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Nuclear spin polarization due to hot electrons (Feher effect) is studied theoretically for the 
case when the electron distribution function differs from a Boltzmann or Fermi distribution. 
The possible shape of the hot-electron distribution with respect to spin sublevels is investi­
gated. The dependence of the nuclear polarization on the distribution function parameters is 
elucidated. 

IN a "heated" system of conduction electrons, the 
distribution of the electrons with respect to their 
spin sublevels can greatly differ from the equilib­
rium distribution. If we assume for the time being 
that the electron distribution is described by a 
"kinetic" temperature Te and that of the electron 
spins by a "spin" temperature T s• then T e f. T s 
in the stationary state. In such a situation, all 
other spin subsystems of the crystal (nuclear 
spins, localized spins of the impurity atoms) will 
assume, by interaction with the conduction elec­
trons, c rtain temperatures that differ from the 
lattice temperature. For the nuclear spins, owing 
to their very small relative specific heat, we can 
expect the strongest change in temperature. This 
phenomenon was predicted by Feher. [1J Clark and 
Feher[ 2] observed for the first time an increase in 
the polarization of nuclei interacting with the hot 
electrons. 

From the theory of the Overhauser effect it is 
known that to produce nuclear polarization it is 
necessary that the polarization of the electron 
spins differ from the equilibrium polarization cor­
responding to the "kinetic temperature" T e· In the 
Overhauser method this is attained by means of an 
external high frequency field, which depolarizes 
the electron spins, i.e., increases the "spin" tem­
perature Ts. Owing to the large ratio of the mag­
netic moments of the electron and the nucleus, even 
even a small difference between the temperatures 
T s and T e produces a relatively large nuclear po­
larization. Exactly the same nuclear polarization, 
but with opposite sign, can be obtained by lowering 
the temperature of the electron spins relative to 
the ''kinetic'' temperature T e· This is indeed re­
alized in the Feher method, where the "kinetic" 
temperature is increased by direct current, and 
the "spin" temperature remains lower than the 
''kinetic'' temperatures owing to the interaction 
between the spins and the lattice (for example, 

with phonons or paramagnetic impurities). 1> 

A theoretical examination of this phenomenon 
was made under the assumption that the non-equi­
librium distribution of the conduction electrons is 
described by a Maxwellian or by a Fermi distribu­
tion function with effective temperatures T e and 
Ts[i-sl and a drift velocity v.[ 4- 6J This assump­
tion limits the region of applicability of the the­
ory. We can present by way of an example a case 
(which is important in the sense of the magnitude 
of the effect), in which the formulas obtained ear­
lier are not applicable directly. It is known that 
an increase in the polarization of the nuclei is de­
termined by the difference in the temperatures 
T e - T s· This quantity depends strongly on the 
spin-lattice relaxation mechanism. Since the flip­
ping of the electron spin is accompanied by a 
change in the electron energy by an amount fiws 
(ws is the Zeeman frequency of the electron spin), 
we find that only a mechanism ensuring sufficiently 
high inelasticity of scattering can effectively sepa­
rate the spin temperature T s from the kinetic tem­
perature Te. This mechanism should at the same 
time make a sufficiently large contribution to the 
frequency of the spin -lattice relaxation. Estimates 
show[ 6 J that such a mechanism can be scattering 
by optical phonons. Simultaneously with spin re­
laxation, the optical phonons can determine also 
the electron energy relaxation and by the same 
token determine to a considerable degree the form 

1 )In the investigation of the Overhauser effect in semi­
conductors, these two phenomena may become superimposed 
on each other. On the one hand, the external high-frequency 
field increases the spin temperature T s directly, and on the 
other, the power absorbed from the field heats the electrons 
and, owing to the interaction between the spins and the lat­
tice, the spin temperature is lowered relative toTe. Since 
these phenomena "act in opposite directions," the resultant 
nuclear polarization may be smaller than expected. 

546 



THEORY OF NUCLEAR SPIN POLARIZATION 547 

of the distribution function, which frequently dif­
fers strongly in such cases from Maxwellian or a 
Fermi distribution. 

We consider the dependence of the nonequilib­
rium nuclear polarization on the parameters of the 
distribution function, without making any assump­
tions concerning its explicit form. 

1. We assume that the main contribution to the 
relaxation phenomena in the nuclei is made only 
by the contact part of the hyperfine interaction; 
then we can readily obtain, from the kinetic equa­
tions for the populations of the nuclear levels, [ 7 l 

<D= 2!(1:1) { ~ IAI 2 (f(k', -)-f(k,+)l 
kk' 

x B(e1,,+-ek',--lz,,JN)} · { ~IAI2[f(k',-) 
kk' 

x(1-f(k,+))+f(k,+)(1-f(k',-)] 

(1) 

where I is the spin of the nucleus and (I) is its 
mean value; nwN is the Zeeman splitting of the 
energy levels of the nucleus; Ek, u = Ek + uhws/2 
is the energy spectrum of the conduction electron; 
I A 12 is the square of the matrix element of the 
contact interaction. This quantity does not depend 
on k or k'; f(k, u) is the distribution function of 
the conduction electrons. 

Assuming first that the spectrum E:(k) is iso­
tropic, we represent the nonequilibrium function in 
the form of a series of spherical functions: 

f(k, a)= ~[F nz(e) + a<Dnz(e)] Ynz(1't, cp). (2) 
nl 

We disregard here phenomena connected with 
the change in the electron spectrum in external 
fields. We are likewise not interested in the off­
diagonal elements of the density matrix fuu'• 
since, to the extent that relations (1) are valid, the 
polarization of the nuclear spins is determined 
only by the diagonal elements. 

Since the square of the matrix element I A 1
2 

does not depend on the angles J or qJ and the 
spectrum is isotropic, we can readily see that (I) 
is determined only by two terms of the series (2): 
F0(E) and <I>0 (E). Integrating over the angles in (1) 
and confining ourselves to terms of lowest order 
in nws/ E' ( E' is the average energy of the conduc­
tion electrons), we obtain 

I (I+ 1) "" (])~ ---.---- {\de de'p (e) p(e') 6(e- E1 + lz(Ws- UlN)) 
3 ~ 

X[Fo(e')- Fo(e)- <Do(e')- CD0 (e)]} 

X {~de dt:'p(e)p(e')Fo(e)[1- Fo(e')] B(e- e') f'. 
0 

Here p (E) is the state density of the conduction 
electrons. 

We shall henceforth find it more convenient to 
consider the ratio (I) /(I)0, where (1)0 is the aver­
age spin of the nucleus in the absence of external 
fields at a lattice temperature T0• In this case 

\J> __ { \' . 2 • DFo l ---;--- _\dep(t:)--T0 f· 
\Do · De . 

0 

r. DFo 
X To - .. - (h(Jls) -lfDo(~:) J lf 

·- cJe 

"" 
''{\de p2 (e)Fu(c)[1-F0 (e)] f' 

0 

(3) 

( y e and y N are the gyromagnetic ratios of the 
electrons and of the nucleus, respectively). For­
mula (3) is valid also for sufficiently fast high­
frequency processes, when the functions F0(E:) and 
<I>o(E:) do not depend on the time. 

The functions F0 (E) and <I>0 (E) are determined 
from the kinetic equation with account of collisions 
with spin flip. Since the probabilities of the transi­
tion with spin flip are usually much lower than the 
corresponding probabilities of transition without 
spin flip, the function <I> 0 (E) is determined in the 
zeroth approximation in their ratio in terms of 
F0(E), accurate to an indeterminate constant. In­
deed, the kinetic equations for the determination of 
the function f(k, u) have in this approximation the 
form 

Lfa(k) = J(fa(k)). (4) 

Here L is the Liouville operator, J (fu (k)) is the 
collision integral, in which only the relaxation 
mechanisms without spin flip are taken into ac­
count. 

The integra-differential equations (4) determine 
the functions fu(k) accurate to two indeterminate 
constants C+ and C_. In the lowest approximation 
in nws/E, thefunctions Fo(E)and <l>o(E)thentake 
the form 

Fo(e) = 1/z[fo(e, C+) + fo(e, C_)] :::::. f(e, z), 

1 
<Do(e) = 2[fo(e, C_)- fo(e, C+)l 

(5) 
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c_- c+ ofo(e, z) 

2 oz - 2Ts Jz' 

Here 'fo(E' c±) are the symmetrical parts of the 
function f±(k); we put for convenience 

c+ + c_ c_- c+ liws 
== z, 

2 2 2Ts. 

It is easy to see that actually C_- C+ ~ tiws/Ts 

(6) 

« 1. The new indeterminate constant z is deter­
mined, for example, from the normalization condi­
tion (or from the conservation of the particle-num­
ber density, if the particle number is not constant). 
The constant T s (which has the dimension of 
energy), is determined from the condition for the 
conservation of the spin density in collisions and 
depends already on the mechanism of spin-lattice 
relaxation. For a Fermi or Maxwellian function 
Fo(E), the quantity Ts has the meaning of a spin 
temperature. Thus, the increase in the nuclear po­
larization (I) /(I)0 is determined only by a single 
function F0(E, z). 

If we neglect the Pauli principle and electron­
electron collisions in the collision integral (4), 
then the equations become linear and determine 
Fo(E, z) accurate to an arbitrary factor. 2> In this 
case 

liws 
IDo (e)=- F 0 (e), 

2Ts 

<D To [ Ye ( M ) J 
<Do = M 1 + y;; T8 - 1 ' 

1 co oF co 

-=-~de p2(e)-0 I ~ de p2 (e)F0 (e) 
M oe 

0 0 

(7) 

(8) 

(9) 

For a parabolic spectrum we have 

M= fdeeFo(e) I fdeFo(e). (10) 
0 0 

It is easy to see that if F0(E) is a Maxwellian 
function with effective temperature Te, then 
M = Te and formula (8) goes over into the formula 
previously derived by Feher. [ 1 J 

When account is taken of the Pauli principle un­
der sufficiently general assumptions concerning the 
electron relaxation mechanisms, the symmetrical 
part of the distribution function can be represented 
in the form[SJ 

Fo(e) = [1 + ez<e>-z]-1, (11) 

Z)This conclusion remains valid also in the limiting case 
of strong electron-electron interaction. 

where z(E) is a function of the energy, whose ex­
plicit form is determined by the relaxation mech­
anisms. According to (6) 

liws 
IDo(e) = 2Ts Fo(e)[i- Fo(e)J, (12) 

and the formula for the increase in the nuclear 
polarization will also have the same form as (8), 
where M must be set equal to 

oo oFo oo oFo 
M = I de p2(e)--/ I de p2(e)-. (13) J oz .J oe 

0 0 

Naturally, M = Te if F0(E) is a Fermi distri­
bution with effective temperature T e· For the 
case of strong degeneracy, it is easy to obtain a 
simpler formula for M. In this case the function 
8F0/8z can be approximately replaced by 
O(z(E)- z); then 

M = (de/ dz) z(e)=z· (14) 

2. We present also formulas for (I)/(I)0 for 
crystals with a complicated energy spectrum. We 
assume that the electrons are distributed near the 
extrema of the energy band. For integration in (1), 
we use the well known formula 

(15) 

Here JO! and cpO! are the polar and azimuthal an­
gles of the vector k - ka; ka is the extremal point 
of the energy band (a is the number of the valley). 

We shall consider the contribution made only by 
the zeroth terms of the series (2). Under the same 
assumptions as used in the derivation of (11) and 
(12), we can show that 

Here za and T~ are obtained from the system of 
equations for the conservation of the particle­
number densitv and the spin density with account 
of the intervalley transitions. 

Neglecting the intervalley transitions in the 
scattering of the electron by the nuclear spin and 
carrying out the integration in (1), we obtain 
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Here I A I~ is the square of the matrix element of 
the contact interaction for the a-valley. The dif­
ference in the gyromagnetic ratios y 01 for differ­
ent valleys can be attributed, for example, to the 
anisotropy of the conduction-electron g-tensor. 
Further, 

Po"(e) = ~ IV peal 

3. We make a few concluding remarks. Owing 
to the large value of the ratio Ye /yN ("' 103-10 5), 

the increase in the polarization (I)/(I)0 can serve 
as a very sensitive method for measuring the dif­
ference between M and Ts, which is of interest 
for the study of spin-lattice relaxation of nonequi­
librium carriers in crystals. If we measure T s 
independently, for example using the spin-resonancE 
signal, then the ratio (I)/(I)0 determines the quan­
tity M, which characterizes the distribution F0(E). 

In conjunction with methods which give other mo­
ments of the distribution function, the increase in 
the nuclear polarization can be used to reconstruct 
the form of the distribution function. When making 
concrete use of formulas (3), (8), and (17), it is 
necessary to bear in mind also other mechanisms 
of relaxation of nuclear spins, which lead to ''leak­
age" of the polarization. [ 7J 

It follows from the derivation of formulas (3) in 
(8) that the carrier drift and other singularities 
of the carrier motion, described by the higher 
terms of the series (2), do not make any contribu­
tion to the nuclear polarization in the case of an 
isotropic spectrum. The contribution of the drift 
to (I), which was considered in [ 3 ' 5• 6], is a result 
of an inaccurate determination of the effective tem­
peratures Te and TsY We note that in anisotro­
pic crystals without an inversion center, the con-

tribution to the nuclear polarization can be made 
also by the asymmetrical part of the distribution 
function, which we discarded in the derivation of 
formula (17). It is possible that this can explain 
the contribution observed in [ 2 J to the nonequilib­
rium polarization, which is proportional to the 
components of the vector H x J, where H and J 
are the constant magnetic field and the electric 
current in the sample. 
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3)In ['• 5 • 6] the distribution function was taken in the form 

If we expand it in the series (2) and redefine Te and T s• as 
usual, in terms of the zero-order function F 0 (E) and <ll0 (E), 

then the formulas from ['• 5 • 6] will coincide with (8) when 
M = T eff• and the carrier drift proper will make no contribu­

tion to the nuclear polarization. 


