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A general method is developed to study kinetic phenomena in polyatomic gases in a magnetic 
or electric field. Attention is paid to effects which change sign when the magnetic field does 
so. We obtain expressions for the viscosity, thermal conductivity, diffusion, and self-diffu­
sion tensors. 

1. INTRODUCTION 

EARLIER [2] the authors have developed a theory 
of transport phenomena for a diatomic paramag­
netic gas in a magnetic field; this enabled us to 
consider consistently the Senftleben effect [l) for 
arbitrary values of the magnetic field. Recently a 
magnetic field dependence of kinetic effects has 
been discovered in non-paramagnetic gases [3- 5] 

and similarly the influence of a static electric 
field upon transport phenomena in a polar gas. [S, 71 

This last effect is analogous to the case of a 
paramagnetic gas in a magnetic field. As far as 
the influence of a magnetic field on a non-para­
magnetic gas is concerned, this is connected with 
the existence of a small magnetic moment which 
is caused by the rotation of the nuclei and which 
is not comcensated for by the motion of the elec­
tron shell. 81 

These phenomena have all the same physical 
character: the external field leads to a precession 
of the rotational molecular moment which in turn 
causes an effective change in the collision cross­
section of the molecules (the mechanism causing 
the precession is here unimportant, and only the 
precession frequency matters, or rather, the 
ratio of this frequency to the frequency of colli­
sions between molecules). This change is connected 
with the fact that for molecules with rotational 
degrees of freedom (RDF) the collision cross­
section depends not only on the relative velocity 
of the colliding molecules, but also on the orienta­
tion of their rotational moments. 

For a quantitative description of transport phe­
nomena in a gas with RDF we must take into ac­
count the dependence of the non-equilibrium dis­
tribution function not only on the velocity vector u 
but also on the rotational moment M. [9] We can in 
principle use for an analysis of transport phe­
nomena in the cases considered the method de-

veloped in [2]. However, it seemed advisable to us 
to give the one more method, more general and 
canonical, to consider kinetic phenomena in gases 
with RDF. 

We use an expansion of the non-equilibrium 
distribution function in terms of the eigenfunctions 
of the "ideal" collision operator, which takes into 
account only the change in the translational de­
grees of freedom in collisions. It is convenient 
then to change from a Cartesian system of coordi­
nates to a spherical system in which the irreduci­
ble tensors of u and M are described by spherical 
polynomials. We develop a perturbation theory in 
terms of a small parameter, which in our case is 
the degree to which the complete collision opera­
tor deviates from the "ideal" one. As a result we 
reduce the calculation of the effect in an external 
field to finding the eigenfunctions of the ideal 
collision operator and determining the matrix 
elements of the perturbing collision operator. In 
the present paper these will be regarded as 
parameters whose magnitudes must be found ex­
perimentally. 

We use the general method to determine the 
influence of a magnetic field on the first and 
second viscosity, thermal conductivity, diffusion, 
and self-diffusion in paramagnetic and non-para­
magnetic gases. When analysing these phenomena 
we have found that in a magnetic field there are 
not only even effects (these effects do not change 
sign when the direction of the field changes) but 
also odd effects. 1l As a result the general viscosity 

1>When we were finishing the present work, a paper [14] . 

appeared in which the discovery of an odd effect in the vis­
cosity was reported, and also a preprint of a paper by Knaap 
and Beenakker in which a theoretical description of this effect 
was given. These authors connect the odd effect in the case 
of a paramagnetic gas with the presence of a quantum correc­
tion to the effective magnetic moment. In the present paper 
the odd effect has a purely kinetic character. 
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tensor in a magnetic field has seven independent 
coefficients (five even and two odd ones), and the 
thermal conductivity, diffusion, and self-diffusion 
tensors three independent coefficients (two even 
and one odd) . It is interesting that in an electric 
field the number of independent coefficients is re­
duced - all coefficients which are odd in the elec­
tric field vanish identically. 

2. PRECESSION OF THE MOLECULES IN AN 
EXTERNAL FIELD 

The external field does not act directly on the 
translational degrees of freedom in a neutral gas. 
Constant magnetic, H, and electric, E, fields lead 
to a precession of the rotational moment of the 
molecule. In the present paper we restrict our­
selves to a consideration of processes at suffi­
ciently high temperatures ( T » n2/ 2I, I = moment 
of inertia), when we can use the classical equation 
of motion for the moment 

d dt M = [J.tH] +(dE], ( 2.1)* 

averaged over the fast rotation around M. How­
ever, it is more convenient to determine the pre­
cession of the rotational moment from the semi­
classical limit of the quantum equation 

dA 1AA AA 
-M = -[MV- VM] (2.2) 
dt in ' 

A 

where the energy of the molecule is V = - ( ~ · H) 
in a magnetic field and V = - ( d · E ) in an electric 
field. 

In [2] we found that in the limit of large values 
of the rotational quantum number we have for a 
paramagnetic diatomic molecule with spin S 

M = Vt[MH), Vt = 2J.tocrM-1, a= -S, -S + 1, ... , S. 
(2.3) 

Since the spin-orbit interaction of the nuclei is 
small already for fields H ;:::_ 10 Oe the spin and 
orbital motions of the nuclei of the molecules are, 
as a rule, decoupled, and for the average value of 
the precession of a non-paramagnetic molecule we 
have simply 

M = vz[MH), Vz = !!rot/ h. (2.4) 

The coefficient 1-Lrot is of the order of magnitude 
of a Bohr nuclear magneton and can be determined 
from the Zeeman splitting of the rotational levels 
of the molecule. [BJ 

If the rotational properties of a polar molecule 
are described by the model of a symmetric top 
with a dipole moment directed along the principal 
axis, we find easily, using the expressions for the 
matrix elements of the unit vector directed along 

the principal axis (see [1oJ ), that in the limit of 
large M: 

M = va[ME], Ys = daM-t, ( 2.5) 

where u is the cosine of the angle between the 
direction of M and the direction of the principal 
axis. 

If the polar molecule is diatomic or linear, the 
dipole and the rotational moments are perpendicu­
lar to each other and expression (2.5) tends iden­
tically to zero ( u = 0). To obtain a non-vanishing 
result in that case we must evaluate the average 
value of M in the approximation which is quad­
ratic in the electric field (see [1oJ): 

M=v~[ME], v~= 3/zdZ/M-4(ME). (2.6) 

When the dipole moments d in (2.5) and (2.6) are 
of the same order of magnitude, the magnitude of 
(2.6) is less than the magnitude of (2.5) by an 
order of magnitude Ed/T and the observation of 
the effect is in that case very difficult. An excep­
tion is the NO molecule the electronic ground 
state of which is 2rr, i.e., the component of the 
orbital momentum along the axis of the molecule 
is non-vanishing: A = 1. In that case the total 
moment of the molecule is not perpendicular to 
the molecular axis and the average value of the 
dipole moment is non-vanishing already in the 
zeroth approximation in the electric field: 

M = )'No[ME], VNo = dAM-z. (2.7) 

However if the dipole moment and the moment of 
inertia are of the same order of magnitude as in 
the case (2.5), then at room temperatures, when 
M ~ 10 n the magnitude of (2. 7) will be one order 
of magnitude less than the magnitude of (2.5). 

Finally, in a polyatomic polar molecule of the 
asymmetric top type the average value of the dipole 
moment vanishes in the first approximation in the 
field, since the states of such a molecule are non­
degenerate. The precession of the rotational mo­
ment M is thus quadratic in the field and the in­
fluence of the field on the transport phenomena is 
small. However, it was pointed out to us by V. 
Borman that if the asymmetry of the molecule is 
small we may, for sufficiently large values of the 
electric field, neglect the splitting of the rotational 
levels, and the effect becomes linear in the field. 
We may note the same also for polar linear mol­
ecules which have densely spaced levels for the 
transverse vibrations. 

We see that Eqs. (2.3) to (2. 7) are very similar 
to one another and that they determine the pre­
cession (averaged over the fast rotation around its 
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axis) of the rotational moment in an external field. 
The magnitude of the change in a transport coef­
ficient in an external field depends essentially on 
the ratio ~ of the precessional frequency to the 
average collision frequency, which is proportional 
to the pressure p. This ratio behaves in the cases 
(2.3) to (2.5) and (2.7) as H/p or E/p. In the 
case (2.6) the magnitude of ~ is ~ E2Jp. 

The effect reaches saturation when the parame­
ter ~ » 1. It is clear that when saturation occurs 
the effect does not depend on the character of the 
cause of the precession of the moment, and the 
only differences are connected merely with the 
peculiarities of the interaction in the gas which 
has internal degrees of freedom. 

3. DERIVATION OF THE BASIC EQUATIONS 

When an external field is turned on, the kinetic 
equation averaged over the fast rotation of the 
molecule around its own axis is 

of . a at+ (vV')j + M oMj =I call. (3.1, 

If the deviation from statistical equilibrium is 
small the kinetic equation becomes [2] 

N + y[MB] Ox=- nix,, 
aM 

f=nfo(1+x,), /o=exp(-u2 -M2), n=p/T; (3.2) 

+ f ~ uz-~ ( uz + M2) J div vo; 
L 3 Cv 

(3.3) 

ix= _ _!_call= ~ ~ ~/ot[(x+xt)W 
n2fo 

- (x' + xt') W'] ar1 ar' art'. (3.4) 

The velocity and the moment of the molecule are 
here measured, respectively, in units ( 2T/m)1/ 2 

and ( 2IT) l/ 2. The coefficient y, depending on the 
nature of the gas and of the external field (mag­
netic or electric), is defined by one of the expres­
sions from the preceding section. The form of the 
equilibrium distribution function corresponds to 
the case of a diatomic (or linear) molecule and 
also of a top-type molecule with nearly equal 
moments of inertia ( IA >:::: IB ~ Ic ~ I). In the 
first case 

(3.5) 

and in the second case 

df = n-3u2duM2dMdQudQM. (3.6) 

The integral sign includes averaging over the in­
dex u. In the linearized kinetic equation (3.2) the 
collision integral is the linear integral operator 
(3.4). The functions W and W' in (3.4) describes 
the probabilities for direct and reverse collisions 
and satisfy the principle of detailed balancing.[ttl 

When solving Eq. (3.2) the dependence of the 
non-equilibrium distribution function on the direc­
tions of the velocity u and of the moment M 
turns out to be very important. It is therefore 
convenient to change to a spherical system of co­
ordinates in which B II z. In that system 

1 ox - f) n y [MBJ aM = y ocpM x,, 
- yB 
y=-, 

n (3.7) 

The inhomogeneous part of (3.3) can be written in 
the form 

N = n ~ az,:,Azm; 
lm 

Atm=Ytm(u)(u2 +M2 -cp), Azm=Yzm(u), 

Aoo = 2/a u2 - cv-1 {u2 + M2), 

(3.8) 

1 v 2T 1 ( ovok ovo; ) 2 a1m =- -(V' ln T);t; 1m, azm =- - 0-+-"- l;k m, 
n m n X; ux" 

- -1 ( ovok + ovo; ) t. 00 y ( ) zy (8 ) aoo - a a '" , lm u = u lm u, Cj)u . n X; Xk 

(3. 9) 

From the explicit form of (3,3) it follows that in 
the sum (3.8) only the terms with l = 0, 1, 2 and, 
correspondingly, I m I s l do not vanish. We use 
here the coefficients for a change from a Car­
tesian to a spherical system of coordinates. If 
n is a unit vector, 

l; 1m = ~ \ dQ Ytm(8, cp)n;, t;klm = -4
1 ~ dQ Yzm(8, cp)n;nk, 

4:rtj :rt 

l-m ( i)m(t lm)* til, = - ih • (3.10) 

Direct computation gives 

[;10 =• flfs{j;z, [;11 = - yt/6 ( 6;x + i6;y)' 
t;~t00 = 1 /s6;~t, l;~t20 = f 1/sr{6;,6~tz- 1 /a6;~t), 

l;~t21 = -f1/3o[6;,(6kx + i6ny) + {jkz(B;x + iB;y)], 
l;~t22 = fl/3o(6;x + i6;y) (6kx + i6~ty). (3.10') 

We look for a solution of Eq. (3.2) in the form 

X=-~ azm* Xlm· 

lm 

(3.11) 

Substituting (3. 7), (3.8), and (3.11) into (3.2) we 
find 

( J+:Y~)Xzm=Azm· dcpM 
(3 .12) 

The kinetic coefficients are defined in terms of 
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the magnitude of the energy or momentum current 
in the non-equilibrium state. Thus, in the thermal 
conductivity problem (see [2]) the heat current is 
equal to 

( 2T )'/, (' 
q;=nT---;;;, Jdffou;(u2 +M2 -cp)x=-xii,('VT)k, 

X;h = 2T L;t;1m(t,1m')* (' df foA!m• Xtm'· 
m .l 

m-,m' 

(3 .13) 

The tensor of viscous stresses is defined as 

2T 1 ( avoq 8v0p \ 
a;, = - nm- J df foxu;u" = 'l']ihpq -"'--+_"'_)I . 

m uXp UXq 

Using (3.8) to (3.11), we can write the general ex­
pression for the viscosity tensor in the form 

~ lm I'm' • (" f A * , 'l']ikpq = 2T LJ til, (tpq ) J df 0 lm Xl'rr•'• l, l = 0. 2. 
lm;l'm' (3.14) 

To obtain this last expression we took it into 
account that the non-equilibrium distribution 
function must satisfy the conditions (see [2]) 

~ dr fox= o, 

·~ dr foxu = 0, (3.15) 

Xih(H) = Xk;(-H), 'l']ihpq(H) = 'l']pqih(-H), (3.20) 

and in an electric field 

'Xih = Xn;, 'l'];kpq = 'l']pqih. (3.21) 

Comparing (3.19) with (3.20) and (3.21) we see that 
the imaginary part Im czm;lm must be different 
from zero only for a magnetic field and must 
change sign when we replace H by -H. In an 
electric field Im czm;Zm must vanish. Moreover, 
it is necessary that 

czo; oo =·Coo; 20. (3. 22) 

We shall see below (Sec. 5) that the coefficients 
c Zm;l 'm satisfy these requirements. Hence it 
follows that the number of independent coefficients 
describing the behavior of the thermal conductivity 
in a magnetic field is three, and in an electric 
field is two. The corresponding number of the 
viscosity tensor is seven and five. 

In [2] the third term of ( 3 .18) was absent, since 
we used there a model for which Im c 11 ; 11 = 0 (for 
details see Sec. 5) . 

When there is no external field we have 

(3. 23) 

The expressions for the tensors (3.13) and (3.14) and (3.18) and (3.19) change to the usual expres-
can be simplified if we use the fact that the quan- sions: 
tities 

Czm; l'm' = . ~ df foAz"m Xl'm' (3 .16) 

satisfy the following symmetry properties 

Cim; I'm = c*z-m; I'-m, Clm; I'm' = 0, m =/= m'. ( 3.1 7) 

Taking (3.10) and (3.17) into account, the thermal 
conductivity tensor and the viscosity tensor (3.14) 
take the form (hi= Hi/H, hik = eikphp = oixoky 
- Oiyokx): 

2T 
x;, = - {6;" Re C11· 11 + h;h, (c10· 10- Re C11· 11) 

3m ' ' ' 

+ hil, Im CtJ: 11}; 

'l']ihpq = 2/tsT {3 (h;hh- 1ia6;n) (hphq - 1/aflpq) Czo; 20 

+ (h;hp6kq + h;hq6hp + h,hp6iq + h,hq6ip 

(3.18) 

- 4h;hnhphq) Re c 21 ; 21 + (h;hphkq + h;hqhhp + hnhph;q 

+ hhhqh;p) Im Czt; 21 + [ -h;phkq + (6;p- h;hp) 

x.( 6kq - hnhq)] Re c22; 22 + [ ( 6;p- h;hp) hnq 

+ (6nq- hnhq)h;p] Im c22; 22 + "Jf.5(h;h" 

- 1/a6;h)6pqCzo; oo + fS(hphq- 1/a6pq)6;kCoo; 20 

+ 5/36;"6r,qCoo; oo}. (3.19) 

In accordance with the symmetry principle of 
transport coefficients, we have in a magnetic field 

X;n = x6;,, x = (2T /3m) c1, 

'l']iklm = 1/z'l'] ( - 2/a6;h6lm + 6il8hm + b;mflnz) + 1 /z~b;hfllm, 
'I}= "!tsTc2, ~ = "fgTco. (3.24) 

4. PROPERTIES OF THE COLLISION OPERATOR 

To evaluate the coefficients czm; z 'm which de­
termine the transport effects we must find a solu­
tion of Eq. (3.12). It is clear that the function 
Xlm and thus the transport coefficients will depend 
on the external field only when the functions Xzm 

depends on the direction of the moment M. To find 
this dependence we must take into account in the 
collision integral the correlation between the 
translational and rotational degrees of freedom. 
We shall assume that in (3.4) 

W = W<0l + eW(ll, e~i (4.1) 

and thus 

j = j(O) + gj(t). (4 .2) 

The first term in ( 4 .1) and ( 4. 2) does not affect 
the internal degrees of freedom and the second 
term takes into account the dependence of the 
collision cross-section on the rotational moments. 
Here and henceforth we denote by an index in 
brackets the order of smallness of the corre­
sponding quantity as far as E is concerned. We 
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assume that parameter to be small, which corre­
sponds to a natural assumption of a relatively 
weak correlation between the internal and external 
degrees of freedom. In particular, this leads to a 
relatively weak dependence of the cross-section on 
the angle between u and M. A 

The properties of the operator I< Ol are the 
same as those of the often-studied collision inte­
gral of monatomic gases. The eigenfunctions and 
eigenvalues of this operator are determined by 
the equation 

(4.3) 

Under rather general assumptions about the 
character of f<Ol one may assume that the set of 
functions t/Jn is a complete system of functions 
which are orthogonal and normalized in the sense 
that 

(4.4) 

where 

(4.5) 

As I< Ol is a scalar operator, the dependence of 
the eigenfunctions on the directions of u and M 
can be expressed in terms of the spherical poly­
nomials (3.9): 

~ lm 
'ljln co LJ Cz,m,; z,m, Yz,m, (u) Yz,m, (M), (4.6) 

where the d1~1 ; z2m2 are Clebsch-Gordan coeffi­
cients. 

If the functions t/Jn are independent of M and 
u they are the same as the eigenfunctions of the 
corresponding collision operator of a monatomic 
gas and can be written in the form 

(4. 7) 

In the case of an interaction of the form of that 
between Maxwell molecules the functions T~t are 
normalized Sonine (or Laguerre) polynomial~ of 
the appropriate type (see, for instance, [12 ]). The 
evaluation of these functions is not part of our 
problem and we shall assume that they and the 
corresponding eigenvalues cq1r 1 are known. 

The functions tPn. which depend on M and u, 
will be written as 

~ df foFt(M, a)= 0. (4.8) 

Since in collisions described by I< Ol the internal 
degrees of freedom do not change, we have 

i<0W1 (M, a)F2 (u) = Ft(M,a)zfFz(u), (4.9) 

UF(u)= ~ ~ ~ f0t(F(u)-F(u')]W<0ldf1 df'dN. (4.10) 

Hence it follows that the eigenvalues correspond­
ing to the eigenfunctions ( 4. 8) are independent of 
the form of F 1 ( M, u). The dependence of the 
functions t/Jn on M2 and u is thus determined 
solely by the orthonormality conditions ( 4 .4). The 
properties of the operator (4.10) are similar to 
those of l(Ol. Its eigenfunctions have the form 
(4.7) and we shall assume that they and the corre­
sponding eigenvalues f3l 1 r 1 are known. 

We c:::.n thus write the eigenfunctions of the 
operator I< Ol in the form 

1Jln = ~~ Ct~'::.,; l,m, Yz,m, (u) Yt,m, (M) T ); (u2 ) L,1: (M2 ) rp 5 ( o), 

'!:= (lm;l1lz;r1rz;s). (4.11) 

Here L~ is a normalized Laguerre polynomial of 
rank l for linear molecules and of rank l + Y2 for 
top-type molecules. The functions CfJs ( u) form an 
orthonormal system in the sense that 

s = 0, 1, 2, ... , 2S + 1 

( 4 .12) 

for paramagnetic molecules and in the sense that 
1 i I 

2 ~darps*(o)rps•(a)=Oss' s=0,1,2, ... (4 .12) 
-1 

for polar molecules of the symmetric top type. We 
shall number the functions CfJs ( u) in such a way 
that cp0 ( u) = 1 and for even s the functions CfJs ( u) 
are even and for odd s the functions CfJs ( u) are odd. 
To the functions ( 4 .11) correspond the eigenvalues 

/.,~0) = Ut,,·, Br,O 01,0 Oso + ~l,r, ( 1 - br,O 61,0 Oso). ( 4 .13) 

The properties of the operator I< 1 l - that part of 
the collision integral which takes into account that 
the internal and external degrees of freedom are 
mixed up in collisions - is completely character­
ized by its "matrix elements" 

(!) ~ (!) (1) (1) • 
lnu' = (¢", f(l)tj.1n•), Inn'= ln'n = (/nn•) . (4.14) 

Since the operator i< 1l is scalar, i.e., it is invari­
ant under rotations, inversion, and time reversal, 
we get the following "selection rules" (see the 
explicit form of (4.11)): 

l = l', m =·m'; 
lt -Zt' =even, l2 -l2' = even. 

(4.15) 

The quantity (4.14) is clearly independent of the 
value of m. 

In a paramagnetic gas the index u has the 
meaning of being the component of the spin of the 
molecule along its rotational moment, and is thus 
a true scalar. In a paramagnetic gas there is thus 
no "selection rule" when the index s changes. In 
a polar gas of the symmetric top type 

a= (dM) j ycf2M2, (4.16) 
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i.e., it is a pseudoscalar. If the interaction between 
the molecules is an even function of d, it leads to 
the "selection rule" 

s -s' =even. ( 4 .17) 

In the opposite case ''transitions'' are allowed with 
odd values of this difference, which leads to a com­
plication of (4.15): 

lz -lz' = even, 

l1-l1'=even, if s-s'-even, (4.18) 
l1-l/= odd, I if S·-s'- odd. 

The system of functions (4.11) constructed above 
is a complete system in the sense that any function 
</! of the variables u, M, and a can be expanded in 
a series in terms of these functions provided the 
norm (</!,</!)is finite. 

5. SOLUTION OF THE KINETIC EQUATION 

We shall solve Eq. (3.12) 

( ~ ~ - () ) 
J(O) + eJ(I) + v -- Xlm = Azm 

OCflM 
(5 .1) 

using perturbation theory methods. In our case the 
small parameter is the parameter E in (4.2). To 
avoid division by zero we refer to the zeroth­
approximation operator that part of the operator 
I ( 1l which is determined by the relations 

(0) 

j(l) = Ia(!)+ jb(!)' j(l) { 0, An =I= 0 ( 5 • 2) 
a ¢n = /(!) 0 (0) _ () • 

nn"-Pn, ll..n -

We bear in mind that because of the conditions 
(3.15) we shall not be interested in the eigenfunc­
tions of the total collision operator which are of 
the form 1, u, M, or u2 + M2, for which 

(Ji.o> + e]<1>) \jJ = 0. 

The only eigenfunctions ( 4 .11) with vanishing 
values of A.~ol will thus be functions with Z1 = 0 of 
the form u2 - %, </! ( M2, a), and </! ( M/M, M2, a). 

For any physically reasonable model of the inter­
action transition between states with A.~Dl = 0 will 
be of much higher order of smallness than E and 
for models with these properties we can use per­
turbation theory without reservations. 

We choose thus as the zeroth approximation 
operator 

(5.3) 

The action of the operator which is the inverse of 
( 5 .3) is determined by the equation 

K'¢n = ~ Cr~'::.,; l,m,Yl,m 1 (u) Y1,m, (M) T;; (u2 ) 

m1+m2=m 

We can easily write down a formal solution for 
Eq. (5.1) written in the form 

Xlm = k.Azm - efa b(!)XIm, 

as an expansion in the parameter E: 

Xlm = {![- e/{h<ll/( + e2kh(!>Kh<1>i{- ... }Aim· 

Substituting this solution into (3.16) we find: 

(5.5) 

< > (0) (1) (2) ( 
C1m; I'm= A 1m; Xl'm = Clm; I'm+ Czm; I'm+ Czm; lm', 5.6) 

(0) ,. 
Czm; I'm= (Aim, KAz•m>, (5.7) 

(l) ~ ~(!) ~ 

C!m; I'm=- e <Azm, Kh KAz•m>, (5.8) 

(2) ~~(!)~~(!)~ 

Czm;l'm = e2 (Azm, Kh Kh KAI'm>. (5.9) 

The function Az m is independent of the direc­
tion of the vector M and the index a and its ex­
pansion in terms of the functions ( 4 .11) contains 
only terms with z2 = mz = s = 0: 

Azm = ~('¢n" Az,)'¢n, no= (lm; lO; r1rz; 0). (5.10) 
no 

Hence it follows that 

KA1m = ~ ('An,) - 1 < 'ilnoo A 1m> '¢n, ( 5 .11) 
no 

and the coefficients ( 5. 7) and ( 5. 8) are independent 
of the external field. 

We can write Eq. (5.9) in the form 
(2) 0 •• ~ (1) ~ (1) ~ 

Clm;l'm = 8" ~(Azm, Kh ¢n>Knn•<¢n•, h KAz•m>, (5.12) 
nn' 

where 

which is, indeed, independent of m. The last fac­
tor in (5.12) has a similar form. 

The only quantity in Eq. (5.12) dependent on the 
external field is 

(5.14) 

(m2v) 2+im2v'An• Y (" .. ) z,· (M2) ( ) \ 
X -... l 2 'm 2 lU. r 2 ' C{)s' V ( • 

An•2 + (m2y)2 ; 
(5.15) 

Because of the selection rule (4.15), the num­
bers l, l', and m are the same as the corre­
sponding indices in ( 5 .12). In all cases except 
(2.6) the quantity y (see (3. 7)) is independent of 
the direction of M and we can integrate in (5.15) 
over this direction and this leads to Z2 =l~. Clearly 
the change in (5.12) and hence in the transport 
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coefficients in an external field is determined (in 
the first non-vanishing approximation in E) by 
Eq. (5.12), in which the matrix element Knn' is 
replaced by tl.Knn'. The external field occurs in 
(5.15) through the parameter y and hence it fol­
lows that the transport coefficients are functions 
of the ratio B/n, i.e., B/p, in the cases (2.2), 
(2.4), or (2.5) and functions of Eo/p in the case 
(2.6). 

The real part of (5.15) (and hence Re c<z2 > z' ) m, m 
is even in the external field and increases mono-
tonically with increasing y. For sufficiently small 
values of the field the magnitude of (5.15) is pro­
portional to ( B/p )2 (the case (2.6) needs special 
considerations). For large values of the external 
field (y > A.n') Re ~Knn' reaches saturation at a 
level which is independent of the nature of the 
external field and is determined solely by the 
properties of the interaction between the mole­
cules. 

The imaginary part of (5.15) leads to an effect 
which is odd in the external field. The quantity 
Im Knn' can be non-vanishing in a magnetic field 
(when H "" 0) both in a paramagnetic gas (case 
(2.2)), if the operator i< D does not prohibit transi­
tions with odd values of the difference s - s', and 
in the general case (2.4) of a non-paramagnetic 
gas. 

In an electric field Im Knn' = 0, as we can 
verify easily if in case (2.6) ( y ~ ( M ·E)) we in­
tegrate explicitly in (5.15) over the direction of 
M; in the case (2.5), on the other hand, y ~ u but 
then z2 = l{ and the integration over (J again gives 
zero. 

For small values of the magnetic field, Im Knn' 
depends linearly on the ratio H/p, reaches some­
where ( < y > ~A.n) a maximum, and for large 
values of H/p tends to zero as ( H/p r 1• Such a 
behavior in a magnetic field is characteristic of 
terms of the thermal conductivity tensor (3.18) and 
the viscosity tensor (3.19) which are odd in the 
field. We note that relation (3.22) follows immed­
iately from the explicit form of the coefficients 
(5.12) (or (5.8)). 

We note that the scheme worked out here al­
lows us in principle to find the change in the 
kinetic coefficients in an external field with higher 
accuracy than E 2. For instance, 

( 5 .16) 

In particular, we can use the expansion (5.6) 
also to evaluate with arbitrary accuracy the trans­
port coefficients of the polyatomic gases when 
there are no external fields, in which case the 

calculation can be appreciably simplified, for 
them 

( 5.17) 

and instead of the complicated Eq. (5.12) we have 
in the k-th approximation more simply 

( 5.18) 
no no' 

Strictly speaking, in all cases where y depends 
on M or u the last bracket in (5.4) has only a 
symbolical meaning, indicating its limiting values 
as y- 0 and y - 00, for functions i/Jn with Z2 "" 0 
of the form if! ( M/M, M2, u ) . In practice one must 
replace the bracket by the matrix element Kn'n 
determined from the equation 

(5.20) 

If such states would play an important role, the 
change in transport coefficients such as the 
thermal conductivity and the first viscosity would 
be of relative order of magnitude E and would 
reach saturation for relatively small values of the 
external field (y > E I1 ). These consequences con­
tradict experimental results, giving grounds for 
assuming that for real interactions matrix ele­
ments of the type 

< ¢zm; lO; r 1r 2 ; o, j'(ll¢zm; Ol; Or/; s> 

are very small and that we may neglect for an 
estimate of effects in an external field transitions 
into states with zj = r 1 = 0, z2 "" 0. 

6. MODEL OF THE INTERACTION IN A PARA­
MAGNETIC DIATOMIC GAS 

To illustrate the foregoing general method by 
concrete examples, and also to elucidate quali­
tatively (and to predict) the influence of a mag­
netic field on kinetic coefficients, it is sufficient 
to choose a very simple model, which leads to 
non-trivial results for all coefficients defining the 
behavior of the tensors (3.18) and (3.19). 

We assume that the matrix element (I b< 1 > in 
n0n 

(5 .13) is non-vanishing only for "transitions into 
states" with Z2 = 2, r 1 = r 2 = 0, s = 0 or 1 and 
only one value of l 1, which we shall later choose 
from symmetry considerations, i.e., for transi­
tions to states 

(OL 
¢zm = ¢zm; 1,2; oo; o ~ ,2; Cz,;':,; 2m, Yz,m, (u) Y2m, (M), 

m1+m2=m 
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(i) 
'ljlzm """ 'ljlzm; i 12; oo; 1 '"""' cr 

( 6.1) 

In this model, Eqs. (5.12) and (5.15) become 

L1Ctm; I'm = - Aw 

~ ~(!) (0) (0) ~(1) " 
Aw = <Azm, Kh 'ljlzm > ('ljlz•m, h KAum>, 

~ ~(!) l,t) "~(!) (0) 
<Azm, Kh ·1JJzm> = a1 <Aim, Kh \)lzm>, 

1 < (cr~) 2 + icr~ ) 
fw(S)= v~z,o (1+azcr), M 2 +(crs) 2 M 4 (1+a1.cr) , 

£z, = 2~-oH{F/ p~z,of2l, 

v2 = < (1 + a1a)2M•>< (1 + az•a)2M4>. 
The determination of the quantities {3z 1r 1 was 
given earlier in (4.13). 

(6.2) 

The real and imaginary parts of the function 
fU' ( ~ ) are equal to 

1 1 r x2 (cr~)2 
Re fw m = --- -- ~ ( 1 + ataz.a2) J __ . -- e·-X dx, 

2S + 1 v~z,o " 0 x +(cr~)2 

1 1 "" x'h 
lmfw(£) = azaz,--- ~cr2£ ~ ---e-xdx. (6.3) 

2S+1 v~z,o" 0 x+(cr£) 2 

In the case ( 2.4) of a non-paramagnetic gas the 
form of the coefficient A c z m; l' m remains the 
same, but Eqs. (6.3) must be replaced by simpler 
ones: 

1 ~2 
Ref(~)= 21 + £2, 

( 6.4) 

We can also describe approximately by formu­
las of this form the transition region in the case 
of a paramagnetic gas, since the functions ( 6.3) go 
over into (6.4) if in the former we put in the inter­
grand in the factor of the exponential x = 1. The 
qualitative conclusions about the behavior of 
transport effects in a magnetic field are thus the 
same for paramagnetic and non-paramagnetic 
gases. 

The parameters AU', az. and {3z 1 o are inde­
pendent of the magnetic field and are determined 
by the character of the interaction. 

7. VISCOSITY 

We apply the results obtained above to a calcu­
lation of the change in the viscosity tensor of a 
paramagnetic diatomic gas. To do this we must 
substitute Eq. (6.2) into (3.19), using the numeri­
cal values of the Clebsch-Gordon coefficients. 

For the given problem 

l, l' = 0, 2, l1 = 2, (7 .1) 

and the behavior of the viscosity tensor (3.19) in 
a magnetic field is determined by the equations 

L1czo; 20 = - 1/11b [Re fzz (~z) + 4 Re f22 (2~2)], 

~ Re C21; 21 = - 1/tr.A22[7 Re fz2(£z) + 6 Refz2(2£2) ], 

Im Czt;21 = - 1/uAz2[ -5 lm fzz(£z) + 6 lm f22(2£z) ], 

.Ll Re Cz2; 22 = - 1/1A22[3 Re fz2 (£2) + Re fzz (2£z)], 
Im Czz; 22 = - 1/1A2z[3 Im fzz (£2) + Im fzz (2sz)], 

czo; oo = coo;zo =-f 2/ztAo2[Re /zo(S2) + 2 Re fzo(2sz) ], 
L1coo; oo = - 2/aAoo[Re foo (sz) + Re foo (2~z)]. ( 7. 2) 

The seven coefficients in (7.2) are functions of 
the ratio H/p and of the parameters A22, A02, A00, 

a2, and f32o· In the present limited state of our 
know ledge of the interactions between polyatomic 
molecules it is advisable not to attempt to evaluate 
numerical values of these parameters but to de­
termine them directly from experiments. We note 
that the order of magnitude of the coefficients ( 7. 2) 
and (3.24) in terms of the parameter E is: 

( 7.3) 

If we determine, as usual, the effective viscos­
ity of a gas by measuring the pressure gradient 
along a flow in a tube of circular cross-section 
for different directions of the magnetic field, then 
we can determine three of the seven coefficients 
of (7 .2). 

To determine the odd effects and the coefficient 
c 00; 2o it is convenient to study transverse pressure 
gradients arising in viscous flow of the gas along 
the x axis between parallel walls perpendicular 
to the z axis: 

) x L1 Re Czt; 21 + ( hl + h,2hz2) L1 Re Czz; zzl f' 
dp 1 
-d = ( V P) o- [3hxhyhiL1czo; 20 + hxhy ( 1 - 4hz2 ) .:'1 Re Czt; 21 

y Cz 

+ hxhy ( -1 + hz2) L1 Re C22; 22+ hz ( 1 - 2hz2) lm C21 21 

- hz ( 1 - hz2) lm Czz; 22J, 

d_J!. = ( V p) o _.!._ ~ 3hxh, ( hz 2 - _!_ ) L1czo; 20 
rlz c2 ~ 3 

+ 2hxhz [ ( 1 - 2hz2 ) Ll Re C21; 21- ~ ( 1 -hi) Ll Re Cz2; 22 ] 

+ 2hyhz2 Im Czt; 21 + hy ( 1 - hi) Im Cz2; 22 

+ l'S hxhzCoo; 20 } • ( 7.4) 

Here h = H/ H, c2 = c~~; 2m and ( V'p) 0 is the value 
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of the pressure gradient when there is no magnetic 
field. It follows from (7.3) and (7.4) that the longi­
tudinal effect ( dp/ dx) is an even function of the 
magnetic field and proportional to E2• The maxi­
mum value of the odd effects are of the order of 
E2, while the coefficient c 00; 20 is linear in the 
parameter E. However, an experimental deter­
mination of the latter is made difficult by the fact 
that it only occurs in the expression for the pres­
sure gradient in a direction at right angles to 
parallel walls. 

The last, seventh, coefficient in (7.2), ~c00; 00, 

determines the change of the second viscosity t 
in a magnetic field and can be determined from 
measurements of sound absorption. The relative 
change of the second viscosity coefficient is linear 
in the parameter E, which explains apparently the 
magnitude of the relative chanfe of the sound ab­
sorption in a magnetic field [13 , which may reach 
30%. 

8. THERMAL CONDUCTIVITY OF A DIATOMIC 
PARAMAGNETIC GAS 

We can describe the change in the thermal con­
ductivity tensor (3.18) in a magnetic field by the 
equations of section £ with l = l, = zl = 1: 

!lew; 10 = - 3/sAu He /u (£1), 

!!. Re Cu; 11 =-Au {3/s Re /u(S!) + 3/10 Re /u(2£1}}, 

Im cu; u = -Au {3/s Im /u (£1) + 3/ 10 Im / 11 (2£1)}. 

These equations describe the Senftleben effect 
more exactly than the formulas found in [2] by the 
usual method of moments. The difference consists 
mainly in the existence of the effect which is odd 
in the magnetic field and which is connected with 
Im c 11; 11 . In our earlier paper [2] this term was 
absent, as we had there chosen a model of the in­
teraction in which during the collision neither the 
rotational moment M nor (and this is the main 
point) the component of the spin along M, i.e., the 
index a, changed. The presence of the odd effect 
leads to the appearance of a heat current in a 
direction at right angles to H and VT. 

Another (unimportant) difference is that the 
function ( 6.3) dE;) scribes more correctly the region 
where the transition from the quadratic depend­
ence on the effect to saturation takes place, than 
a function of the form (6.4), which, strictly speak­
ing, is correct only for the case (2.4) of a non­
paramagnetic gas. 

9. DIFFUSION AND SELF-DIFFUSION OF A 
PARAMAGNETIC GAS 

We now find the change in a magnetic field of 
the diffusion of a paramagnetic gas into another 

gas and the self-diffusion of paramagnetic mole­
cules. This problem is most simply solved for 
small concentrations of the diffusing gas. In that 
case we can neglect the non-equilibrium of the 
gas of the medium and the effect considered is 
described by the equation 

V2T I mu v Inc + v[MH] ax. I al\1 = -nix., 

ix = ~ /OA (x.- x.') Wdr' dr A dr A', 

f=cnfo(1+x), /A=n/OA· (9.1) 

Here f0 and foA are the equilibrium distribution 
functions of the diffusing gas and of the medium, 
normalized to unit density, and W is the proba­
bility that a paramagnetic molecule is scattered 
by a molecule of the medium. 

The diffusion (self-diffusion) coefficient of a 
paramagnetic gas in a magnetic field is a tensorial 
quantity and is determined in terms of the diffu­
sion current of the paramagnetic gas 

j; =- nD;k(V c)k =en i2T/m ~ !oxu; dr. (9.2) 

Formula (9.1) and Eq. (9.2) have the same form 
as the corresponding Eqs. (3.2) and (3.13) which 
describe the thermal conductivity of a one-com­
ponent gas in an external field. The behavior of 
the diffusion (self-diffusion) tensor Dik in an 
external field is thus identically the same as the 
behavior of the thermal conductivity tensor (see 
(3.18) and Sec. 8): 

2T 
D;k = - 3--{{)il, He Cu; 11 + h;h~t(C!O; 10- Re c11; u) 

mn 

(9.3) 

The expressions for the coefficients c 1m; 1m are 
in the general case described by the expressions 
of Sec. 5 in which we must put 

(9.4) 

In the model, used above in Sec. 6, the coefficients 
c1m; tm for the diffusion of a paramagnetic dia­
tomic gas in a magnetic field are described by 
the formulae of Sec. 8. The value of the factor 
A11 for diffusion have the same order of magnitude 
E: 2 as for thermal conductivity. 

In conclusion the authors express their deep 
gratitude to I. K. Kikoin, L. L. Gorelik, and V. V. 
Sinitsyn for discussions of the experimental as­
pects of this paper. 
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