which is seen directly from 
Eq. (4.5). The effective pair interaction between 
the ions depends only on the modulus I r~ s 
- r£ 1 sl 1. Therefore, if we limit ourselves only to 
terms with n = 2, then only those terms an inter­
action that is central in character will figure in 
the total vibrational matrix [including the direct 
interaction between the ions from (2.1)]. The non­
central interaction arises at once in the account 
of the following terms with n = 2, while it is easy 
to see that the corresponding vibrational matrices 
already possess the symmetries of the crystal 
(for n = 2, the circumstance introduces summa­
tion over the sites of the reciprocal lattice). 

We write down the explicit expression of the 
vibrational matrix for n = 2: 

A~r,~> = - ~ exp {iq (rzs0- rz~s')} IV q *1 2 
q 

xq'"q~n(q) [t-c'lwc'lss'~ exp{iq(rz.0 -rz~'s")}]. (4.6) 
s(q) l"s" 

It is seen immediately from Eq. (4.5) that all sub­
sequent terms of the expansion of the matrix A 
will contain the extra factors V~/EF· If we com­
pare the behavior of A <n> and A <2> at large dis­
tances between the ions Rf - Rfl, then we easily 
get the result that 

A<nljA<2)"' (Vk /sF)n-!, n > 2. 

However, as we have noted above, the ratio 
V 1</ EF can be considered as a small parameter 
of the problem. Therefore, the long-range inter­
action between the ions is determined essentially 
by the matrix A <2>. So far as terms with n > 2 
are concerned, they are significant only in con­
sideration of the vibrational matrices for nearest 
neighbors. If we also take it into consideration 
that these terms are connected with the unpaired 
character of the interaction, it is natural that the 
account is equivalent to allowance for the coval­
ence of the interaction. 

As was pointed out in connection with the result 
(4.2), the systematic account of scattering of the 
electrons by the ions (and by the "other" elec­
trons) determines the appearance of the real dis­
persion law for electrons and the true form of the 

Fermi surface. By virtue of this fact, in the de­
termination of the vibrational matrices, particu­
larly in the computation of the polarization oper­
ator, it is reasonable to use the true dispersion 
law of the electrons. As a rule, this does not lead 
to a significant change in the electronic part of 
the vibrational matrix. However, there is one 
circumstance to which we should pay special at­
tention. 

As is known, the presence of a sharp boundary 
of the Fermi spectrum leads to the appearance of 
oscillating non-exponential terms in the asymp­
totic expression in terms of rfs- r1s1 in the 
effective interionic interaction (see, for exam­
ple, [1al). (We note that this result is directly con­
tained in (4.6) and appears as a result of the non­
analytic character of the polarization operator as 
a function of q.) In the case of a spherical Fermi 
surface, such a nonanalytic behavior arises for 
q = 2kF and 1r ( q) has a singularity of the form 
( q - 2kF) ln ( q - 2kF) [14 ]. Here the asymptotic 
behavior of A< 2> will be given by 

(4. 7) 

In the case of a nonspherical Fermi surface, the 
character of the singularity in the polarization 
operator can be greatly strengthened [1fi]. This in­
volves a much weaker asymptotic damping of the 
interionic interaction in definite directions in the 
crystal in comparison with ( 4. 8). 

5. DYNAMIC MATRIX OF OSCILLATIONS FOR 
PHONONS IN A METAL 

In the foregoing section, we obtained the elec­
tron part of the vibrational matrix (4.5). The total 
vibrational matrix will also contain two terms 
Bza.f. 1 ~ 1 and c,_a.f- 1 ~ s 1, connected with the expan­
simi of the direct interionic interaction in terms of 
small displacements, described by the second and 
third term, respectively, in the Hamiltonian (2.1). 
Here we have for the Coulomb interaction between 
ions, 

<:t~ "" I qa;qjl {. 0 } 
Bzs; l's' = 4ne2Z2 L..J ~ exp Lq (rzs0- rz's') 

q 

)( [ 1- c'lll' Bss' :3 exp {iq(rz8°- rz~'s")} J. 
l"s" 

(5.1) 

To find the phonon spectrum, it is necessary 
for us to diagonalize the dynamic matrix n~g, ( q ), 

which is defined by the usual relation (see, for 
example, [4 ]) 
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ap ap all all ( ) 
Dls; l's' =-= Als; l's' + Bls; l's' + Cls; l's'• 5 • 2 

We separate the effective pair interaction corre­
sponding to the term (4.6) in the matrix Ac:fst(q) 
and we join the part which corresponds to the un­
paired one (terms with n > 2) with the matrix 
C ~g, ( q ), which describes the direct interaction 
between the ion shells. As a result, 

aa all all 
Dss•'(q) =Dtss•(q)+D2ss•(q). (5.3) 

The dynamic matrix D~:s' ( q) corresponding to 
the pair interaction between the ions, with account 
of (4.6) and (5.1), can be written down in the form 
( V0 is the volume of the unit cell) 

D~.~- (q) = :v ~ (q + K)" (q + K)ll exp {iK (p.- p.·)} 
0 K 

x[ 4nZzez- IV;+Kiz nr +K)Vo] 
I q + K 12 ll (q + K) ,q 

- ~~ ~ ~ K"K~>exp{iK(p.- p.·)} 
0 s" K,=o 

[ 4nZ2e2 I VK*I2 ] X lKj2- 8 (K) n (K) V0 • (5.4) 

The matrix n~fs' ( q) corresponds to the vibra­
tional matrix describing the short-range interac­
tion. This makes it possible to construct it by the 
usual method for the Born-Karman scheme. To be 
precise, for the description of the coupling be­
tween atoms we introduce the nearest-neighbor 
force constants (which are uncorrelated with one 
another). These satisfy only the symmetry re­
quirements of the crystal. Knowing the pseudo­
potential V ~· we have the possibility of computing 
part of the dynamic matrix D1 directly. Then the 
inverse problem of establishing the phonon spec­
trum reduces to finding the force constants enter­
ing into the matrix D2• Here there is every reason 
for supposing that, inasmuch as the long-range 
part of the interaction is systematically taken into 
account in the matrix D1, it suffices for the ade­
quate description of the spectrum to take into ac­
count in D1 only the interaction with nearest 
neighbors. In many cases the corresponding force 
constants can be determined simply in terms of 
known elastic moduli. 

This scheme turns out to be extraordinarily 
effective even in the case of metals with a com­
plicated lattice, which can be observed clearly in 
the example of the analysis of the phonon spectrum 
of tin, which is given in the next section. 

To find the connection of the force constants 
with the elastic moduli, it is necessary to con­
sider the behavior of the dynamic matrix for small 
q. For the matrix D2 one can use the "method of 

long waves" directly [4 l. We obtain the limiting 
expression of the matrix D1 for small q in ex­
plicit form. By expanding the elements of the 
matrix (5.4), and keeping terms up to second 
order of smallness in q, we get 

- 6ss' ~exp {iK(Ps- pS")}], (5.6) 
s" 

D!~-~ = "~V ~ exp{iK (p,-p,·)} [:q"K13 + q~K") cpK 
ir1 o K,=o 

+ K"K;>qv (ocpjDfJ1=K], (5. 7) 

2111 q"q~ [ Z2 l 
D ••• =-----xi n (q = O) + 2hZ j 

(5.8) 

Here for convenience, we have introduced the no­
tation 

4nZ2e2 jV1*j2 
cp, =-----n(f)Vo (5.9) 

f2 e(f) · 

For the case K = 0, we have made use of the 
fact that as q - 0 the pseudo-potential takes the 
form 

Vq*-+ -4nZe2/q2Vo + b, 

and E (q) is given by the expression (3.7). Then, 
expanding the second term in cpq. it is easy to 
ascertain that the principal term of this expansion 
accurately cancels out with 41l'Z 2e2/q2V0, which 
describes the direct Coulomb interaction between 
the ions. Therefore, the next term of the expansion, 
which is given in (5.8) is the important one. 

It follows directly from the form of the expres­
sion (5.6) that 

"" all LJDiss' (q = 0) == 0. (5.10) 
s' 

As is well known, just this relation determines the 
mandatory existence of three acoustic branches, 
the frequencies of which vanish when q = 0. We 
note that (5.10) appears automatically only in the 
systematic account of the electron screening (in 
the opposite case, for the longitudinal branch of 
oscillations the ion plasma frequency appears). 
As a result, the condition of the form (5.10), which 
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the total dynamic matrix (5.3) must also satisfy, 
is actually shifted to n?/s' ( q ) . 

The appearance of a term of (5. 7) linear in q is 
connected with the specific lattice in the elemen­
tary cell of which there is more than a single 
atom. Similar terms arise in the expansion of the 
ordinary dynamic matrix of Born-Karman. There­
fore, in finding the dispersion law for acoustic 
phonons, the scheme of the method of "long waves" 
is entirely preserved (hence, the linear terms of 
(5. 7) enter into the expression for the squares of 
the frequencies, in bilinear combinations, of 
course). 

In the case of a single atom lattice, the terms 
n<O> and n<1l vanish identically. Then 

D~0 (q) = qaq~ [~~+2hz] 
M n(q=O) 

+ _1_ ._.., [ a ~ + _!_ KaK~ v ~-'( azqJ j J 
MVO~o q q qJK 2 q q \ offLOfvlf=K ·< 5 ·11) 

As is known, for small q, the polarization op­
erator is determined by a simple loop diagram 
(see [6]) 

( 5 .12) 

Here, if we neglect Umklapp processes in (5.11), 
and use the spherical nature of the Fermi surface, 
then we obtain an expression from which the well 
known result of Bardeen-Pines [16• 17] is obtained 
for the longitudinal sound velocity. In the general 
case, consideration of the second term in (5.11) 
can lead to a significant change in the value of 
this quantity. Furthermore, in the anisotropic 
crystal, account of Umklapp processes leads to a 
difference in the velocities of longitudinal sound in 
the different directions. So far as transverse sound 
is concerned, it follows from (5.11) that it is on the 
whole due to the Umklapp processes and is deter­
mined only by the third term in (5.11). In this 
connection, one can observe that for transverse 
sound, account of electron screening plays no es­
sential role, as in the case of longitudinal, -the 
transverse acoustic branches arise also in the 
complete absence of screening. 

Up to the present time, we have considered only 
the electron part of the dynamic matrix. Actually, 
account of D2 can lead to a significant change both 
in the longitudinal and transverse velocities of 
the sound (see the following section). 

In a many-atom lattice, for the analysis of the 
phonon spectrum for small q, it is necessary to 
use the general representation (5.5)-(5.9). In the 
special case of a two-atom lattice, if the sym­
metry of the crystal is sufficiently high, one can 

write out the explicit form for the limiting optical 
frequencies. Actually, if D~~' ( q = 0) is diagonal 
in the cartesian indices, a resolution takes place 
into three independent vibrations with polarization 
along the chosen axes. The corresponding frequen­
cies are equal to 

2 
roa2 (q = 0) = - MV ~ cos (Kp) qJKKa2 + ro2a2 (q = 0), 

° K9"0 
( 5.13) 

where the second term is connected with account 
of the matrix D2• 

Finally, we note that the expression (5.4) also 
directly contains a singularity in the phonon spec­
trum, noted first by Kohn [14 15J, while, as follows 
from our consideration, this singularity is already 
obtained in the adiabatic approximation. 

6. PHONON SPECTRUM OF TIN 

A. In the present section, the scheme developed 
above is used for the analysis of the phonon spec­
trum of metallic tin. This is the most complicated 
case of all those metallic spectra studied to data. 
The complication is brought about by the presence 
of two atoms in the elementary cell and by virtue 
of the anisotropies of the lattice. The anomalies 
obtained in the phonon spectrum are so important 
that they also lead to an unusual behavior of the 
characteristics integrated over the spectrum (for 
details, see [3 18 ]). In the use of the traditional 
Born-Karman model for the description of the 
spectrum, it was necessary to introduce at least 
14 independent constants. 

B. The spectrum of the phonon frequencies is 
determined by the diagonalization of the summa­
tion matrix (5.3). To find its elements, it is nec­
essary to know the Fourier component of the 
pseudopotential V 4• the polarization operator 
1T ( q) and the uncorrelated force constants of the 
matrix D2. 

The structure of the dynamic matrix D~ in the 
case of tin was considered in detail in [3 18 • In the 
framework of our scheme, we limit ourselves to 
the account of the interaction only with four atoms 
in the nearest coordination sphere. This interac­
tion is described by four force constants, of which 
only three (a, j3, y) are independent (for details, 
see [3] ). 

As to V*, for the determination of this quan­
tity we coula make use of values found on the basis 
of numerical calculations [191 • However, inasmuch 
as the calculations possess limited accuracy in 
the important region of large q, we can pose the 
question of finding V 4 in the framework of the 

\ 
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inverse problem. With this aim, we made use of 
the pseudopotential in the Bardeen form: 

• ( 4:rrZe2 ) Vq = ---+a "'(ar) q2Vo "' • s • 

x(qr.)=~~~Slr·-qr.cosqr.)_ (6.1) 
( qr.) 3 

3 

leaving two parameters, CT and rs, free. 2 
As was pointed out, for small q, the polariza­

tion operator has the form (5.12), which leads for 
the case of a spherical Fermi surface to the ex­
pression 

:rt:o(q)=~ nVo{_!+ 4kF2-q21n 12kF+q I} (6.2) 
2 8F 2 8kFIJ_ 2kF- q . 

For large values of q, this expression becomes 
approximate. There exist a number of schemes 
that improve the accuracy of (6.2) in the range of 
large q. These schemes (see, for example, [12,201) 

actually reduce to replacing 4 1re2/ q2 in Eq. (3. 7) 

for the dielectric constant by the quantity 
47re2q - 2 fq. where 

( 1 q2 ) 
/q= ,1-2 q2+J...kF2 ' (6.3) 

and A. can be regarded as a free parameter. 
In the present case, we have not considered the 

correction (6.3), which transfers the center of 
gravity of the inverse problem to a determination 
of the parameters of the pseudopotential. There­
fore, the general solution of the inverse problem 
reduces to the determination of five quantities: 
a, {3, y, CT, and rs. 

C. For their determination, we used the follow­
ing choice of experimental quantities: 1) the 
limiting value of the optical frequency ( w1 ) for 
q = ( 0, 0, 2 1r I c) with polarization along the z 
axis; 2) the limiting value of the optical frequen­
cies ( w 2) for q = 0 with polarization along the 
z axis; 3) the elastic modulus c33, corresponding 
to the longitudinal sound velocity along the [001] 
axis; 4) the elastic-modulus combination c11 + c12, 

corresponding to the longitudinal sound velocity 
along the [110] axis; 5) the elastic modulus c86, 

corresponding to the transverse sound velocity 
along the [100] axis. The numerical values of the 
frequencies Wt and w2 were obtained from ex­
periments on neutron scattering [21, while the 
elastic moduli were obtained from [211. 

As a result of this solution of the inverse prob­
lem, the following values of the parameters were 
obtained: 

a = 2.87 ·103 dyne/ em , ~ = 1,34 ·103 dyne/ em, 

y = 1,24·103 dyne/em, 

a= 1.61 eV, r, = 0,48·10-8 em. 
(6.4) 

q--­
[001] 

FIG. 1 

D. The calculation of the vibration spectrum 
was carried out on a high-speed computer. Here, 
for the determination of the matrix D 1 according 
to (5.4), we used about 2000 sites of the reciprocal 
lattice in the summation over K. The results of 
the calculations for three principal directions of 
the wave vector, corresponding to the parameters 
of (6.4), are given in Fig. 1. Here the experi­
mental points used were from [2, 22j. As is seen, 
the agreement of theory with experiment is very 
good, especially if we consider the extraordinary 
nontrivial character of the behavior of the optical 
and acoustical branches and the abundance of in­
formation which is given by the dispersion curves 
for the three directions of the wave vector. 

Figure 2 shows the pseudopotential for the tin 
ion, constructed by means of (6.1) and (6.12) for 
the parameters found above, and also the pseudo­
potential computed in [191-the dashed curve. The 
agreement between the results is excellent, closer 
even than the values of the characteristic point 
corresponding to a change of sign of V ~. There­
fore, we could have used the computed pseudo­
potential, and then the number of necessary 
parameters would be generally reduced to three. 
On the other hand, the obtained agreement shows 
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~ 
I 

FIG. 3 

the pseudopotential of the electron-ion interaction 
can be effectively replaced by the phonon spectrum 
of the metal. 

E. Let us analyze the relative role of the long­
range and short-range forces in the formation of 
the spectrum of white tin. For this purpose, we 
put forward the results of the calculation of the 
phonon spectrum corresponding to vibrations of 
the ion lattice of the tin, placed in the neutral field 
of a homogeneous negative charge (Fig. 3). (For 
the reduction of (5.4) to a rapidly converging 
series, use was made of a method similar to the 
well known method of Ewald.) 

We note that the frequency of longitudinal opti­
cal vibrations (two ions vibrate in phase) does not 
go zero as q - 0, but to the value of the ion 
plasma oscillation frequency w0 = ( 2 .47r Z 2e o/ MV0) 1/ 2 

(an extra factor of 2 arises from the presence of 
two atoms per unit cell). Then the combined shift 
of ions as q - 0 corresponds to motion of the op­
tical type of the entire ionic lattice relative to a 
motionless phonon. It is essential that the ionic 
lattice is shown to be unstable-the phonon fre­
quencies in the entire region of phase space be­
come imaginary. 

4 

3 

2 

0 ~~~~~~~~-r~~±=~~~LL~ 

-0,5 

FIG. 4 

Figure 4 shows the dispersion curves with al­
lowance for the electron contribution to the long­
range part of the interaction (but without introduc­
tion of covalency). Comparison with Fig. 3 shows 
that the screening of the ionic motion plays a very 
important role; in particular, the vibration fre­
quencies fall off sharply in magnitude, a longitud­
inal acoustic branch of vibrations appears, and so 
forth. 

By comparing the result with Fig. 1, we see 
that the obtained spectrum already bears many 
marks of the final one, especially for the optical 
branches. Yet the frequencies in several entire 
regions differ quantitatively from their true 
values. Moreover, the lattice as a whole is still 
unstable. The latter circumstance is not surpris­
ing, because the purely central interaction between 
ions could not lead to such a complicated crystal­
line structure as exists in the case of tin. Thus, 
in the complicated structure of tin, the stability is 
achieved only with the introduction of the short­
range forces of the convalent type. This is a very 
interesting circumstance, sharply distinguishing 
the complicated crystals from the simple, for ex­
ample, the alkali crystals. 

Turning again to long-range interaction, we 
note that a detailed analysis shows the important 
and indeed, decisive role of Umklapp processes 
(terms with K "" 0) in tin. This leads to a sharp 
difference of frequencies of longitudinal and 
transverse optical branches for q = 0, to an un­
usual behavior of longitudinal vibrations with 
q II [ 001 ], the frequencies of which pass through 
a maximum inside the Brillouin zone, and so forth. 
Such a specific role of terms with K ,o 0 is not 
observed in simple metals, and therefore the dis­
persion curves in them have a very simple char­
acter. 

More detailed results of the calculation of the 
phonon spectrum of tin will be published in a 
special paper. 
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