
SOVIET PHYSICS JETP VOLUME 24, NUMBER 1 JANUARY, 1967 

SELF-CONSISTENT FIELD METHOD FOR THE DESCRIPTION 

OF PHASE TRANSITIONS 

V. G. VAKS, A. I. LARKIN, and S. A. PIKIN 

Submitted to JETP editor February 25, 1966 

J. Exptl. Theoret. Phys. (U.S.S.R.) 51, 361-375 (July, 1966) 

Phase transitions in the Ising model and in crystals are considered for large interaction ranges 
r 0• It is shown that the results of the phenomenological theory are valid over a broad tempera­
ture range. By successive application of the self-consistent field method, corrections to the 
thermodynamic quantities and correlation function have been found as a series in terms of rQ"3 

As the temperature approaches the transition temperature T c• the parameter increases like 
r 03 l T - T c 1- 1/ 2 for finite-range forces and like r - 3 ln IT - T c I for dipole-dipole interactions 
in uniaxial ferroelectrics. 

1. INTRODUCTION 

IT is known that Landau's phenomenological the­
ory[ 1 J gives a satisfactory qualitative description 
of second-order phase transitions. In many cases, 
the temperature dependence that follows from this 
theory agrees with experiment over a wide temper­
ature interval. However, this theory no longer 
holds in the direct vicinity of the transition point 
T c· This is indicated both by the growth of the 
heat capacity at the transition point, observed ex­
perimentally in many cases, [ 2 J and by theoretical 
considerations concerning the growth of the fluctu­
ations near T c· [ 3 J In this paper we determine the 
region of applicability of the Landau theory. 

From the microscopic point of view, the phe­
nomenological theory is equivalent to the zero­
order self-consistent-field approximation. This 
approximation is called the Curie-Weiss molecular 
field method, in the theory of ferromagnetism the 
Bragg-Williams method in the theory of binary al­
loys, and the Bardeen-Cooper-Schrieffer-Bogolyu­
bov method in the theory of superconductivity. In 
ferroelectricity theory, this method was first used 
by Kurchatov. [ 4 J In this method, the field acting on 
an isolated particle and due to the remaining parti­
cles is replaced by an average field that does not 
depend on the position of the given particle, deter­
mined from the self-consistency conditions. It is 
obvious that this approximation is the better, the 
larger the ratio r 0 of the interaction radius to the 
average distance between particles and therefore 
the corrections to the zeroth self-consistent-field 
approximation contain reciprocal powers of r 0 

(more accurately, of the interaction volume r8). 
We present below a method for constructing such 

expansions. 
As the temperature T approaches T C• the cor­

relation in the particle position increases, so that 
even when r5 is large the average-field approxi­
mation is no longer applicable. This is manifested 
formally in the fact that at small T = IT - T cl T ~1 

the expansion parameter becomes the quantity 
rQ"3T-1/ 2 (or rQ" 3 ln T, as in uniaxial ferroelec­
trics). The phenomenological theory starts from 
the expansion of the thermodynamic potential in 
powers of T, i.e., it is applicable for small T, 

therefore this theory is applicable only for suffi­
ciently large ro in the temperature interval rQ"6 

« T « 1 (or exp (-r5) « T « 1). Thus, for exam­
ple, in the case of the Ising model with nearest­
neighbor interaction, when r 0 = 1, there is no re­
gion of applicability of the thermodynamic theory, 
as is well known from the exact solution of this 
problem. [ 1J 

In Sec. 2 we consider the Ising model with arbi­
trary long-range potential. Using as an example 
this simplest model (which is used, as is well 
known, for the description of phase transitions in 
binary alloys and at the critical point), we shall il­
lustrate the method of constructing the successive 
approximation-the series in powers of r 03• Two 
first terms of the expansion in this parameter are 
obtained in the correlation function and in the ther­
modynamic quantities. 

In Sec. 3 the developed methods are applied to 
the more complicated case of phase transitions in 
which the crystal symmetry changes. In Sec. 4 we 
consider the influence of the electric dipole-dipole 
interaction in ferroelectrics, which leads to an ex­
tension of the region of applicability of the phenom­
enological theory and to a decrease in the required 
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corrections. In Sec. 5, finally, we consider the 
question of the phase transitions in one-dimen­
sional systems. 

We note that the effects of the first correction 
term of the thermodynamic theory were discussed 
phenomenologically in earlier papers by Levan­
yuk[ 5• 61 and also by I. M. Lifshitz. The present 
article supplements these papers in that it starts 
from a microscopic analysis and indicates both the 
region of applicability and the method of construct­
ing the next higher approximations. 

2. ISING MODEL WITH LONG-RANGE ACTION 

Let us consider the simplest model of the Ising 
type, constituting a lattice of dipoles, each of which 
assumes only two positions, with Hamiltonian 

(1) 
r-=Fr' r 

Here u r = ± 1, r is the coordinate of the cell site, 
H the external magnetic field, and the potential 
V r _ r' has a large action radius r 0• To construct 
the successive self-consistent field approximations 
it is convenient to isolate in (1) the interaction with 
average spin s = ( u). The partition function Z 
then takes the form 

Z = Sp exp [- N~Vas2/2 + ~ ~ <Jr(Vas +H) 
r 

+ 1/z ~ .~ v._.,(crr- s) (crr'- s) l, 
r"'f'::r' ~· 

~ = 1/T, (2) 

N is the number of sites. 
The zeroth self-consistent field approximation 

is obtained by neglecting the last term in the expo­
nential in (2). With this, the distribution function f 
breaks up into a product of functions for each cell: 

f=Tifa(ar), 

fa= (Sp exp (cry)) -i exp ay = 1/ 2 ( 1 + a thy), 

y =~(Vas+ H). 

The free energy per cell F is given by 

~p<a) = ~Vas2 I 2 -Inch ~(Vas+ H) 

= (y- ~H)2 I 2~Fo -IncL. y, 

*th =tanh. 

_tch =cosh. 

(3)* 

(4)t 

and the value of s can be obtained either by aver­
aging u over the distribution function (3), or from 
the condition of the minimum of the free energy, 
8F/8s = 0: 

s = th ~(Vas+ H). (5) 

Formulas (4) and (5) are exact for that (unphysi­
cal) case when each particle interacts with all the 
remaining ones with potential V0N-1• [ n From ( 4) 
and (5) we obtain the known results of the phenom­
enological theory. In the absence of a magnetic 
field, a second-order phase transition takes place 
in the system at a temperature T c = V0• s = 0 
above the transition, and below it there appears a 
spontaneous moment that varies near the transition 
like s 2 = 3T. The heat capacity at T > T c is equal 
to zero, and at the transition point it experiences a 
discontinuity C _ - C+ = %. The susceptibility X 
= 8s /8H I H = 0 increases near T c in accord with 
the Curie-Weiss law: X+= (TcT)-1 for T > Tc and 
X_= (2TcT)-1 for T< Tc. 

The foregoing approximation is equivalent to 
replacing the spins interacting with the given spin 
by their mean values. The last term in (2), which 
describes the influence of the deviations of the 
field from the mean value, constitutes at large val­
ues of r 0 a small quantity, in powers of which the 
expansion will be carried out. In each approxima­
tion it is necessary to take into account also the 
corrections to the mean value of the spin, i.e., to 
the "zeroth" terms in the exponential of (2). It is 
physically obvious that the average spin, which is 
a free parameter of the system, minimizes the 
free energy F, and it is therefore simplest to find 
s from the equation 8 F /8s = 0 or 8 F /Ely = 0, 
where y is defined in (3). It can be shown that this 
equation coincides with the self-consistency equa­
tion s = (u). 

We shall find useful in what follows the following 
exact relation between the free energy and the cor­
relation function. If we introduce formally the fac­
tor g preceding the last term in the exponential of 
(2), then the free energy will be a function of g, 
with g = 1 corresponding to the real case. Then 
we have for the derivative 8F /8g, taking into ac­
count the fact that 8F /Ely = 0, 

~ -~F = 2
1N ~ Vr-r' (ar- S,<Jr•- s) = _1_;~ VkKk, (6) 

{}g r*r' 2 k 

where Vk and Kk are the Fourier components of 
the potential and of the correlation function: 

V k = ~ Vr exp(-ikr), 

Kk = ~ exp(ik(r- r')) <ar- s, <Jr'- s). (7) 



242 VAKS, LARKIN, and PIKIN 

The first correction to the zeroth approximation, 
which takes into account the correlation of the par­
ticles, can be found by a method analogous to the 
well-known Debye approximation in the theory of 
ionized gases. [ 8 ] The expression (6) can be re­
written in the form 

2~~ ( (crr•- s) ~ Vr•-r <crr- s)' )= 9\~ (crr•- s)h0), 
r' r*r' ._1\ r' 

(8) 

where the averaging ( ... )' is carried out at fixed 
a r', and the quantity hr _ r' , equal to 

hr-r' = ~ Vr-r" (crr"-s)' = Vr-r' (crr· -s) 
r" 

+ ~ Vr-r" ((crr"- s) exp {~ (crr"- s) g ~ V r"-p (crp- s)} 
r"""r' p 

X /o (crr"))', (9) 

has the meaning of the average field in the cell r, 
produced following a specified deviation of ar'• 
from s. The last term of (9) contains explicitly 
the factors containing ar" , and the remaining are 
included under the averaging sign. The exponential 
in (9) contains the sum of a large number of terms, 
with a mean value hr" _ r'. Taking into account 
the smallness of this quantity and again neglecting 
the fluctuations, we arrive at an expression for h: 

hr-r• = Vr-r•(crr•- s)+~g ~ Vr-r"hr"-r' ( (crr"- s) 2 >. (10) 
r" 

The mean value in the last term is taken already 
over f0, giving the quantity cosh-2 y, which does 
not depend on r". Solving (10) with the aid of a 
Fourier transformation, we obtain for hk the ex­
pression Vk(ar'- s)x (1- gf3Vk cosh-2)-1• Using 
(8) and (6), we obtain hence for the correlation 
function Kk (g = 1) 

Kk = ((cr- s)2) (1- ~Vk((cr- s)2·))-1 

(11) 

We shall consider potentials Vr whose Fourier 
component Vk reach a maximum at k = 0, as is 
the case, say, for an attraction potential that does 
not reverse sign. We assume also that Vr is spher­
ically symmetrical, and its rms radius, defined by 

ro2 = ~rw.J ~ v., (12) 
r r 

is large but finite. The case of infinite r 0 (dipole­
dipole interaction) is considered in Sec. 4. Then 
the expansion of Vk in small k is of the form 
Vk = V0(1- k2rV6), and near the transition point, 
for small H, T, and kro « 1, the correlation func­
tion behaves, in accordance with (11), like 

(13) 

In the absence of a magnetic field u = T for T > T c 
and u = 2T for T < T c· Expression (13) coincides 
in form with the Ornstein-Zernike correlation 
function. [ 9] For small T, the correlation radius 
increases like r 0T -l/2 , and at the transition point 
the correlations decrease in power-law fashion. 

For the free energy F we have, taking (11) and 
(6) into account 

1 
f,F-= ~pco) +? ~ ln(1- ~Vk ch-2y) 

- k 

(y-~H) 2 1 -2 ~= ---------Inch y + -- ~ ln(1- ~Vk ch y). 
2~Vo 2 k 

(14) 

The equation for the average spin is obtained by 
equating 8F /By to zero: 

y - ~H ( ~ V" ch-2 y ) 
s = v =thy 1- ~ 1 ~v h-2-- . 

~ 0 k - kC Y 

The susceptibility in the magnetic field, XH 
= 8s/8H, can be obtained from (15): 

~II 
XH = 1- ~Voii' 

~ aq 
II= ch-2 y- ch-2 y(1- 2 sh2 y) LJ --

1-aq 
q 

(15) 

(16)* 

In this approximation, the transition point is deter­
mined from (13) with H = 0 and y- 0: 

( ~ Vq \ 
T c = Vo 1 - LJ Vo _ V q ) • 

q 

(17) 

The expression for the different thermodynamic 
quantities can be obtained from (14)-(16) by ex­
panding in powers of H and T. Taking into &c­
count the zero-order approximation term, we ob­
tain 

s2=3-r(1+aV-~). 
\ 't' 

X+-1 =Tc-r(1-y;). 
31"6 

a=---. 
2:rtro3 

*sh =sinh. 

a 3 a c+ ...:... -=, c_ = - +---=- , 
41"-r 2 1"2-r 

X- - 2Tc't +---= , -1- (1 a ) 
21"21' 

(18) 
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We have left out from (18) all terms proportional 
to a, and also those proportional to T and obtained 
by expanding the ''zero-order'' expressions ( 4) 
and (5). From (18) follows the statement made 
above that the corrections to the results of the 
phenomenological theory have a relative order 
ro3T-112 • These formulas are valid so long as the 
correction is small, i.e., when a «IT. 

To calculate the next higher approximations, and 
and also to obtain a more rigorous justification of 
the foregoing intuitive method, it is convenient to 
make use of the already developed diagram meth­
ods. We introduce in lieu of the quantities ar the 
Fermi operators ar and a~, using the relations 

<Tr = 2ar +ar - 1, (19) 

The Hamiltonian (1) assumes the usual four-fer­
mion form, without the kinetic energy, and the 
magnetic field plays the role of the chemical po­
tential. In the case under consideration, that of 
large r 0, the Fourier component of the potential 
Vk is large for small k, and decreases rapidly 
when kr0 » 1. Therefore the resultant problem is 
similar to the problem of the thermodynamic func­
tions of a plasma, [ 10 1 where a similar isolation 
was carried out of the long-range effects. The 
cited article contains a method of successive self­
consistent-field approximation method, which we 
shall employ. 

We write the correlation function (7) in the 
[ 11] form (see, e. g., ) 

nk 
Kk(g)=1-MVkTik' (20) 

where the irreducible part nk does not contain 
single lines of the potential Vk. In calculating nk 
we can already expand in powers of the interaction, 
since the factors V q contained in it are integrated 
with respect to q, which leads to the reciprocal 
powers of r 03• The first terms of the expansion of 
Tik are shown graphically in the figure. The 
dashed line corresponds to an effective interaction 
Vk(1- {3gVkllk)-1, and the solid line to the "zeroth" 
fermion Green's function G0(r, T) (here and in (21) 
T is the "imaginary time" of the temperature di­
agram technique[ 12 1). 

In the absence of a magnetic field above the 
transition the fermion density is n = ( a;ar) = 1/2 

= 1- n, and below the transition n = 1h(1 +tanh y), 
and the symmetry of the "particles" and "holes" 
is lost. 

The zeroth approximation for fik is given by 
the first diagram of the figure: 

Dt< =:0 + O+<D +CfD + c£.:0 

= 4n(1- n) = ch-2 y. (21) 

Comparing (20) and (21) with (11) we verify that 
the Debye approximation corresponds to the zeroth 

. t· . n [1oJ approx1ma wn m k· 
In the next approximation for nk, it is neces­

sary to take into account diagrams with one and 
two internal dashed lines. The calculation can be 
carried out in standard fashion; it is simpler, how­
ever, to use the first-approximation formula (16) 
for the susceptibility in the magnetic field. From 
the definition X H = 8( a)/ 8H can be readily seen 
that XH coincides with the values of the correla­
tion function Kk (7) for k = 0. Therefore the quan­
tity n in (16) is the value of the irreducible part of 
ilk of formula (2) with k = 0 (and g = 1). From the 
form of the first-approximation diagrams for nk 
we can easily reconstruct from this particular 
value the total function nk(g): 

~ gaq n (a)= ch-2y- ch-2y(1- 2sh2y) LJ 
k o 1- gaq 

q 

+ 2 th2 y ~· gaq gak-q . 
q 1 - gaq 1 - gak-q 

(22) 

From (22) and (20) we obtain for the correlation 
function near the transition 

Kk-1 =u + k2r~2 16 -al/u -(2ayzy] I kr0)arctg(kro I 2i6u), 

(23) 

where u is the same as in (13). In the absence of 
a magnetic field, taking into account expression 
(18) for s 2, we have 

T > Tc: Kk-1 = k2ro2 I 6 + 't'- ay:t, 

T< Tc: 

k2r02 - ( 6a-rl"B) ( kro ) 
Kk -1 = - 6-+ 2't' + 2a l'2't'- ----,;;;- tan- 1 

413't' · 

(24) 

We note that the corrections to Kk have a relative 
order of magnitude aT-1/ 2 when kr0 <-IT and 
a VT(kr0) - 2 when kr0 > IT. 

With the aid of (22), (20), and (6) we obtain an 
expression for the free energy with second­
approximation corrections: 

~F= (y- ~H) 2 -lnchy 
2~Vo 
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_sh~(~~r 
2 q 1- aq 

sh2 y .~ aq ak ak+q · 
--3- 1-aq 1-ak 1-akH 

k,q 
(25) 

Here aq is given by formula (16). In the third 
term of (25) it would be necessary, strictly speak­
ing, to expand the denominator up to first order in 
the ratio of the last term to the first two, as was 
done to obtain the last terms in (25). However, the 
renormalization of T c given by ( 17) is more sim­
ply taken into account with the chosen notation. 

The equation for the average moment is obtained 
by equating to zero the derivative of (25) with re­
spect to y, and an equation similar to (16) is ob­
tained for XH by differentiating with respect to H 
the equation for the moment. The general formulas, 
however, become cumbersome, and we therefore 
confine ourselves to the region near the transition. 
The contribution of the fourth term in (25) is small 
here and can be discarded, and in the last integral 
the small quantities k and q < rQ" 1 are significant 
only in logarithmic accuracy, so that calculation of 
the factor under the logarithm sign calls for 
knowledge of V r also in the region r"' r 0• If we 
assume, for example, a simple exponential form 
Vr = const exp (-rr01ffl) for Vr at r ..G r 0, then 
the integral can be easily calculated by going over 
to the coordinate representation. As a result, the 
equation for the moment takes the form 

!l- 31fTc·-l 

[ T - T - a2 a2 ] 
= 3y ~- + ct iu- 2 - B (ln(16u) + y2/u) , 

(26) 

where, as above, u = j + (T- Tc)T(;1. We retain 
here the symbol T c as defined by (17), for owing 
to the presence of the logarithmic term in (26) we 
cannot introduce formally a "new" temperature of 
transition as the point where the square bracket 
vanishes at H = 0 and y - 0. 

Using (25) and (26), as well as the formula for 
s 2 from the preceding approximation, we obtain in 
lieu of (18) 

[ 1/2 a2 a2 J 
s2 = 3T 1 + a V - +-- -ln 32't' , 

· T 2T 3T 

3 a a2 
C-=-+---, 

2 y·2r 2r 

a a3 [ 1 16 ] C+=--=+-- ln--2ln-+2 , 
4 f't 121''/, T 3 

X+ - 1 = Tc't [ 1 - f; + ;; - ~ ln 1:, l , 
r a 3a2 a2 l X-- 1 = 2Tc't 1 +--== +-- -ln 32't . 
L f8T 8't 3T -· 

(27) 

In the expression for the heat capacity C+ above 
the transition, the second-order terms a 2 /T can­
cel out, and we have therefore presented for it also 
the correction for the third -approximation, corre­
sponding to the last diagram of the figure. 

3. TRANSITIONS WITH CHANGE OF CRYSTAL 
SYMMETRY 

Application of the foregoing method to real sys­
tems calls for an analysis of concrete models. 
However, the results are insensitive to the type of 
model, so that we shall consider for simplicity the 
following model: [ 13 J Let an isolated atom of the 
cell move in a field u(r) having tetragonal symme­
try and produced by atoms of a different species, 
and let it interact with a potential - V ij (ri, rj) 
= - (ri • rj)V P with the atoms of the other cells 
(p =distance between cells i and j). The phase 
transition consists in the fact that at T < Tc the 
cell loses the symmetry center as a result of the 
appearance of an average displacement (r) = s 
from the center. Assume, furthermore, the pres­
ence of an external electric field E, with a poten­
tial proportional to the displacement of the atom 
ri· Denoting that part of the free energy which is 
regular near Tc by F0, we have 

--~(F- F0)N = ln ~ exp [ -~ ~ u(r;)+ ~eeff E ~ r; 
i .;_ 

+% ~ (r;ri) Vp;;] IT dr;. 
iof=j i 

(28) 

Introducing the vector y = {3 (V os + eeff E), 
analogous to the y introduced in (3), we obtain 
zero-order equations similar to (4) and (5) for the 
free energy and the average displacement: 

~ (F- F 0) = (y- ~eeffE) 2/2~Vo -ln ~exp [-~u(r) + ry] dr, 

s = (Y- j)eerrE)/j)Vo = ~ r exp [-j)u(r) + ry] dr. (29) 

When E = 0 and V0 > 0, a phase transition 
takes place in the system at a temperature deter­
mined by the second equation of (29) as y - 0: 
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ii1.L = y2 = ~ = ~ z2n0 (r)dr, 

(30) 

If the distribution of the atom in the cell is 
stretched along the x axis, x2 > I, then, as the 
temperature is lowered, T ex is reached first and 
the atom is displaced during the transition along 
the x axis; in the opposite case, the transition 
takes place at T cl and the atom is displaced in 
the yz plane; we consider for simplicity the first 
case. The singularities of the thermodynamic 
quantities have the same form as in the zeroth ap­
proximation of the Ising model. We assume with 
this also the satisfaction of the condition that the 
transition be of second order-the condition that 
the coefficient of y4 in the expansion of F<o> in 
(29) in powers of y be positive, viz.: 3(~) 2 > ~. 
Otherwise a first-order transition takes place in 
the system at a certain T > T ex· 

Introducing, in analogy with (7) and (6), the cor­
relation functions Kay and the auxiliary charge g, 
describing the interaction via the components Vk 
with k f. 0, we obtain in lieu of (7) and (6) 

Ka:v(PH) = <xa:i- sa:, x.,;- s.,>, 

Ka:v(k)= ~ Ka:.,(p)exp(ikp); 
p 

An equation for Kay similar to (11) is 

Ka:v (k) = lla:v + ~ ~ lla:J.I. V I<K ... ., (k), llav 

asa ~ . > =-r;-= ,xa'-sa,x.,i-s.,, 
Yv 

(32) 

where s(y) is given by (29). The correlation func­
tion that is singular near the transition is, in ac­
cord with (30), Kxx(k) = Ilxx(1- f3Vkllxx)-1. The 
correction to the free energy is given by a formula 
similar to (14): 

p(F-F0) = ~F<0> + ~ln(1- ~VI<llyy} 
k 

1 +- ~ln(1- ~Vkllxx). 
2 k 

(33) 

Account is taken in the second term of the right­
hand side of the fact that nyy = Ilzz; near Tcx 
this term is regular and can be included in F0• 

Let the expansion of the potential Vk in small 
k have the form V0(1- k~~/2- k\r~_/4), and let 

the dependence of sx in (29) on Yx = y and T near 
T c be given by the expansion 

(34) 

where g1 < 1, and the constants g0 and g2 are pos­
itive and are connected with the corresponding 
constants of the Landau theory[ 1 1 by the relations 
a= (1- g1)/2go, C = g2Tc/12gg; and 1) = Sx· Then 
we see from the foregoing formulas that the corre­
lation function has, as before, the Ornstein-Zernike 
form (13), and the relation between the singular 
parts of the free energy of the crystal F~~ and 
the Ising model (14) Fff (y2, T, a) is 

F sf go psf( 2 (1 g2 v2 
cr=-;;- 1 g2y,-r -gt),cxcr),cxcr=--;;-:rtxr 2 ·(35) 

1>2 . ,o 0 j_ 

Therefore the singularities of the thermodynamic 
quantities are given by formulas (18), in which the 
constants are redefined as in (35). 

The next approximation can be obtained by the 
same method as used in the derivation of formulas 
(22)-(25) of the Ising model. For the uniaxial tran­
sition in question, relation (35) is retained also in 
the higher approximations. It can be shown that 
this remains valid also in the quantum analysis. 

4. CRYSTALS WITH DIPOLE-DIPOLE INTER­
ACTION 

So far we have considered interatomic-interac­
tion potentials VP whose action radius was finite, 
albeit large. As noted by Krivoglaz [ 141 and by 
Levanyuk, [ 61 the presence of dipole-dipole inter­
action can alter the results appreciably. For sim­
plicity we shall again consider the model (28) and 
assume that the displacement of the atom ri leads 
to formation of a dipole moment eeffri, so that the 
phase transition is ferroelectric. In the exponent 
of (28) there is added a term with corresponding 
dipole-dipole interaction. We shall assume the 
geometry of the sample to. be such that the result­
ant static polarization f!fo is uniform over the vol­
ume. Then, taking into account the known expres­
sion for the field Ed acting at the center of the 
cell, [lSJ Ed= (E)+ 47r5"l/3, where (E) is average 
macroscopic field, and taking account also of the 
smallness of the displacements relative to the cell 
dimensions we find that when (E) = 0 the phase 
transition point is determined not by (30) but by 

1) 1=~lln(Vo+l./3) ==~TiuWo, 

(36) 

v0 is the volume of the cell. In (32) we add to the 
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potential Vk a term corresponding to dipole­
dipole interaction, so that these equations take 
the form 

Kay(k) = ITay + ~ ~. llap.Vp.v(k)Kvy(k); 
jl.,V 

v 2 ( (}
2 1 )" p.v(k)=Vk~p.v+eerr~ 0 iiJ iJ .- .J e'kpij,(37) 

i Pp. Pv P, P1 

In the essential region of small k (large, however, 
compared with the reciprocal dimensions of the 
sample), the expression for VJ.l 11 (k) can be written 
in the form 

V11v(k) = (Vk + 'A/3)6J1v- 'Anp.nv == Wk6p.v- J..np.nv, 

np. = k 11 / k. (38) 

The expansion of the last term used in (38) for 
small k can be obtained by means of a standard 
method in solid-state physics[ 151 by breaking up 
the sum over the cells into regions lying inside 
and outside a sphere of some large but micro­
scopic radius R such that 1 « R « k-1. In sum­
ming inside the sphere, one can neglect the argu­
ment of the exponential, so that this sum is equal 
to zero, and in the external region the sum can be 
replaced by an integral. 

Using (38) and (37), and choosing the x axis, as 
before, along the tetragonal axis and the y axis to 
lie in the (x, k) plane, we find that the nonvanishing 
elements Kaf3 for T > T c are 

K,z = Il.L(i- ~Wkii..L}-1, 

Kxx = II11(i- ~Wkii..L + ~'Anlii_L).,1k-1, 

f{yy = rr..L(i- ~wkrr11 + ~'Aniii11)L1k-1, 
Kxy=Kyx= -~'AIT1JIT..LnxnyL1k - 1; 

L1k = (1- ~IIIIWk) (1- ~lhWk + ~'AII..L)' 

+ ~'Anx2 (IIIJ- II..L}· (39) 

The free energy is given not by (33) but by 

1 ~ -1 """ ~(F- F0) = ~F<0l + - "'-J ln(1- ~II..LWk)+ -- "'-J lnL1k. 
2. kl 2 k 

(40) 

Unlike the expressions under the logarithm sign in 
(33), the quantity D.k vanishes at the transition 
point, in accord with (39) and (36), not for all 
k- 0, but only for vectors k of definite direction, 
namely perpendicular to the x axis,in the uniaxial 
case and parallel to the x axis in the biaxial case. 
This less-singular behavior leads to smoothing of 
the singularities in the corrections to the thermo­
dynamic quantities near Tc. With this, as noted 

by Levanyuk, [S 1 an essential difference arises be­
tween the uniaxial and biaxial transitions. In the 
latter case it is possible to neglect in (40) the cor­
rections connected with D.k, but the second term 
of the right side has the same form as in (33), and 
the self-consistent field expansion is as before in 
the powers of OtcrT-1/ 2, where Otcr is defined in 
(35). On the other hand, in the uniaxial case only 
the term with D.k is singular near T c· With the 
aid of (39) we find that only the correlation func­
tion Kxx will be singular in this case in the k­
-representation; this function for T > T c is 

Kxx(k) = IIIJ['t(1- gi) + lN'o2Vo/6Wo + -yni]-1, 

'Y ='A/ [Wo + 'AII..L(ITII- IT..L)-1]; 

Kxx(P) = ITII3(4wo2p)-1 

X exp[- (3y) '1•2-'"ro-1 (p- I Px I)], 

rov-'" ~ p ~ ror'''· (41) 

Here git i\, and W0 are the same as in (34) and 
(36), and the potential is taken spherically symmet­
rical for simplicity. Unlike the Ornstein-Zernike 
case (13), the decrease of the correlation with in­
creasing distance near the transition follows a 
power law only for directions along the tetragonal 
axis. 

The corrections to the thermodynamic quanti­
ties in the uniaxial case, according to (40), have 
the following form: 

2 = 3go~(1- gt) ( 1 +~l Y._) 
s \ 2 n , 

g2 't 

8 __ 1 = 2T(1-gt)Te( 1 -~lnY._)' 
'Ago 4 't 

3g2 ( 6Wo3 )''• 

ao = 2ngoro3 , -y Vo3 ' 
(42) 

It is assumed in (42) that T « y, the indices + and 
- correspond, as usual, to regions above and below 
Tc, and C0(T) denotes the regular part of the heat 
capacity. Comparison of (42) with (18) shows that 
the corrections to the zeroth approximation are of 
the order of a 0 In T in place of OtT - 112• 

As before, we can calculate by the method of 
formulas (22)-(25) the next higher approximation 
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and verify that the order of the corresponding cor­
rections is (a0 ln r)2• The n-th approximation 
contains thus (a0 ln T)n, so that on summing the 
perturbation-theory series we arrive at the log­
arithmic situation widely discussed in connection 
with problems in quantum field theory. [ 161 Using 
the methods developed there, we can apparently 
here, too, sum all the higher order terms 
(a0 ln r)n, neglecting the terms a 0(a0 ln r)n. This 
would make it possible, first, to consider quanti­
tatively the region I a 0 ln T I .$ 1 and, second, per­
mit in principle an experimental verification of the 
already mentioned methods of quantum field theory, 
including the unclear questions concerning the 
feasibility of some extrapolation of the results to 
the region I a 0 ln T I > 1. 

Thus, the presence of dipole-dipole interaction 
in the uniaxial case leads to a different structure 
of the expansion in the self-consistent field param­
eter compared with the case of potentials with 
finite radius. In this connection, the considerations 
advanced earlier[ 131 concerning the agreement be­
tween the form of the singularities for the phase 
transitions in crystals and in the usual Ising model 
may be applicable to the case of uniaxial ferro­
electrics. If, however, the constant 'Y is small in 
the crystal in question, 'Y < a 2, then the dipole­
dipole interaction will be essential only in a nar­
row region near T c· For example, in the region 
a 2 < T considered above, the valid formulas will 
be of the type (18) and (35). 

5. ONE-DIMENSIONAL CASE 

The self-consistent field method can be applied 
also to a study of one-dimensional systems. The 
zeroth approximation leads to the appearance of 
a phase transition regardless of the number of di­
mensions. For a large interaction radius r 0, this 
approximation gives the correct behavior for the 
thermodynamic quantities far from the transition 
points-the corrections are of the order of ro 1T- 3/ 2 

Actually there are no phase transitions in one­
dimensional systems, and the singularity in the 
thermodynamic quantities is smeared out. For 
example, in the Ising model the spin averaged over 
the entire chain is equal to zero, and the quantity 
s in formulas (3)-(5) has the meaning of an aver­
age over a large but microscopic segment. The ab­
sence of transitions in one-dimensional systems 
is sometimes attributed to the existence of a con­
tinuous spectrum of excitations, starting from 
zero. [ 171 It turns out that there is no transition in 
the Ising model, although there are no such excita-

tions in it. For interactions with the nearest neigh­
bors this follows from the exact expression for the 
free energy F = - T ln 2 cosh 2{3J. In the general 
case we can prove the absence of a transition, in 
the same manner as the impossibility of coexist­
ence of phases in one -dimensional systems. [ 181 

For small T the system breaks up into micro­
scopic segments, in each of which the average spin 
has a definite direction. The limits of the seg­
ments can be regarded as dissolved impurity at­
oms. The free energy of the solution is expressed 
in terms of the concentration of the dissolved par­
ticles n by means of the formula (see [ 18 1 ) 

F ==='. F + n'¢ + nT (Inn- 1)·, 

where F is obtained in the same manner as in 
Sec. 2. For low temperatures, the entropy is 
small and l/J coincides with the energy of the 
boundary 

'¢ = ~ V (x- x') ( 1- sgn x · sgn x') = Voro. 
x>x' 

(43) 

(44) 

The average concentration n is obtained by mini­
mizing (43), which yields n = exp (-{3V0r 0). Thus, 
for large r 0 and small T, the size of the segments 
is exponentially large, and the addition to the free 
energy is exponentially small. 

To calculate the correlation function, let us 
break up the chain into segments of length ~x 
smaller than n-1, but larger than r 0 • Then the 
probability that one point of the solution will fall 
in this segment, and consequently that the spins 
will have opposite signs on the ends of the seg­
ments, is equal to n~x. The probability Wm that 
at the end of the segment m the spin will be the 
same as at the start of the zeroth segment satis­
fies the recurrence relation 

Wm = (1- ni\x) Wm-1 + ~x(1- Wm-t). (45) 

Solving this equation and summing over the initial 
and final states, we obtain for the correlation func­
tion 

K (r) = < <Jo<Jr) = exp ( -r / rc), 

(46) 

This answer agrees with the exact solution for the 
case of nearest-neighbor interaction (ro = 1, 
V0 = 2J): 

K(r) = th• j:IJ ~ exp {-2rexp(-2j:IJ)}. 

There are likewise no phase transitions in 
other one-dimensional systems. In a one-dimen­
sional Bose gas, when calculating K(5) for large r, 
the states of importance are those with small mo-



248 VAKS, LARKIN, and PIKIN 

menta, where the occupation numbers are large, 
and therefore the quantum field can be replaced by 
a classical two-component field[ 13 J 

PI= pcoscp = z~l(a+a+),p2 = psincp = i2~1 (a+-a): 

+ ~ Px4 J}r1 ~ IT d2PxPoPr exp{ i(cpo- <rr) 
X 

Continual integrals of this kind were calculated in 
Feynman's paper, [ 19 ] where the role of the coor­
dinate x was assumed by the time t multiplied 
by i. Using the methods of that paper, we can ob­
tain for K the expression 

K(r) = ~ d2p¢o(p)pei'l'erHpe~iq>e~rH'Ijlo(p) 

(48) 
m 

where 

, mT fJ2 pg 
R- ----uf.ln2+ ,-,4 - 2fi2 fJp2 ,.,.,,,.. 2 t'' 

1/Jo is the wave function of the ground state of the 
operator H. 

At large distances, the main contribution to the 
sum over m in (48) is made by the first excited 
state with momentum 1. For small T its energy 
can be easily obtained by perturbation theory. 

As a result we have 

K(r) = nexp (-r/rc), rc = 2nn2 /mT, (49) 

where n = (a+ a) = (p 2) = JJ. /g is the particle density 
corresponding to the chemical potential JJ.. 

In one-dimensional superconductors, the corre­
lation function for small T also has the form 
( 49). [ 20 J Such a power-law dependence of the cor­
relation radius on T is connected with the fact 
that in a Bose gas and in a superconductor the field 
is complex, and the Hamiltonian does not depend on 
its phase, so that degeneracy exists with respect to 
a continuous phase transformation. In the Ising 
model, where the degeneracy has a finite multi­
plicity (twofold), the correlation radius is exponen­
tially large. 

6. CONCLUSION 

Thus, for a large interaction radius r 0 » 1, the 
self-consistent-field approximation describes well 

the phase transitions in crystals and in the Ising 
model everywhere, except in a narrow region near 
the transition point. In a wide range of tempera­
tures T c » IT-T c I» T cr-6 the thermodynamic 
quantities, such as the specific heat, susceptibility, 
spontaneous moment, all have a temperature de­
pendence, which follows from the phenomenologi­
cal theory. The correlation function in this region 
has the same form as the Ornstein-Zernike func­
tion. The assumption that the interaction radius is 
large (r~ » 1) is apparently confirmed by experi­
ment, since deviations from the phenomenological 
theory are observed only in a temperature region 
which is narrow compared with T c· We have ob­
tained above corrections to the zeroth approxima­
tion of the self-consistent field wherever the cor­
rections were small. 

The experimental data known to the authors do 
not make it possible to establish the temperature 
dependence of the deviations from the phenomeno­
logical theory. In those cases where the sign of 
these deviations has been established, it coincides 
with the results obtained above. The sign of the 
deviations is confirmed also by computer calcula­
tion of the Ising model. 

We have considered above potentials in which 
the Fourier component Vk has a sharp positive 
maximum at k = 0. In the case when the potential 
has a maximum Vko > 0 at k I 0, a transition of 
the antiferromagnetic type will take place in the 
system. If this maximum is not sharp, for exam­
ple if the potential is a monotonic repulsion poten­
tial, then the self-consistent-field approximation 
is nowhere applicable. Therefore, if we assume 
that the potentials in ordered alloys and in antifer­
roelectrics are not modulated in a special manner, 
then phase transitions in these systems should be 
less adequately described by the phenomenological 
theory. 

The phenomenological theory is best applicable 
to superconductors, [ 3 J where the role of the inter­
action radius is played by the pair size, which is 
much larger than the distance between the elec­
trons. For the first correction to the free energy 
above the transition we obtain, in analogy with (14) 
and (33) [ 12 J 

1 dk 
pF(1l=2 j (Zn) 3 ln(1-gll(k)), 

(50) 
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The correction to the heat capacity of the form of 
(18): 

(51) 

We see from this formula that the correction be­
comes comparable with the magnitude of the jump 
0.03TcJl-1 only in a very narrow region 
r,..., (TcJl- 1) 4 ,..., lo-16• A similar expansion in powers 
of T - 1/ 2 is obtained in a weakly nonideal Bose gas. 
The role of the small parameter r03 is played in 
this case by the quantity g(Tm3) 1/ 2 • In real liquid 
helium, this parameter is of the order of unity and 
therefore there is no region where the self­
consistent field approximation is applicable. 

The authors are grateful to A. P. Levanyuk for 
a useful discussion. 
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