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Propagation of electromagnetic waves in a semiconductor is studied by taking into account 
nonlinear effects due to heating of the electrons by the field. Nonlinear anomalous and normal 
skin effects are considered. The character of the field attenuation and also the dependence of 
the effective electron temperatures on the frequency of the incident field and its amplitude 
are studied for both the resonance and nonresonance cases. It is shown that the effective 
temperature in the resonance case exceeds that in the nonresonance one. It is found that the 
attenuation depth of the electron temperature is greater than the attenuation depth of the field 
in the anomalous case and of the same order of magnitude in the normal case. The dependence 
of the surface impedance on the amplitude and frequency of the incident electromagnetic field 
and the stationary magnetic field is found. The specific interaction of electromagnetic waves 
due to heating of the electron gas is considered. It is shown that propagation of small-ampli­
tude waves may change considerably in the presence of a large-amplitude wave. 

NON LINEAR effects connected with the heating of 
the carrier gas by the delayed transfer of energy 
from the carriers to the lattice take place in semi­
conductors situated in relatively weak electric 
fields[ 1J. The influence of this circumstance on 
the propagation of electromagnetic waves in a 
semiconductor was considered by one of the authors 
in[2J, where it was shown that the heating greatly 
influences the characteristics of the electromag­
netic waves propagating in the semiconductor. The 
connection between the electric current and the 
electric field producing it was assumed in this case 
to be local, that is, normal skin effect was as­
sumed to take place. There is undisputed interest 
in an investigation of the anomalous skin effect 
under conditions when the electron gas is heated 
by the electric field. 

The terms normal and anomalous skin effect 
must be specially defined in nonlinear theory. Non­
linear propagation of electromagnetic waves 
involves two parameters with the dimensions of 
length: the mean free path lm, connected with the 
transfer of momentum, and the mean free path le 
connected with the transfer of energy [1]. In the 
case of quasielastic scattering by the phonons, the 
only scattering that will be considered here, we 
have ti w1J/ E « 1 [1] and lm « le. Here wTJ is the 
frequency of the phonons on which the energy re­
laxation takes place, and E is the carrier energy. 

The normal skin effect takes place if the field 
penetration depth L greatly exceeds the two mean 
free paths. In our case these conditions can be 
written as follows: L » le, lm· In the case of the 
anomalous skin effect, the depth of field penetra­
tion L is comparable with or smaller than the mean 
free path. In the linear theory there is only one 
such length-lm; this is why in weak fields there is 
only the anomalous skin effect, determined by the 
relation L :S lm. In the nonlinear theory there are 
two anomalous skin effects, for L :S le and L :S lm. 
We note, however, that in the ''second'' anomalous 
skin effect ( L :S l m) the principal role is played 
not by effects connected with the heating of the car­
rier gas, but by the so-called striction effects[3J. 
It is essential that the "second" skin effect in 
semiconductors is not realizable in practice, owing 
to the small mean free path connected with the 
momentum transfer, and will therefore not be con­
sidered here. Thus, in this paper we shall take 
anomalous skin effect to mean an electromagnetic 
propagation process for which the inequality 
lm « L :S le is satisfied, that is, we shall investi­
gate the "first" anomalous skin effect. 

Having made these preliminary remarks, let us 
formulate the subject of the present communica­
tion. We investigate in this article the propagation 
of electromagnetic waves in a semiconductor for 
both the anomalous and the normal skin effect. For 
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the case of the normal skin effect we obtain a num­
ber of new results, compared with [2]. The anoma­
lous skin effect for nonlinear propagation is con­
sidered in the present paper for the first time. 

1. FUNDAMENTAL EQUATIONS OF THE PROB­
LEM 

The system of equations defining the problem 
consists of the kinetic equation for the distribution 
function and of Maxwell's equations. Assuming 
that the collisions between the electrons and pho­
nons are quasielastic, the carrier distribution func­
tion can be sought in the form [4J 

<l>(p,r,t) =/(e,r,t) + (x(e,r,t), p/p). (1.1) 

Here p is the quasi momentum of the carrier, r its 
coordinates, t the time, and E the carrier energy 
connected with the quasimomentum by the relation 
E = p2/2m, where m is the effective mass of the 
carrier. We shall henceforth consider electrons, 
although all the deductions pertain, of course, also 
to holes. 

By means of the usual methods (see, for exam­
ple,[1,4J) we can show that the second term of (1.1) 
is much smaller than the first, and obtain for f and 
x the following equations: 

/Jf P e 1 /J { p } -+- Vrx +---- -n(e)xE 
fJt 3m 3 n(e) fJe m 

1 f) { . [ 1 &f ]} =-- n(e)A(e) ·r·/(e)(1-/(e))+;:;-
n(e) &e ue 

+S {/,/}, 

~ P PM 
-- ffiH [hx] +v(e)x = -··· V rl+ eE--. m m m~ ( 1. 2) * 

Here n(E) = 4v'27rm312E112 is the state density, E the 
electric field, WH = ieiH/mc is the Larmor fre­
quency, H the external constant magnetic field, 
h = H/H, and A( E) and v( E) are given by 

(1.3) 

where T is the lattice temperature, 71 the quasi­
momentum of the phonon, and w 71 the probability of 
transition of the electron from the state p to the 

*(hx] = h X X· 

state p ± 71 when the electron is scattered by the 
phonon. 

The quantity A(E)/E 2 coincides, apart from a 
constant factor, with the frequency Ve( E) of the 
collisions connected with the energy transfer, and 
v( E) is the collision frequency connected with the 
momentum transfer 1). In the presence of several 
mechanisms for the transfer of energy and momen­
tum we have 

A(e) = LA~t(e), v(e) = L; vt(e). 

" 
(1.4) 

The summation over k is carried out here over all 
the energy-transfer mechanisms, while the sum­
mation over l is for the momentum transfer. We 
note that ve ~(nw71 /E:) 2 v(E), S{f, f} is the collision 
integral describing the electron-electron collisions 
and having an order of magnitude Vee(E)f(E) 
(Vee( E) -frequency of interelectron collisions). 
Formulas for Vee( E) for nondegenerate and degen­
erate electron gases are given in[s,sJ. 

We assume satisfaction of the inequality 

Vee(E) ~v,(e) ( 1. 5) 

(for estimates it is necessary to put in this in­
equality E = €, where € is of the order of the Fermi 
energy Eo for a fully degenerate gas and of the 
electron temperature for a nondegenerate gas). If 
the electron gas is nondegenerate and the energy 
transfer is via scattering by acoustic phonons, then 
the inequality (1.5) goes over into the criterion of 
Frohlich and Paranjape [ sJ . 

It is well known (see[4J, for example) that if in­
equality ( 1. 5) is satisfied, then f is a Fermi function 

( e- !!(r, t) \-1 

f(e,r,t)= l+exp B(r,t) ) . ( 1.6) 

The chemical potential 1.1. and the electron tempera­
ture ® are determined here from two balance equa­
tions, one obtained by integrating the first equation 
of the system ( 1. 2) over the momenta, and the other 
by multiplying this equation by the energy and inte­
grating it over the momenta [4). 

In the derivation of the balance equations we 
shall assume that the characteristic distance L, 
over which the field changes, is much larger than 
the De bye radius d ~ ("E/ 47re2N) 112• It is well known 
from plasma theory that when this inequality is 
satisfied the plasma can be regarded as quasineu­
tral. For a semiconductor with carriers of the 

l)If the scattering is from an impurity, then W 71 in the sec­
ond formula of (1.3) is the transition probability connected with 
the electron-impurity collision. 



362 F. G. BASS and Yu. G. GUREVICH 

same sign this means that the electron charge den­
sity at any point is equal to the equilibrium density, 
if we disregard processes such as impact ioniza­
tion, change of the recombination coefficient in the 
field, etc. It follows therefore that the concentra­
tion of the electrons does not depend on the coor­
dinates. In addition, we assume that the frequency 
of the incident field is w » "e· As shown by 
Ginzburg and Gurevich [4), under this assumption, 
in the zeroth approximation in velw, we can neglect 
the derivative of f with respect to time in the first 
equation of (1.2). From this circumstance it fol­
lows that the temperature, together with the chem­
ical potential (which is a function of the tempera­
ture and of the concentration), likewise does not 
depend on the time. The connection between the 
chemical potential, the temperature, and the con­
centration is given by the normalization condition 

~~ f(e, r)n{e)de = N. (1. 7) 
hJ. 

Let us consider an electromagnetic monochrom­
atic wave incident on a half space z > 0 filled with 
a semiconductor or a semimetal. The wave is 
normally incident on the interface between the 
vacuum and the semiconductor z = 0. (It was shown 
by Ginzburg and Gurevich [4) that, under the as­
sumptions made, monochromatic waves propagate 
in the semiconductor.) The electric field E can be 
represented as the sum of a constant field Ec 
connected with the gradient of the ele~tron tem­
perature and an alternating field~ e-lwt. The 
amplitude of this field will be henceforth denoted 
by E. This will not lead to any misunderstanding 
in the future. Accordingly x in the second equation 
of ( 1. 2) can be represented as the sum of two quan­
tities: Xc• which does not depend on the time, and 
xve-iwt. With the aid of X we can express the elec­
tric current j and the heat flux Q by means of the 
following formulas [6) : 

16rcme r 
j = --\. ex(e)de, 

3h3 ~ 

16rcm r 
Q = --J e2x(e)de. 

3k3 0 
(1. 8) 

Substituting the value of X obtained from the 
second equation of ( 1. 2) into the first equation of 
the same system, and then integrating over all the 
momenta with and without multiplication by E, we 
obtain a system of two transport equations: 

div ic = 0, divQe = B;~tE;E~t" -A (E>) (8/ T -1). (1.9) 

We have introduced here the following notation 
(see [6)): 

jc = e2J10Ec'- eJ11 VIne+ [e2J2oEe'- eJ21 VInE>, h] 

+ h(e2J30Ec'- els1 V In 8, h), 

Qc = e!uEc'- J12V lnE> + [eJ21Ec'- J22V In 8, h] 

+ h(elatEc'- la2 V In 8, h), 

4e2 ""~ df 
B;~t = --- den(e)eBu,(e)-d , 

3m e 
0 

v(e) 
B;~t(8) = (w2- WH2 + v2(e) )2 + 4w2v2(e) 

{ 
WH2 

X (w2 + wn2 + v2(e)) ~il' + w2 + v2(e) 

X (w8 2- 3w2+ v2(e)) h;h" + 2iw WH h1 elik}, 

( 1.10) 

( 1.11) 

ezik is a completely antisymmetrical unit te?sor 
and j and Qc are the densities of the electnc cur­
rent ~nd of the heat flux, which are connected with 
the thermal emf. In the one-dimensional case, 
which is considered now, jc, Qc, ®, and other quan­
tities depend only on c. The integrals J Zi and B ik 
can be calculated in general form only for a fully 
degenerate Fermi gas. The corresponding formu­
las are quite simple, but will not be presented 
here, and we confine ourselves only to calculation 
of A(®). 

For acoustic and optical phonons, in either a 
deformation or a polarization interaction with the 
lattice, the dependence of w2p and W2p on the elec­
tron energy E is determined by the following 
formulas [7 J : 

liw2p ='liwr(eJ T)"', W2p = Wr(B IT)"'· ( 1.12) 

Here nwT and WT are the values of nw 2p and W2p 
at p = v'2Tim, k1 = 0 for optical and k1 = 112 for 
acoustic phonons, and the values of k2 are given 
in [2 J. 

Using this circumstance, we can obtain for A(®) 
the following formula: 

A (8) = Ao(E> I T)'-1• ( 1.13) 

For a fully degenerate electron gas r = 1, and 

_ 32m3TeoliwTWT (~)"'+k, 
Ao- (k1 +k2+i)li3 T ' 

while for nondegenerate gas r = k1 + k2 + 112 and 

Ao = ~)'2i'(r+ 1/2) Nm'hT'I•IiwTW T· 
n'l• 
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Similarly we can write an expression for v( E): for 
a nondegenerate gas v(E) = v0(T) (T/E)q, where 

22(k,-k,H-'i•n ( mT) 'f, W 
vo(T) = T, q = 1lz + k,- kz. (1.14) 

(kz- k, + 1)1iuJT 

The values of r and q were presented for several 
cases earlier [Z]. 

We now derive the energy balance equation. To 
this end it is necessary to eliminate the static field 
Ec from the expression for the heat flux Qc· To do 
so, we use the boundary conditions for the static 
current. We assume that there is no static current 
in the xy plane. This is the customary supplemen­
tary condition for the investigation of isothermal 
thermomagnetic effects[6l. The z component of the 
current is likewise equal to zero. This follows from 
the first equation of ( 1. 9) and from the absence of 
current flow through the vacuum-semiconductor 
interface. Thus, to determine Ec we have the con­
dition jc = 0. The thermomagnetic field Ec ob­
tained in this manner is an interesting study in 
itself. In this communication we shall not consider 
it. 

Substituting Ec in the second expression of 
( 1.10) and taking into account the one-dimension­
ality of the problem, we obtained for Qz the rela­
tion 

Qz(v) = -Tx(v)dv / dz. ( 1.15) 

We have introduced here a dimensionless electron 
temperature v = ®/T and K(v) is the coefficient of 
electronic thermal conductivity. For a nondegener­
ate gas, the thermal conductivity coefficient was 
calculated in[6l. In the absence of a magnetic field 
we can write the following expression for K(v): 

( 5 ) uNT 
x(v)=A.ov1+q, A.o= 2+q -e-, 

4 ( 5 ) e u=----=r -+q -, 
3l'n 2 mvo 

( 1.16) 

1.. 0 is the heat conductivity in the absence of an 
electromagnetic field, and u is the mobility of the 
electrons in a weak electric field. 

In a strong magnetic field 

x(v) = f-H±vl±q, AH+ = Ao cos2 qJ, qJ =I= n I 2; 

n 
qJ=2, 

( 1.17) 

Here t..H is the thermal conductivity in the absence 

of an electromagnetic field, the plus sign pertains 
to cp "" rr/2, and the minus sign to cp = rr/2 (cp is the 
angle between the magnetic field and the z axis). 
The criteria for the weak and strong magnetic field 
are the inequalities: 

When cp = 0, Eq. (1.17) goes over into (1.16). 
For a completely degenerate electron gas 

n2NT 
x(v)-

- 3v(6o)m 

v(6o) = vo(T I 6o)q. ( 1. 18) 

Finally, we can rewrite the energy balance equa­
tion in the form 

T r~ x(v)~; + liik (v)EiEI/ = A 0vr-l (v- 1). (1.19) 

It is necessary to add the boundary conditions to 
this differential equation. We choose them in the 
form 

dv I = 0 v I z-+oo --+- 1. 
dz z=O ' 

( 1. 20) 

The first boundary condition corresponds to the 
vanishing of the heat flux through the surface z = 0, 
and the second to the equality of the electron and 
lattice temperatures at infinity. 

In addition to the heat-conduction equation, the 
complete system of equation contains Maxwell's 
equations, which in our case are 

d2Ex wz "BE ] 0 ---+-[AEx-t y = , 
dz2 c2 

d2Ey + wz [iBEx+ CEy] =0, 
dz2 c2 

sin qJ 
Ez = - · {612Ex + (633- 6u)Ey cos cp}, 

6u sin2 qJ + ess oos2 cp 

E122 sin2 cp 
A= 611 + ----·-·---, 

61! :sin2 cp + 633 cos2 cp 

iB = 612633 cos cp 
611 sin2 cp +-633 cos2 CiJ 

c = 6!!633 ___ _ 

&u sin2 cp + 633 cos2 qJ ( 1. 21) 

By E 11 , E 12 , and E33 we denote the components of the 
dielectric tensor in a coordinate frame in which 
the axis 33 is directed along the magnetic field: 
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e11 = 1 _ 32l'~=~r (w + iv(e) )e'h df de 
3w 0 WH2-(w+iv(e)) 2 de ' 

32 i2n2m'l• e2 ~ e'l• df 
eaa = 1- -----de 

3w 0 w + iv (e) de · (1.22) 

The boundary conditions for Maxwell's equations 
have, as usual, the form 

limE-+0. ( 1. 23) 
Z-+00 

If a plane wave E< 0>(exp(iwz/c) + P exp(-iwz/c)) 
is incident on a half-space filled with a dielectric, 
then it follows from the boundary conditions (1.23) 
that the expressions for the reflection coefficient 
P and for the reflection coefficient R are 

~-1 
P=--· 

~+ 1' 

( 1. 24) 

When t « 1 we have 

R = 2~, P = -1 + 2~. (1.25) 

Let us note one more circumstance. Maxwell's 
equations are not linear, by virtue of the dependence 
of A, B, and C on the temperature. For semimetals 
and degenerate semiconductors, however, this is 
not the case, for accurate to (®/E 0) 2 « 1, df0/dE 
= -6(E- E0), and, as can be seen from (1.21), A, B, 
and C are not functions of the temperature, and the 
fields are described by the formulas of the linear 
theory. 

In concluding this section, let us make one more 
remark. The Fermi distribution function ( 1. 6), with 
parameters determined by the transport equations 
( 1. 9), is the first term in the expansion of the dis­
tribution function when inequality ( 1. 5) is satisfied. 
However, even if this inequality is not satisfied, in 
this case the results obtained for the macroscopic 
quantities are sufficiently accurate. This circum­
stance was discussed many times in the literature. 
We shall return to it in the third section. 

2. ANOMALOUS SKIN EFFECT 

It will be convenient to rewrite the energy bal­
ance equation (1.19) in the form 

I> 1 

w = ~ x ( v) dv / ~ x ( v) dv, 
0 0 

1 

62 = A 0 / T ~ x(v)dv, 
0 

Q(w) = [v(w)]r-1 {v(w)-1}, 

1 

P;k = Bu.[v(w)]/ T ~ x(v)dv. 
0 

The boundary conditions for w follow from the 
boundary conditions for v and are 

dwl -- -0 
dz z=o- ' wlz=oo = 1. 

(2.1) 

(2.2) 

From the expression for 6 it follows that 6 ~ 1/Ze 
when cp = 1rj2 and 6 ~uH/cZe when cp = 1f/2 and 
uH/ c » 1. It is interesting to note that when 
uH/c » 1 and cp = 1rj2, the value of 6 increases 
rapidly and the conditions for the anomaly of the 
skin effect become more stringent. We shall con­
sider a strongly anomalous skin effect (L « 6- 1). 

To solve (2.1) we can use in this case the method 
of successive approximations, neglecting the right­
hand side in the zeroth approximation, and then re­
garding it as a perturbation. The physical meaning 
of this procedure consists in the following. It fol­
lows from (2.1) that the characteristic distance 
over which the temperature decreases is 1/6. By 
virtue of the large anomaly of the skin effect, the 
field attenuates much more rapidly. Thus, the 
right side of (2.1) plays the role of surface sources 
and can be neglected when solving the balance equa­
tion in the zeroth approximation. It must be taken 
into account in the next approximation in order to 
satisfy the boundary conditions on the plane z = 0. 
When solving Maxwell's equations (1.21) in the 
direct vicinity of the boundary, the quantity w can 
be replaced by w 0, since w remains practically un­
changed over distances of the order of L; this 
changes Maxwell's equations into a system with 
constant coefficients, which can be readily solved. 
To find the distribution of the field over the entire 
space, we can use the WKB method, owing to the 
slow change of w. 

By virtue of the foregoing, the solution of (2.1) 
will be sought in the form 

w = w' + w", w" ~ w', (2.3) 

where w' is a solution of ( 2.1) without the right­
hand side. This solution is written in the form 

tD1 tD1 

- -yi6z = ~ dw' [ s dw' Q(w') r·'~ 
Wo' 1 

(2.4) 
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In the derivation of (2.4) we took into account the 
boundary conditions at + 00 • 

For w" we obtain, accurate to quantities of or­
der ~o/~ (~ ~ 1/L; 6/~ « 1), 

tFw" I dz2 = -P;R.(wo')E;ER.*. (2. 5) 

As follows from the foregoing, the field near 
the boundary 

E; = Eo; exp {in (wo')Ulz I c - s ( Wo') z}, (2. 6) 

where n(w0) is the refractive index and ~(w0) is the 
attenuation index. Substituting (2. 5) in (2.6) we ob­
tain 

11 __ P;R.(wo')E;o,Eho• e-2o(wo')z (2. 7) 
w - 4~(w{) · 

From the boundary condition for w at z = 0 we ob­
tain an equation for the determination of w0: 

P;~<.(wa')E;oE~<.o* = y'ib [ r Q(w')dw']'t, (2.8) 
2s (wo') 1 

Formulas (2.3), (2.4), (2.7), and (2.8) completely 
solve the problem of determining w, and conse­
quently also the dimensionless temperature. 

We note that Eio and Eko in formula (2. 7) must 
be expressed in terms of the amplitudes of the in­
cident field E~. This can be readily done with the 
aid of the formula for the refractive index R(w0). 
In addition, to be able to write down many formulas 
compactly, it is convenient to express all the E~ in 
terms of one of them, say E~ [2]. We shall hence­
forth omit the subscript x. In order to find the 
temperature as a function of w, we shall use 
formula (2.1). Taking (1.17) into account, we obtain 

(2. 9) 

For all the known cases of scattering, 2 ± q > 0. 
This inequality will henceforth be assumed satis­
fied, as well as the inequality r ± q > 0, which en­
sures the absence of runaway[ 9J. 

We proceed to study the dependence of the tem­
perature and of the fields on the coordinates. We 
consider first the temperature. Formulas (2.4), 
(2.7), and (2.9) determine completely the dependence 
of the temperature on the coordinate z. However, 
we are unable to calculate the integral in formula 
(2.4) for arbitrary rand q. We shall therefore 
consider two regions of the semiconductor: a 
region directly adjacent to the surface z = 0, when 
we confine ourselves to the case v(z) » 1, and a 
region deep inside the semiconductor, where the 
inequality v - 1 « 1 is satisfied. 

If we assume that v(z) » 1, then the integral in 
(2.4) can be readily evaluated, and we obtain for 
the temperature the expression 

. b(vo') , 
v = v0' {[1- (2 + q- r)<)(vo')z]}2/(2±q-r)- ---e-2~(vo)z 

- s(vo') 

(2.10) 

where 

II (v0') = [2 (2 + q) (2 + q- r)] -'hbvo'<r-2=Fq)l'. 

The second term in the curly brackets is much 
smaller than the first, in accordance with the as­
sumption that the skin effect is strongly anomalous 
(o(v 0)/~(v 0) « 1), and will be neglected. This neg­
lect is equivalent to assuming that v0 coincides 
with the temperature v 0 on the surface of the sam­
ple, so that no distinction will be made between the 
two. We note, however, that in the investigations 
of thermomagnetic effects, when the derivative of 
the temperature plays an important role, the 
second term in the curly brackets of formula ( 2.1) 
is significant. 

Let now v- 1 « 1. This corresponds to that 
region of the sample, where the temperature of the 
electron gas is close to the lattice temperature. 
The values of v for large z can be readily obtained 
from (2.4) with the aid of (2.9) by separating the 
singularity of the integral, in analogy with the 
procedure used in the calculation of the self-action 
factor in[2]. For large z, we have the following 
formula for v: 

v(z) = 1 + Sv exp {-bz I (2 + q)'h}, (2.11) 

where Sv is the self-action factor for a temperature 
and is determined from the expression 

_ vr+t±q - 1 ,)-'/• i2 ] } --·dv. 
r+1+q v-1 

(2.12) 

This factor behaves in different fashion, depending 
on the relation between r and q. A simple investi­
gation shows that when v0 » 1 

{ 2'f•(r+2±q)'f, } S ·""' exp - · . vo<2±q--")f2 «: 1 
v 2±q-r 

for 2 ± q - r > 0, 

Sv .- 1 for 2 ± q - r < 0. (2.13) 

Formulas (2.10)-(2.13) go over into the formulas 
for a degenerate electron gas by replacing v0 with 
v0(E 0) = T 0(T/E 0)q, and putting q = 0 and r = 1 every­
where except in v(E0). 
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Let us consider now the electric field in a semi­
conductor. Once the temperature has been deter­
mined, Maxwell's equations (1.22) become, by 
virtue of (1.21), linear equations with coefficients 
that depend on z. As already indicated, owing to 
the inequality o(v0) « ~(v0), the temperature varies 
slowly as a function of the coordinates compared 
with the field, as a result of which we can use the 
WKB method for the solution of Maxwell's equa­
tions. The solution can be written up in general 
form, but then it becomes meaningful only after a 
number of simplifications, when definite limitations 
are imposed on the frequencies and on the mag­
netic fields. 

We note that since we obtained the temperature 
as a function of the coordinate only in the regions 
where v(z) » 1 and v(z) - 1 « 1, the field is like­
wise defined only in these regions. In the region 
v(z) » 1, the explicit form of the field depends es­
sentially on the character of the initial assumptions. 
For large z, in the region with v(z) - 1 « 1, we 
have 

(2.14) 

where SE is the so called self-action factor [41, 
~ 0 is the attenuation of the wave in the linear theory, 
and n is the refractive index in the linear theory. 
The self-action coefficient will be calculated below 
under various assumptions. 

We shall consider three cases: 
I. The following relations are satisfied 

__!._~ 1 2), 
(I} 

v -,-Q-, ~1; 
(l)- 1,2 

{2 1, 2 are the magnetoplasma resonance frequen­
cies 3>. Physically this case corresponds to high 
frequencies. In addition, we assume that the fre­
quencies are far from resonance. 

Expanding A, B, and C in (1.21) in powers of v 
and solving the resultant equations by the WKB 
method, we obtain for the field the formula 

E(z)=RE0 exp{i: nz-£0 ~ v-qdz}. (2.15) 
0 

In the region where v(z) » 1, we have 

{ 
(I} sovo-q 

E(z) = RE0 e~p i-nz +(Z± q- r- 2q)-1--
c 6 ( vo) 

X [(1- (2 ± q- r) 6(vo)z){2±q-r-2q)/(2±q-r)- 1]} · (2.16) 

2 1n longitudinal propagation this inequality can be replaced 

by v/ WH « 1. 
3 'rhe magnetoplasma resonance frequencies are given by 

the formula (see ['" "2]): 

f:21,2 2 = 1l2 (Cilo2 + lilu 2 ) ± 1l2 ( (lilo2 + lilu2) 2 - 4Cilo21ilu2 CQS2 qJj1/2. 

Let us find the self-action multiplier. When 
z - co the integral in the exponential function in 
(2.15) also tends to infinity, since v tends to unity 
as z - 00 • We separate the diverging part of this 
integral. To this end we rewrite (2.15) in the form 

' 
E(z) = RE0 exp {i~nz- soz- so~ (v-q -1)dz}. (2.15') 

c 0 

For large z, the upper limit in the integral of 
(2.15) can be set equal to infinity, since this inte­
gral converges. Comparing (2.15) at z == co with 
(2.14), we obtain for SE the formula 

SE=exp{-soi (v-q-i)dz}. (2.17) 
0 

It will be convenient for what follows to change 
over in (2.16) from integration with respect to z to 
integration with respect to v. This is readily done 
with the aid of (2.4) and (2.9). Ultimately we get 

{ (2 ± q)'''so ~~ SE = exp vl±q (v-q- 1) 
2'"6 

Vo 

( vr±q+Z - 1 vr+i±q - 1 )-'/• '"I x - dv~ 
r+q+2 r+i±q J· 

(2.17') 

From (2.17) we see that SE < 1 when q < 0 and 
SE > 1 when q > 0. 

We write out the asymptotic expression for SE 
with v0 » 1: 

SE,...., exp{- 2'"(2 ± q)'f•(r+ 2 ± q)'" So vo(2±q-2q-r)/2} ~ 1 
2+ q-r-2q 6 

when q < 0 and 2 ± q- 2q- r > 0; 

SE ,...., exp { 2''' (2 + q) '" (r + 2 ± q) '" s~ vo(2±q-r)/2}~ 1 
2+ q-r-2q u 

(2.18) 

when 2 > 0 and 2 ± q- r > 0; 

SE ,...., e"soi~, { <0, q<O 
a ' >O, q >0 

Ia I,...., 1 

when 2 ± q- 2q- r < 0 and 2 ± q- r < 0. 

We present formulas for v 0 and~ 0 when v 0 » 1: 

Vo = [ (2 ± q + r) 'I• (2 ± q) '1•¢ (<0, <OH) lEo 12 ]2/(2±q+r). 

212 6A~T 

(2.19) 

In the general case, it is meaningless to write out 
the unwieldy expressions for ~(w, wH) and ~o· 

Let us consider the particular cases when there 
is no magnetic field and of a longitudinally propa­
gating helical wave (w « wH; cp == 0). When WH == 0 
we have 



NONLINEAR THEORY OF WAVE PROPAGATION IN SEMICONDUCTORS 367 

£o= ~(5/~:-_tU_ wo2vo , n=( 1 - w02 )±'/z 
3yn cw2(1-w02/w2J'h wz 

for q > 0, 2 + 3q - r > 0; 

(2.20) 
( 2. 25) 

In the case of helical waves we obtain for ~ 0 and for q < 0, 2 + q- r > 0; 
v 0 the formulas 

Wo 
n=---

Vo = [ 2jZ(2 + q + r) 'I~_±_V_~' w'l'wH'I'c JE0 j2] 2/(Z+q+r·), 

n wo&o~oT 

(2.21) 

6 0 is the value of 6 when H = 0. 
II. Assume now that one of the following two 

relations is satisfied: 

cp = 0, 

or 

wu = 0, 

Physically, the first corresponds to cyclotron 
resonance and the second to a low-frequency field. 
In both cases the displacement current is much 
larger than the conduction current. In view of the 
fact that the character of the derivation is the same 
here as in the first case, we write down the results 
immediately 

E=RE0 exp{i~-z-£0 ~ vqdz}; (2.22) 
n 

when v(z) » 1 we have 

{ w 1 £ovoq 
E=RE0 exp i-z+-~--- --~-[(1-(2+q+r) 

c 2+3q-r o(vo) 

X 6 (vo) z)(2+3q-r)/(2+q-r)- 1]}. 

The self-action factor is 

( vr+Z+q - 1 vr+Hq --" 1 )-'/z } 
X - ------- dv , 

r+2+q r+1+q 

SE > 1 for q < 1, SE < 1 for q > 0. 

(2.23) 

(2.24) 

The asymptotic expression for SE when v0 is 
large is 

a { < 0, q > 0 
>0, <0' 

for 2 + 3q - r < 0, 2 + q - r < 0. 

~ 0, v 0, and n are determined by the following formu­
las: 

2r(5/z + q) wo2 

3jn cvo 
so= n = 1; 

Vo = ( J2 + _r_+ ~~~:~_(_2_ + q~ ~1~~~ Y/(Z+q+r) . (2.26) 

The coefficients of reflection and refraction for 
cases I and II are: 

1- n 2iso 
p = --- + --- ~·o•q. 

1+n (1+n)2 · 

2 2iso 
R = -1+-;- + (1 + n)2 u'Fq_ (2.27) 

The upper sign in (2.27) corresponds to the first 
case, and the lower to the second. 

III. Let us assume that one of the following 
three relations is satisfied: 

w = Q!,z, ,. I R12 ~ 1; 

w = ulu, vI WII < 1, t·lo~c'1 I uluVo ~ 1, fP = 0; 

v / w ~ 1, Wo2c'l / wvo ~ 1. 

We deal here with magnetoplasma and cyclotron 
resonances, and also with low-frequency waves. 
The displacement current is assumed negligibly 
small. The field has the following form: 

E = 2sE0 ( ~0 t" exp{- (1- i) so~ vq12 dz }. 
0 

(2.2R) 

In the region where v(z) « 1, we can readily ob­
tain for the field the expression 

2SE'o 
E= . 

[1 - (2 + q- r) 6 ( uo) z)q/2(2±q-r) 

{ 1- i 
X exp - ·-

2+q+q-r 

soVoq/Z 
---· 

6 ( L'o) 
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X [ ( 1 - (2 ± q - r)o ( t'o) ~) 12±q+q-r·)i(2±q-r)- 1]}. 

(2. 29) 

The self-action factor is 

( 1 i) ( 2 + ) •;, ~ 1 

SE = voq/4 exp{ - , - q ~I (vq/2 -1) 
2'12 6 J 

Vo 

( 
vr+2±q - 1 vr+i±q - 1 )-'!. } 

X v1±'1 - dv 
r+2±q r+1+q · ( 2. 30) 

We write out the asymptotic expression for SE 
when v0 is large: 

SE ~exp{-~j1_:::::-i)(2~_q)'h(r+2±q)'/, ~ , 
---'----.::..:...- ~ co2±q+q-r ~ 

2±q+q-r 6 f 

for q > 0, 2 + q + q - r > 0; 

{ 2'1•(1-i)(2+q)'f•(r+2+q)'h ~0 +) 
SE ~ exp ·------- -Vo2_q-rf 

2±q-r 6 

for q < 0, 2 ± q - r > 0; 

Ia! ~ 1, 

f < 0, q > U for 2 ± q + q - r < 0 
a l > U, q < 0 for 2 ± q - r < 0 

(2. 31) 

We note that if the last two limitations on the fre­
quencies are satisfied, then it is necessary to re­
tain the plus sign in front of± q. If magnetoplasma 
resonance takes place, then we obtain for v0 the 
formula 

Vo = [ (2 ± qrf, (2 + q + r) •·, L ( (•Ju) I Eo 12 ]2;(2+r±<I+<J) • 

2't, {)},± H T 
( 2. 32) 

The function L(wH) will not be given, in view of its 
complexity. 

The formulas greatly simplify when cp = n/2: 

v _ { 4(2-q)'l•(2-q+r)'l•f2(5f2+q) 
0 - 3n'!, f'l• ("/2- q)[Cq (5/2- q + q2) / (5/2 + q)]'h 

( 2. 33) 

When the second relation is satisfied we obtain 
for the temperature and for ~ 0 

Vo = [( 6(1 + q) (r+ q j:-_}) )''~~Juv0'i,ciE~~ ]t!(l+q±r/2) 

f( 5f2+q)n'/, J Wobl.oT ' 

( 2. 34) 

The results for the third relation, in the case of 
circular polarization of the incident wave, are ob­
tained by replacing WH with w. We present also a 
formula for the impedance 

1 + i (!) {; = --- --v0-q/~~ 1. (2.35) 
2 c~o 

We note that by virtue of the inequalities imposed 
on r and q, the dependence of v 0 on E 0 is in all 
cases such that v0 increases with increasing E 0• 

3. NORMAL SKIN EFFECT AND WAVE INTERAC­
TION 

The normal skin effect for semiconductors with 
low carrier density was considered earlier l2 l. We 
shall investigate here the case of large density, 
when the criterion (1.5) is satisfied and the distri­
bution function can be regarded as Maxwellian. 

In the case of normal skin effect, ~(v0) « o(v0), 

we can neglect in the balance equation ( 1.19) the 
terms with the derivative with respect to the coor­
dinate, obtaining: 

(3.1) 

This algebraic equation must be solved simul­
taneously with the system of Maxwell's equations 
(1.21). To obtain the results in compact form let 
us consider the same particular cases as in Sec. 2. 

'V 
l. - or 

(f) 

'V 'V 

(•lH , I w- (•lHl, 

v 
I I ~1. I•J- n,,2 

When these inequalities are satisfied, the solution 
is best sought in the form 

E(z) = u(z)e-iwnzlc. (3. 2) 

Expanding A, B, and C in (1.21) in powers of v, 
we obtain for J.!k the following equation (see also[i2]): 

(3. 3) 

The uk for different k are interelated linearly 
by virtue of Maxwell's equations. In this connec­
tion, we shall henceforth use only one component 
of the vector u, say Ux, which under the assump­
tions made will be denoted by u. 

Expanding Bik in powers of v, we obtain for v 
the expression 

(3.4) 
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Eliminating u from (3.3) and (3.4), we get an equa­
tion for v: 

{(r + q)vq- (r + q- 1)v9-1}dv I dz 

+ 2so(v -1) = 0. (3.5) 

The solution of this equation takes the form 

r [(r+q)v-(r+q-'l)]vq dv= -2 z (3.6) 
j v(v-1) so, 

Vo 

where v 0 = v( +0). The value of v 0 is connected with 
u 0 by Eq. (3.4), wherein u0 must be expressed in 
terms of the amplitude of the incident field u 0 with 
the aid of ( 2.13) and ( 2.16). For v 0 » 1 we get 

Vo = (· 4Mi(w,wH)IEOI2 )1/(r+ql. (3.7) 
.In( I+ n) 2 

In the general case the expressions for M1 and 
n(w, WH) are rather cumbersome. For the impor­
tant case of helical waves (wH » w, v) with longi­
tudinal propagation we get 

Vo= ( 16f("/z-~)_ ,~wluolz )1/(r+q)' 

, 3n'!z WHAo 
(3.7 1 ) 

nand ~ 0 are described by formulas (2.23). Equation 
(3.6) defines vas an implicit function of z, after 
which the field is obtained from (2.24). 

Let us assume that the electron-gas tempera­
ture is high compared with the lattice temperature. 
Then we have for the region where v(z) » 1 

. ( 2q \ (r+q)/2q 
E = RE0 e-HiJnZ/C 1 - --- sovo-q z ) , 

. r+q 

( 2q )1/q 
v = Vo 1 - · ~ + q £ovo-q z . (3. 8) 

In the region where v- 1 « 1 we have 

4MSE21Eolz 
V=1+ e-2;oz.(3.9) 

(1+n) 2 Ao 

The self-action coefficient SE is given here by 

Vo 

SE = exp{ ~ ~ 
i 

with 

[(r + q)v- (r +~q ~ 1)]_(v_'J=J.2 dl·}. 
c(u- 1) 

(3.10) 

(3.11) 

II. We can investigate analogously the case when 
any one of the following two systems of equations 
is satisfied, either 

or 

All the results are obtained here by replacing q in 
(3.8)-(3.11) by -q. With this, we have for v0 

v = (4f("/2+q) wozluof \1/(r-q) 

0 ' :1n ' ·v()fi o ) 
(3.12) 

if the first system of relations is satisfied. If the 
second system is satisfied, the factor 4 in the 
parentheses should be replaced by 2. The polar­
ization of the incident field is assumed linear. The 
reflection and refraction coefficients for the last 
two cases are described by the formulas of (2.27). 

III. We proceed to investigate the resonances in 
the low-frequency case. Assume that one of the 
following three systems is satisfied: 

()) = QL2, vI Q1,2 << 1; 
w = ltliJ, vI w11 <C., 1, cp = 0, ulo2c 9 I WI{\'·""> 1; 

wu = 0, w < v, Wo2Uq I wvo ~ 1. 

Solving the equation for the temperature under 
any of the three foregoing assumptions and expand­
ing A, B, and C in ( 1.21) in terms of the corre­
sponding small parameter in the region v(z) » 1, 
we obtain for the field the equation 

(3.13) 

where F 1, 2 = Ex- k1, 2Ey are the normal waves, and 
F~, 2 the values of F 1, 2 for the incident wave. The 
coefficients k1, 2 have different values for each of 
the cases. The method of solving equations of this 
type is described in detail inl2J, and we present 
only the solution: 

F = 2ifo( 1 +T{2r- q~(r-=q)l·;,--;;wl~lz )~'. 
r- q i [ ]" Q=- ---+-r(r-q)'"; 

q q 

V = Vo 1 + ---Z ( q (I) )-2/q 
[ ( 2r - q) ( r - q) ]'/, c I s I · (3.14) 

Here t is the impedance, which is connected with 
the coefficients of reflection and refraction by 
formulas (2. 20). The indices ( 1, 2) will be omitted 
where there is no danger of misunderstanding. We 
present the expressions for k1, 2 , t and v0 for the 
different cases: 

In the case of magnetoplasma resonance 

i [ a - g _ ( (a - g) 2 \ '" J ki 2 =- ---- + + b2 )1 ·, 
' b 2 4 



370 F. G. BASS and Yu. G. GUREVICH 

b = ~ ~-- 8tz" 8331 cos <p 

8u" sin2 <p + 83311 cos2 <p 

( 3.15) 

Eik and Elk are the real and imaginary parts of the 

dielectric tensor at v = 1. 
For the impedance and for v 0 we obtain* 

(r-q)/4r 
~ = z-<r+q)/2r( ___ !_\ so-<r-q)/r I v 1-q/, 

r- q) 

( r- q )'/'} xexp{- iarctg. --r- ' 

where 
r \ t/2r 

Vo = 21!1' ( --~~~--) so-2/r I 'Y 12/r 
r-q 

(l)boiFolz )tir 
TV (w)Ao 

[ b2 ]'{, 
£o2 = a+ g ± (a- g)Z + 4 

( 3.16) 

In the case of magnetoplasma resonance, the 
nonzero z-component of the electric field, E z• is 
given by 

( r \ ''• vlf o ( q w ) !l' Ex= --- 1 --- 1 + Z , 
r - q ) 1 ~ 12£02 [ ( 2r - q )( r - q) ]'h c I ~ I 

, r+q i[r(r-q)]'f, 
Q=----+ . ( 3.17) 

q q 

It is of interest to present formulas for t and v0 

in the case of transverse propagation ( cp = rr I 2): 

[ f (512 _ q) ]1/r ( r )(r-q)/4r ( WnVo )'/, 
~ = z<r+q)!2rrr,q/2r ~----~_- ~~- --2-

3yn r- q Wo 

( Wo.2 )"' ( Wo2 )(r-q)l!.r ( Wo )!/2r 
X 1+-- 1+- -

2wu2 WH2 WH 

[ woiFOI2]-q/2r { . ( r-q )'/,} 
X · exp -~ arctg ---' , 

Ao r 

*arctg =: tan-1 • 

( r ) 1/2r ( mo2 \ 1/Zr [ 2r (51 2 _ q) J 1;r 
l'o = 211' ~-- 1 + --- I 

. r- q WH2 I 3n'h 

(3.16') 

In the case of cyclotron resonance k = i (the 
second value of k corresponds to a nonresonant 
wave). The formulas for the impedance and v 0 are 

(, - 2 qf --- ------ ----
~ - - r ( r \(r-q)/'•r ( 4f (5 /z + q) wo2 )-'/, [ Wn I EO 12 ]-q/Zr 

\ r- q l ~1n'hwnvo 4nAo 

{ ( r-q \';,} 
X exp - i arctg - --- . , 

\ q ) 

. _ ( r \11zr [wn1Eolz]1/r 
Lo- ~--- 1 • 

r- q , 4nAo 

We have used here the fact that F 0 = (1- i)E 0 

(see [2 l). 

( 3.18) 

Finally, if the third system of relations is satis­
fied, then the formulas for the corresponding quan­
tities are obtained from (3.18) by replacing wH 
with w and IE 0/2 with Y2(1 + /k/ 2)1E 0/2 (k is the 
polarization coefficient of the incident field). 

Comparing (3.8) and (3.14)-(3.18) 4> with the 
analogous formulas of [2] we can readily verify that 
the difference lies in inessential constants of the 
order of unity (due allowance must be made in the 
comparison for the difference in notation). This 
confirms once more that the electron-temperature 
approximation is sufficiently accurate even if the 
inequality ( 1. 5) is not satisfied. It can be assumed 
that this statement holds for the anomalous skin 
effect, too. 

In conclusion let us discuss a specific electro­
magnetic-wave interaction connected with heating 
of the electron gas. Assume that two waves propa­
gate in a semiconductor, with frequencies w1 and 
w2, and with one amplitude E 1 much larger than the 
other, E 2. As follows from (4l, no combination 
harmonics appear in the zeroth approximation in 
the small parameter viQ 1, 2• The wave interaction 
is manifest in the fact that the second wave propa­
gates in a gas heated by the first. This influences 
the phase and the attenuation of the second wave. 

The field of the second wave is determined by 
Maxwell's equations ( 1. 21) with a dielectric tensor 
that depends on the electron-gas temperature, 
which is determined in turn by the parameters of 

4 1'here are errors in formulas (4.6), (4.8), (4.19), (4.22) 
and (4.23) of [2 ], which correspond to our formulas (3.15), 
(3.16), (3.17) and (3.16'), 
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the second wave (assumed known). In the case of 
the anomalous field effect we can use for the field 
of the second wave, subject to satisfaction of the 
appropriate inequalities, the formulas derived in 
Sec. 2, in which we must substitute v0 correspond­
ing to the first wave and n and ~ 0 corresponding to 
the second. In the normal skin effect the situation 
is somewhat more complicated, since the depen­
dence of the temperature on the coordinates and on 
other parameters varies with the different require­
ments imposed on the frequency w 1• 

Let us consider several examples which, while 
not covering all the possible cases, suffice to ex­
plain the situation. 

Assume that the conditions designated by the 
Roman numeral I are satisfied for the frequency 
w 2• If w 1 satisfies the same relations, then the 
formulas for E 2 are 

. ( 2q )(r+q)£'"/2q£, 
Ez = RzEz0e'"''n,/c 1--- swvo-qz (3.19) 

r+q 

for v(z)~ 1; 

Ez = RzEz0SE, exp {- ( i ~2 nzZ - szoZ)} ' 

exp{ r+ q 520 vwq}~1, 
2q sw 

Vo--(r+q)/2 £zo ~ 1 sw . , 

for v(z) -1~1. 

q>O 

q<O 

On the other hand, if w 1 satisfies conditions III, 
we obtain for E 2 in the region v(z) » 1 

{ [ (2r- q) (r- q)]'h c szo vo-q 
Ez = 2SzEz0 exp - ·- ---

3q Wj ~~~I 

[( q Wt \ 3 ]} X 1 + •-- --z I - 1 
[(2r-q)(r-q)]'h ci~d j .(3.20) 

Let now w 2 satisfy relations III. If w 1 satisfies 
relations I, we have for E 2 

( 
2q \ -l/4q 

Ez = 2~zEz0 1---- souo-q z I 
r+ q / 

X {(1 .)r+q£zo312 exp - l -.J-- - vo q. 
uq S!O 

if v(z) » 1. For this case, SE 2 takes the form 

\ 
exp{- ~( 1- i) szo v03q/Z} q > 0 

s l 3 ~10 
E2 .........- lf 

vo • q < 0. (3.22) 

If w 1 satisfies relations III, then 

[ q Wt J!l" Ez = 2~zEz'l 1 + - ----z , 
[(2r-q)(r-q)]'h cl~tl 

, _ _.!. [1_.l(2r-q)(r-q)] ... szo2 ]'/, 
Q - 2 + 4 l 2q2 Wt2~~~~2 • (3.23) 

The quantities t 2 and R 2 in the foregoing formulas 
can be determined with the aid of ( 129) and ( 1. 30). 

All the results can be readily used for a plasma. 
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