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It is shown that toroidal devices with longitudinal magnetic fields are subject to an instability 
that is similar to the flute instability in a mirror device. This instability is due to particles 
which are trapped between mirrors, that is to say, regions of higher magnetic field. 

INTRODUCTION 

IT has been shown theoretically[ 1•2] and experi­
mentally[3•4] that from the point of view of plasma 
confinement in mirror devices the most dangerous 
instability is flute instability which results from 
magnetic drift of charged particles in the inhomo­
geneous magnetic field. It appears from a hydro­
dynamic analysis [ 5• 6 J that in a toroidal geometry 
the flute instability can be stabilized quite easily by 
the introduction of "shear" associated with over­
lapping of the lines of force. The stabilization effect 
derives from the free motion of particles along the 
lines of force, making it easy to compensate the 
charges that arise by virtue of the magnetic drift; 
in this case perturbations in which the lines of 
force are not distorted and in which narrow local­
ization occurs are found to be impossible. 

However, the conclusion as to free interflow of 
the charges does not hold in a collisionless plasma. 
More precisely, this conclusion holds only for un­
trapped particles; it does not apply to particles 
that are trapped between mirror regions. It is 
precisely these latter particles which can be 
responsible for an instability which is similar to 
the flute instability in a mirror device; we have 
called this a "trapped-particle" instability. l7J 
Under these conditions the untrapped particles 
play the role of an environmental medium charac­
terized by a high dielectric constant; they can only 
reduce the potential associated with the trapped 
particles but cannot eliminate it completely. 

In the present work we shall analyze the trapped­
particle instability in a toroidal system such as 
Tokomak. In Sec. 1 we consider briefly the equili­
brium state and introduce a coordinate system con­
venient for the analysis. The motion of the charged 
particles is treated in Section 2 and in Sec. 3 we 
derive and investigate an integral equation for the 
potential; this equation plays the role of a disper­
sion relation for the determination of the charac-

teristic oscillation frequency w. Particle collisions 
are introduced in Sec. 4. 

1. COORDINATE SYSTEM 

In order to simplify the analysis we assume that 
the minor radius of the toroidal pinch a is much 
smaller than the major radius R0• The quantity 
a/R0 is then used as a small parameter. In order 
to investigate the oscillations it will be found con­
venient to introduce a special curvilinear coordin­
ate system which becomes the usual cylindrical co­
ordinate system when R0- oo. We denote the new 
coordinates by r, ,J and t, also introducing the 
notation r', qJ' and z' for the conventional cylindri­
cal coordinates. 

We assume that the toroidal pinch is obtained by 
bending a cylindrical pinch of circular cross-sec­
tion. Then, as an approximation it can be assumed 
that the magnetic surfaces in the cross-section 
qJ' = const are an ensemble of nested circles. The 
radius of these circles r is conveniently taken as 
one of the curvilinear coordinates so that the equa­
tion r = const specifies one of the magnetic sur­
faces. The second coordinate is taken to be the 
quantity J, the azimuthal angle of the small circle 
(Fig. 1). The center of the circle r = const, which 
represents the cross-section of one of the magnetic 

FIG. 1 
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surfaces is located at a distance R = R0 + ~(r) from 
the axis of symmetry where R0 = const and the 
small quantity ~(r) specifies the displacement of 
the magnetic surface due to the curvature. The 
third coordinate is taken to be the angle qJ'; we can 
now write the following relations between the cy­
lindrical coordinates r', qJ' and z' and the coordin­
ate system r, J. and !;: 

r(=Ho--rcostl, z'=rsintl, ql=~, (1.1) 

where, we have neglected ~(r) because when 
E = r/R « 1, the quantity ~(a) is small, being of 
order E. 

We note that the toroidal nature of the problem 
introduces the following modifications as compared 
with a straight pinch: in the first place, correc­
tions of order E which depend on the angle J. appear 
in the macroscopic quantities such as the pressure, 
magnetic field components and so on; second, and 
this is more important, there is a qualitative change 
in the motion of the charged particles. This change 
occurs because the toroidal system exhibits a var­
iation of magnetic field along the line of force, that 
is to say, the system effectively acquires mirrors. 
As a result the particles can be divided into two 
groups: the trapped particles, which move between 
the mirrors, and the untrapped particles which are 
free to move along the entire system. It will be 
shown below that this effect is of order Vt. For 
this reason, for small values of Ewe retain the 
toroidal nature of the problem only when it has an 
important effect on the motion of the charged par­
ticles, that is to say, when it leads to effects of 
order Vt. 

When {3 = 81rn T/H2 « 1 and HJ/H2 « 1, the longi­
tudinal magnetic field (in the sense corresponding 
to the straight pinch) can be written to order E as 
follows: 

(1.2) 

where H0 is the value of the field at the magnetic 
axis. The azimuthal magnetic field can be written 
in the following form when HJ. « H0: 

HJ. = H~(r) (1.3) 

The quantity HJ. is related to H0 by 

r 1 1 
Ho=Ho--=H0e-

R q q 

rHo 
q(r) =RHo' (1. 4) 

where q is the so-called reserve factor. In devices 
such as Tokomak the quantity q is of the order of 
several units in order to satisfy the Kruskal­
Shafranov criteria. Thus, HJ. is small compared 
with H0 and consequently corrections of order E 

can be neglected in HJ.. The relations obtained 
above determine uniquely the geometry of the pinch 
and the corresponding coordinate system for any 
distribution of p and HJ. over the radius r. 

2. DRIFT TRAJECTORIES 

We shall now consider the motion of charged 
particles in a toroidal magnetic field. The results 
that are obtained will be used to integrate the 
kinetic equation and will also be useful in furnish­
ing a physical interpretation of the trapped-particle 
instability itself. 

The motion of a charged particle in a strong 
magnetic field can be described by the relation 

. Vj_ Vj_ (2 1) r(t} =r0 (t) +n-oasa+h-sina, · 
Q Q 

where r 0(t) is the trajectory of the guiding center, 
n is the normal to a line of force, b is the binormal 
to the line of force, v 1 is the transverse velocity 
component and a = a 0 - Q(t- t0) is the azimuthal 
coordinate in velocity space. 

The motion of the guiding center of the charged 
particle r 0(t) is described by the equation 

dro c [h V cpo] },f c 
-dt= vrrh+ H + 2eH2 (vj_2 +2v11 2) [hVH]. (2.2)* 

Using the energy conservation relation 

lllv2 I 2 + ecpo = canst (2.3) 

and the conservation of the transverse magnetic 
moment 

f..t = Vj_ 2 I H = canst (2.4) 

we can now determine the motion completely. 
As we have noted above, the most important ef­

fect that arises in the transition to a toroidal geom­
etry is the appearance of trapped particles that 
oscillate between mirror regions. In order to treat 
these particles it is sufficient to retain the toroidal 
correction in the magnetic moment (2.4); the weak 
dependence of the factor ( 1 + E cos J.) on E can be 
neglected in the other terms. We limit ourselves 
to the case (/Jo = 0 and introduce the quantity ~ to 
denote the deviation from a line of force at a mag­
netic surface in accordance with the relation 
~ = t - qJ; then, to order Vt, we obtain the follow­
ing system from (2.2): 

dtl v [ f..tll 0 ( r ) J '/, -= +-- 1--- 1+-castl 
& . R~ ~ ~ 
dr 1 
- = -- (v2 + vrr2) sin tl 
dt 2QRo ' 

*(h \l 'flo] "' h X \l 'flo• 

(2. 5) 

(2.6) 
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where n = eH0/Mc and q' = dq/dr. 
The deviation ~r from the line of force is small 

and the quantity r in (2.5) can be regarded as a con­
stant. As a result the equation for the longitudinal 
motion can be solved independently of (2.6) and 
(2. 7). We now introduce the spherical coordinate 
system v, 1/Jrr and a in velocity space at the point 
J. = 7T. Then vifv2 = ~H0(1- E)/v2 =-sin21/J7T and 
consequently (2.5) assumes the form 

dt} V ( ]'I - = ± -- cos2 \jl" - e sin '¢"2 ( 1 + cos it) '• 
dt Roq 

(2.8) 

where E = r/R0. It is then evident that for small 
values of cos21/J7T the expression in the radical can 
vanish for certain values of J., that is to say, the 
particles are reflected from the magnetic mirror. 
We now introduce the supplementary angle y7T = 7T/2 
-lfJ7T. Since y is small for the trapped particles, as 
an approximation we can write cos21/J7T >:::J 1/J~ and 
sin21/J7T >:::J 1 for these particles. Now, introducing 
the new variable K2 = y;/2E we can write (2.8) for 
particles with small longitudinal velocity in the 
form 

dtt v y-;, 
- = + --y2x2 - 1 - cos it. 
dt - Roq 

(2. 9) 

The turning point J. = J 0(K) is- determined from the 
condition 1 + cos J- 0 = 2K 2• A turning point exists 
when K < 1. Hence, the value K = 1 separates the 
untrapped particles from the trapped particles. 
The oscillation period of the trapped particles T 

can be found by means of (2.9): 

4 R0q { dv 4 Roq ~IK . 
-r = -----=- J = -=- r 2 (x), 

ViE 1'1, i 2x2 - 1- cos it v f E 

(2.10) 

where K is a complete elliptic integral of the first 
kind. 

In treating the untrapped particles (K > 1) it will 
be convenient to introduce the quantity 

T = 4 Roq__ f . d{t = 4 ·{2 R0q K( i_) ' 
V f E 0 f 2x2 - 1 - COS t} V l E X 

(2.10a) 

which has the meaning of the time required for two 
complete revolutions of the angle J.. The conven­
ience of this definition of T for untrapped particles 
will be made clear below when we go from integra­
tion over time to integration over the angle J. 
[cf. (3.11)], in which case the angle J. can be re­
garded as a continuous variable in the transition 
from trapped particles to untrapped particles. 

We now introduce the notation w 0 = 27T/T. For 
large values of K the particles move essentially 
freely along the magnetic field and w0 >:::J vv'28~/2R0q 
>:::J vy /2R0q. When K - 1 the rotational frequency of 
the particles along J. goes to zero and the particles 
are trapped, in which case ·w 0 assumes the signifi­
cance of the angular frequency of the oscillations 
between mirrors. 

It is evident that the existence of an inhomogen­
eity along the magnetic field causes a substantial 
modification of the particle motion. Specifically, 
in a straight field with slow waves w/kz « vi the 
particles can achieve a Boltzmann equilibrium by 
virtue of their ability to move freely along the lines 
of force; in the present case, however, there will 
be a group of trapped particles with small longi­
tudinal velocity v 11 /v <&.which do not move along 
the field on the average, that is to say, these par­
ticles do not achieve a Boltzmann distribution for 
very slow waves w/kz «Vi· It is this lack of 
equilibrium which gives rise to the trapped parti­
Cle instability. In order to investigate this instabil­
ity it is necessary to treat the transverse motion in 
addition to the longitudinal motion. Assuming that 
v 11 < v for the trapped particles, from (2.6) we have 

1 qv sin ttdtt 
M=+J 

- 2Q i e i 2x2 - 1 - coo it 

vq 
= +--= i 2x2 - 1 - cos it. 

Qye 
(2.11) 

In moving along the magnetic field (v 11 > 0) the ions 
drift outward from the magnetic surface; ions 
moving in the opposite direction move inward. The 
quantity {:l.r is of opposite sign for the electrons. It 
follows from (2.11) that the ion deviation along the 
radius is of order ~r ~ piq/k We assume that 
this quantity is appreciably smaller than a, for 
otherwise a significant fraction of the ions can es­
cape to the walls even in the absence of collisions 
or instability. · 

For the untrapped particles with K » 1 we can 
assume v 11 = const; then, from (2.5) and (2.6) we 
have 

11r = - q (v2 + v112) cos it. 
2Qovll 

(2.12) 

It is then evident that the displacement of the un­
trapped particles is approximately VR/r times 
smaller than that of the trapped particles. 

In what follows the quantity (~0 denotes the 
mean displacement of the charged particles per 
period along the pinch (i.e., along /;). In accordance 
with (2.5) and (2.6) this displacement can be written 
in the form 
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(2.13) 

where 

r ~ 

ln = cy dlvn = 4qRo i"i:v ~ j2x2 - 1- cos 'l't d'l't 

(2.14) 

and E is a complete elliptic integral of the second 
kind. The quantity J 11 represents the longitudinal 
invariant. We note that a relation such as (2.13) 
can be obtained in general form for any quasi­
periodic motion)91 

Carrying out the differentiation in (2.13) and 
taking account of (2.10) we find v~;, the mean drift 
velocity of the charged particles along t: 

vr, = <~s> = v2qe G(x), (2.15) 
't Qr2 

where 

2q'r 
G(x) = Gt(x)+--G2(x) 

q 

( E(x) 1) 2q'r ( E(x) ) 
= K(x) -2 --l---q- K(x) -1+x2 . (2.16) 

The de~ndence of vt on K is shown in Fig. 2. When 
K > 1/'12 the reflection points for the trapped parti­
cles lie in the region J < rr/2, that is to say, in reg­
ions in which the magnetic field increases outward. 

·11:5 
'l'r/q=-1 

FIG. 2 

For small values of K the particle will be found 
close to the outer contour of the magnetic surface 
[between the points cos J-0 = - ( 1 - 2K2)], i.e., in 
regions in which the magnetic field falls off in the 
outward direction. In this region, if q' = 0 the par­
ticle executes a drift which is unfavorable from 
the point of view of stability (v t > 0). But as the 
quantity K increases the velocity is reduced and 
when K1 = 0.9 (cos J- 0 = 0.66) the velocity changes 
sign (Fig. 2) and the corresponding particles spend 
a large time fraction in the regionJ < rr/2 in which 
the magnetic field increases in going outward from 

the magnetic surface. When q' ~ 0 the point K1 at 
which v~; vanishes is displaced into the region of 
large K for q'r/q > 0 and into the region of small K 

(i.e., the region of favorable magnetic drift is ex­
panded) when q'r/q < 0. 

3. DISPERSION RELATION FOR ELECTROSTATIC 
OSCILLATIONS 

We can now proceed with our investigation of the 
instability of an inhomogeneous plasma in a toroidal 
geometry. We first consider the case of a collision­
less plasma and assume that the oscillations are 
electrostatic. Under these conditions the kinetic 
equation for small oscillations can be written in 
the form 

fJf ,.e fJf e[H]o, 
fit +vVj + M Vcpo fJv +Me v fJv/ 

= - _!!__ v cp' ! __ f. 
M fJv 

(3.1) 

Here, the equilibrium distribution function f satis­
fies the equation 

e fJ e {} 
vVj + M Vcpo fJv I+ Me {vH] fJv I= 0, (3.2) 

where cp0 is the unperturbed potential of the elec­
tric field, cp' is the perturbation of the electric 
field, His the unperturbed magnetic field, and f' is 
the perturbation of the distribution function. 

In the equilibrium state cp0 is a function of the 
magnetic surface, i.e., a function of the variable r. 
In converting to a coordinate system that moves 
along t it is evident that \1 cp0 will vanish. In the 
analysis of the localized perturbations treated here 
we can assume that the translational velocity is 
independent of r so that the term with \lcp0 in (3.1) 
and (3.2) can be neglected. 

We assume further that the equilibrium distri­
bution function f is approximately a Maxwellian f0 

in which the density n and temperature T depend 
on r. Then, to first-order accuracy in g-t, from 
(3.2) we have 

1 
f = /o- g-[hv] V/o. (3.3) 

The solution of (3.1) is 
t 

f e \ 1 {jf I 

= - M J V cp fJv dt , (3.4) 

where the integration is taken over the unperturbed 
trajectory (2.1). By virtue of the periodicity in t 
and J, the functions cp and f' can be written in the 
form 

q{ = exp (-iwt + imtt- il~)cp(r, 'l't), (3. 5) 
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where cp(r, J) is a periodic function of J on which 
we impose the requirement that it have the mini­
mum number of nodes along J. Substituting (3.3) 
and (3. 5) in (3.4) and carrying out the usual calcu­
lations[to] it is a simple matter to obtain an ex­
pression for the perturbed particle density; then, 
using the quasi-neutrality condition, i.e., equili­
brating the perturbed electron and ion densities, 
we can find the dispersion relation for the frequency 
of small oscillations w: 

1 1 ° (~+-)nocp=-i.l; \ ~ dkexp{-iwt 
le T; j=e,i-oo 

+ ik(ri(t')- r)+ im(tt/- tt)- il(£/- ~)} 

( kj_Vj_ ) 1 
X lo2 , -Q-- Ti foj ( w- w/) cpdt' dv. (3.6) 

Here, the summation on the right side is carried 
out over electrons and ions; ei = e, ee = -e, J 0 is 
the Bessel function, and 

• cTim 1 d 
Wj =------foi 

eiHr foi dr 

is the drift frequency for charges of the appropri­
ate species. The relation in (3,6) is written for 
low-frequency oscillations w « Qi. We also as­
sume that m » 1 so that we have neglected Bcp/OJ' 
compared with mcp'. The relation in (3.6) differs 
from the corresponding expression in cylindrical 
geometry in that the particle motion along the un­
perturbed trajectory is more complicated. The re­
lation in ( 3. 6) is a homogeneous integral equation 
and w is an eigenvalue. The integration on the right 
side of (3.6) is carried out over the coordinates of 
the guiding center (since we have already carried 
out an averaging over the fast cyclotron gyration 
of the particles) and in order to write (3.6) in ex­
plicit form it is necessary to use the drift trajec­
tories derived in Section 2. 

From the point of view of macroscopic effects 
the most dangerous perturbations are the large 
scale perturbations; hence we assume that the lo­
calization of the perturbation over r is appreciably 
greater than .t.r the amplitude of oscillation of the 
particles in the radial direction in the unperturbed 
drift; hence we can write J 0 = 1 in (3.6). On the 
other hand, we assume that cp is well localized as 
compared with a so that w = w ( r) is the local value 
for the eigenfrequency. We first consider the inte­
gral on the right side of (3.6) with respect to t' for 
the untrapped particles. For these particles 
J' - J ~ v 11 t/Rq, ?;' - ?; ~ q(J' - J) and consequently 
the integration over dt' leads to a factor of the form 
i{w- (m- Zq)v 11 /qRr 1. In the oscillations being 
considered here w s: w* ~ mpiv/a2 and this factor 

is appreciably smaller than w-1 even when m- lq 
« 1 (but m- lq » pim/a); hence, the contribution 
in (3.6) due to the untrapped particles can be neg­
lected compared with the term of order unity on the 
left side. 

In computing the integral over t' for the trapped 
particles we take tj - !; = q(Jj - J) + ~ j. Then, in 

the exponential factor that multiplies Jj - J we have 

the factor (m - Zq) . The value of m has not yet been 
determined. It is evident that for any value of l we 
can take that value of m for which the difference 
m- lq is less than 1/2. This choice means that we 
have taken cp to be a function which has the mini­
mum number of nodes along J. We shall first con­
sider the simplest case m- lq « 1. Under these 
conditions the quantity (m- Zq)(J'- J) is a periodic 
function oft' for the trapped particles and can be 
neglected since it is of the order of (m - Zq). In 
addition, neglecting the quantity Z(e - (0) over one 
oscillation period, we can average over the period 
Tj and write ~j ~ <~j> = v?;jt [where v!;j is defined 

by (2.15)]. Then (3.6) assumes the form 

( 1 1 ) 1 ( • ) 0 dt' \ T + ~ n°t:p = .2; ~ ~ dvfoi w- Wj ~ t:p'- (3. 7) 
e , . J w + lv~;,j 'tj 

J -'tj 

Here, instead of integrating overt' we have carried 
out an integration over J', writing [as follows from 
(2.9) and(2.10)] 

dt' 1 
---==-- (rx2 - 1 -cos tt') -~hdtt'. 
4y'2 K(x) 

Furthermore, the quantity dv for the trapped parti­
cles with E « 1 is 

(3.8) 

where YJ = 7r/2- zjJ is the angle in velocity space at 
the point J. By virtue of the conservation of the 
transverse adiabatic invariant we have 

v 1_ 2 / v2 = cos2 y;r = cos2 Vn - e ( 1 + cos tt) , ( 3. 9) 

where y 7r is the angle in velocity space at the point 
J = 1r that we have introduced earlier. According to 
(3.9) for small Ewe have y 2 = y 2 - E(1 +cos J). 

J 7r 
Whence 

dy;; = 'Yndyn = -y;: dx2 

Vtt l'2x2 -1- cos tt 
(3.10) 

Substituting the expressions that have been ob­
tained for dt' and dy.J in (3.7) we obtain an integral 
equation for the potential cp: 

( 1 1 ). 1 - (" /oi 
t - + ~-- cp = .2; --l'2e .l 2nv2dv -
\ T T· T· no e z j 1 
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1 dx2 
X ~ . . -

K (x)y'2x2 - 1- cos flo (l+cosit)/2 

X (w- w/) f cp(tt')dtl-' 

( W + lvt;) it, l' 2x2 - ·1- cost} 
(3.11) 

If the electron and ion temperatures are equal 
Te = Ti the electron and ion drift velocities v~;e 
and v~;i for a given energy mjv2/2 are equal in 
magnitude and opposite in sign. This result leads 
to a simplification of the equation: 

-r /o cp = 2n l' 2e J v2dv -
no 

0 

~ dx2 (w2 - w*lvt) 

X (l+cosit)/2 K (X) l' 2x2 - 1 - cos 'l't· ( w2 - [2vt2) 

(3.12) 

The integral equation (3.12) does not contain the 
particle mass; it is also independent of the sign of 
the charge. 

4. TRAPPED-PARTICLE INSTABILITY 

The existence of trapped particles leads to the 
possible appearance of an instability of the flute 
type. The trapped particles located in a given force 
tube between the magnetic mirrors are completely 
isolated from the other regions of the plasma and 
are consequently analogous to trapped particles in 
a conventional mirror machine. In general these 
particles execute an unfavorable magnetic drift in 
a magnetic field that diminishes toward the peri­
phery; hence, as in the usual magnetic trap, a 
small perturbation of the flute type will lead to a 
charge separation which reinforces the initial per­
turbation. The only difference from the linear mir­
ror machine lies in the fact that in the toroidal 
geometry the flutes of trapped particles are im­
mersed in a plasma containing untrapped particles 
which, by virtue of their large longitudinal dielec­
tric constant E0 = 1 + 81rne2 / Tk~1 » 1, compensate 
the charge associated with the trapped particles to 
a large degree. However, since E0 ;>! oo total neu­
tralization cannot be achieved and a highly retarded 
finite instability due to the trapped particles will 
develop in the plasma. 

In order to demonstrate this result we consider 
the integral equation in (3.12). In place of w we 
introduce the growth rate y: w = iy. In this case 
the denominator w2 - Z 2v~ = -(y2 + Z 2v~) becomes a 
monotonically increasing function of y. We recall 
that v~; is a small quantity of order E. Since the ex-

pression on the right side of (3.12) contains a small 
factor fE it can be of order unity if the denominator 
y 2 + Z2vt is small enough. In this case we can 
neglect y 2 in the numerator compared with w*Zv~;· 
Thus, in order-of-magnitude terms, we have from 
(3.12) 

where we have exploited the smallness of lvt 
~ Ew *. It is then apparent that y 2 ~ E312w *2 so that 
the quantity E2w*2 in the denominator of (3.12) can 
be neglected compared with y 2 if Eis small enough. 

In solving (3.12), in addition to using the Fourier 
representation it will be convenient to expand cp(J) 
in a series in cos J. We write 

(4.1) 

where the cps = cp_ s are real coefficients. Substi­
tuting this expression in (3.12) and neglecting small 
terms in the numerator and denominator, as indi­
cated above, after integration over J we find 

A ( 1 + 6os) cps = ~ F ss.qls•, (4.2) 
s' 

where 

2:n v2 - 2 lq ecT - 2mcT 
A=- , WM=--=----

3 l' 2e WMWp • eHr2 eHrR0 

• c m d T 
Wp =---no, 

eH rno dr 

while the coefficients F ss' are given by the rela­
tions 

1 
1 2q'r 2 F; _ (' G;II.II.•d 2 

Fss' = Fss' +-q-Fss', ss'-; K(x) X. (4.3) 

The expression for G is given in Sec. 2, (2.16), 
while the function 

n 
liS __ S cos sflodt} 

(4.4) 
ito 'f2x2 - 1 - cos flo 

is expressed in terms of complete elliptic integrals 
of the first and second kind. 

The eigenvalues A are found from the condition 
that the determinant of the matrix corresponding to 
(4.2) must vanish. The values of the matrix ele­
ments F~s' for s, s' ~ 2 are given in the table. 

It is evident that F~s' falls off rapidly with in­
creasing s. Hence, in computing the largest value 
of A (corresponding to the most unstable mode) it is 
valid to consider a system of finite order, taking 
'Ps = 0 for s larger than some value s 0. Limiting 
the system to an equation of second order, for the 
case q' = 0, we find A = 0. 74 (if we solve the third­
order system, then A = 0. 76). The second root is 
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1 1 2 

0 I 0.681 l-0.543
1 

0.011 I 
I -0.543 0.380 -0.151 
2 0.011 -0.151 0.161 

close to zero and lies essentially at the limits of 
applicability of the analysis. Recalling the defini­
tion of A and determining the numerical value we 
have 

(4.5) 

Using (4.2) we can find the expansion coefficients 
of cp(J.) in the Fourier series. When q' = 0 to ac­
curacy of cos 2J. we have 

rp(-fr) = 1-1.4 cost}+ 0.4 cos 2-fr. (4.6) 

It is evident that cp is localized in the region 
J. = 1r. In other words the oscillations that develop 
at the outer contour of the torus and the oscillation 
amplitude tends to zero as J.- 0, 21r. Since cp(J. = 0) 

= 0, m can be assumed close to lq even if lq (and 
consequently m) is not an integer. Thus, the solu­
tion obtained here extends to all values of r if 
m ~ lq. 

We now consider the effect of a change in q' on 
the instability. As we have mentioned above, in­
creasing q' leads to a strong instability and when 
q' < 0 there is a stabilization effect associated 
with the shortening of the segment of the line of 
force between the turning points in the outward 
motion. 

Writing A = 0 it is easy to find the critical value 
for the parameter q'r/q below which the oscilla­
tions are stabilized. This value is found to be -1. 5 
so that the stabilization condition for the trapped­
particle instability becomes 

d ln q 3 (4. 7) 
dlnr < -2. 

We now consider (3.12). We recall that in going 
to the simpler equation (4.2) we have neglected the 
quantity l 2v[; of order E2 as compared with y2 ~ E: 312. 
But since y2 is proportional to dp/dr while v~; is 
independent of the pressure, then even for small E 

this procedure is not always valid; since y2/v~ 
can only be ~ rc the transition from (3.12) to (4.2) 
may not be valid even for modest pressure grad­
ients. It is evident that the growth rate is reduced 
as dp/ dr is reduced and that it vanishes for some 
critical value of dp/dr. In order to find this criti­
cal value of the gradient we write w = 0 in (3.12); 
then, again using the Fourier representation we find 

- .. I 0 I 
1 1 2 

0 
I 
2 

0.888 1-0.145 1-0.189 
-0.145 0.128 0.029 
-0.189 0.029 0~091 

f.t(:1 + bos)IJls = ~ Pss•lj)s•. (4.8) 
s' 

Here 
1 

P ••. = ---- dx2, 
J.t= .n: (~l~n/T )-: 

)'2e d lnr 
S IIsiis• 

0 K(x)G(x) (4 _9) 

where the integral over dK2 is taken in the sense of 
the principal value. It is evident that when lrq' /ql 
- oo the matrix elements P ss' diminish. The lar­
gest value of Jl corresponds to rq' /q ~ 1. We have 
also computed the roots Jl for rq' /q = 1/2. For this 
value P00 = 11.9, P 01 = 2.02, P 11 = 2.24, whence 
ilt = 6.5 and Jl 2 = 1.7. Taking the larger value and 
substituting in (4.9) we find the stability criterion 

_(,1-TJ) dlnp <_!_V r (4 .10) 
{ 1 + TJ) d In r 3 R0 

where T/ = d ln T/d In n. In practice this condition 
can only be satisfied in separate narrow ranges 
of r. 

5. DISSIPATIVE TRAPPED-PARTICLE INSTA­
BILITY 

The trapped-particle instability is very sensitive 
to collisions. As a result of collisions trapped par­
ticles can be scattered into the untrapped cone in 
velocity space, that is to say, the corresponding 
perturbation will be damped with some effective 
damping rate llef· When E « 1 the angle 'Y in veloc­
ity space which separates the region of trapped 
particles from the untrapped particles is very 
small, being ~-IE. Correspondingly, the fraction 
of trapped particles is also small. Hence, in the 
collision integral in the Landau form for the trapped 
particles we need only keep the term with the dis­
tribution function so that as an approximation we 
can write it in the diffusion form 

(5.1) 

where L\9. is the Laplacian in velocity space, v. is 
the collision frequency for particles of specie~ j 
and v~ = 2 T./M.. In this collision integral the lar-

J J J 
gest term is the one which contains the second 
derivative with respect to 'Y and in order-of-magni­
tude terms St ~ f'v/y2 ~ f'vjiE. In other words 
llef = vjE. 
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In (3.1) for f' if we add the collision integral and 
write it in the form v eff', it is evident that in the 
denominator of the dispersion equation (3. 7) the 
quantity w will be replaced by w + iVef· In a tenuous 
plasma the untrapped particles can be described by 
a Boltzmann distribution; thus, taking account of 
collisions we can write the dispersion equation in 
the approximate form 

- w-w - w+w• 
2=l"e +l"e . (5.2) 

(!) + iv;/E- WM (!) + ive/E + WM 

Here, the terms on the right side which take ac­
count of the trapped particle contribution contain 
the factor VE which is equal to the fraction of 
trapped particles while w M is the magnetic drift 
frequency; the factor 1/ E that multiplies v e and vi 
takes account of the diffusional nature of the Cou­
lomb collisions. For simplicity we take Te = Ti. 
If vef » w, in ( 5. 2) we can neglect the frequency w 
compared with the frequency w *. Furthermore, we 
can neglect the magnetic drift completely, in which 
case we obtain the following expression for the fre­
quency and growth rate: 

(!) = {e w· +i~ (w•)2 - i~ (5.3) 
2 4 Ve e · 

It is evident that there is an instability due to 
the trapped particles regardless of the sign of 
curvature of the lines of force (i.e., w Ml. This 
instability will be called the dissipative trapped­
particle instability. 

As v diminishes the growth rate increases, 
reaching a maximum value y max ~ V Ew * when 
v ~ E3 I 2w *; then it falls off. In a dense plasma, 
that is to say, if the collision frequency is high, 
the trapped-particle instability is stabilized, as is 
evident from (5.3). The stabilization condition is 

V;Ve > e3 (w*)2 /4. (5.4) 

It is evident that the long wave perturbations 
with small m are stabilized first. As kz 
= (m- Zq)/qR is reduced, we must take account 
of the untrapped particles in the expression for 
the perturbed density and the analysis becomes the 
analysis of the drift-dissipative instability (cf. [tt]). 

CONCLUSION 

We have considered a concrete example of a 
trapped-particle instability in a toroidal system 
with axial symmetry for the case H~ « H0. How­
ever, the instability treated here is of a more gen­
eral nature. In any toroidal system there must be 

regions with reduced magnetic field in which there 
are particles trapped between the effective mag­
netic mirrors. If these particles are subject to an 
unfavorable magnetic drift, that is to say, if they 
are located in a region in which the magnetic field 
falls off in going toward the periphery, these trapped 
trapped particles will give rise to an instability in 
a collisionless plasma. In a sufficiently dense 
plasma, in which the electron collision frequency 
exceeds the drift frequency w*, it is possible to 
have a dissipative trapped-particle instability (for 
which the .sign of the magnetic drift is unimpor­
tant). As the collision frequency increases the 
growth rate for this instability falls off rapidly so 
that the trapped-particle instability will be unim­
portant in a sufficiently dense plasma. 
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