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The transverse stability of a focused beam of charged particles moving through an absorbing 
medium is analyzed. Various kinds of coherent oscillations (of the center of gravity, dimen
sions, and shape} are found together with their characteristic frequencies and growth rates. 
The possibility of beam stabilization by energy spread or nonlinearity in the betatron oscilla
tions is examined. The effect due to the plasma produced as a result of ionization of the re
sidual gas is determined. These questions are of interest in the design and use of accelera
tors and storage rings for high-intensity beams. 

THE experimental data pertaining to the existence 
of transverse instabilities in a beam of particles 
formed in a cyclical accelerator or storage ring[1 •2 J 

has been examined theoretically in papers by the 
present authors[ 3 J and by Las lett et al. [ 4J under 
certain restrictions. It has been found that an in
stability associated with oscillations of the center 
of gravity of the beam can arise by virtue of the 
finite conductivity of the walls of the vacuum 
chamber. 

It is desirable, however, to consider the prob
lem from a more general point of view. First of 
all, one should find all the possible kinds of oscil
lations that can arise by virtue of the space charge; 
then, it would be desirable to establish the relative 
danger of these oscillations and to determine the 
appropriate frequencies and growth rates. It 
should be noted that in [ 3• 0 consideration has been 
given only to the motion of the center of gravity; 
oscillations of the higher moments have been ne
glected. It is also important to note that in prac
tice an instability can arise by virtue of an inter
action between the beam and any absorbing me
dium, not necessarily the walls. For instance, the 
role of such a medium can be played by the ionized 
residual gas. The present paper is devoted to a 
consideration of these problems. 

We neglect the curvature of the chamber and 
assume that the motion takes place along one of the 
the transverse axes, specifically the vertical axis 
(z}. In order to introduce the oscillation along the 
x axis we carry out an averaging over this coordi
nate and assume that the dependence of the charge 
density on this coordinate remains unchanged. The 
y axis is taken parallel to the walls of the chamber 
and it is assumed that the motion in this direction 
is characterized by a constant velocity. 

EQUATION FOR THE CHARGE DENSITY 

Under the assumptions given above there exists 
an equilibrium particle distribution which is inde
pendent of z and the time t. The equilibrium dis
tribution function F0 satisfies the relations 

"" 
~ Fo dp., = Ng (Py} W (x) <I> (z, Pz), 

00 ,f 
~ W2(x)dx = -, 

w 
-oo 

( 1) 

where the functions g(py) and <I>(z, Pz) character
ize respectively the dependence on the longitudinal 
momentum and on the variables that describe the 
vertical oscillations; N is the number of particles 
per unit length of the chamber and w is the width 
of the beam. We introduce the following notation: 
f is the small equilibrium increment to the dis
tribution function; E and H are the electric and 
magnetic fields produced by this deviation; ~(~ 0, t) 
represents the coordinates and the momentum 
components of a particle which has an initially 
given ~ 0 and moves in the field produced by ex
ternal sources (focusing field) and the equilibrium 
beam, ~ 0 (~, t) represents the corresponding in
verse functions (~ = x, y, z, Px• Py, Pz}· Starting 
from the kinetic equation we obtain the following 
expression for the· Fourier component of the func
tions f, E, and H:[ 3J 

The dependence of all quantities on y and t is 
written in the form exp [i(ky- wt)l. The sub
scripts k and w will be omitted below. 
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We assume that the beam thickness h « w and 
lkhl « 1. Then, in the region occupied by the beam, 

the field components Ez and Hx are large com
pared with the others and can be determined from 
the equations 

dE. 
---;{i" = 4:n:e-1 p ( x, z), 

dHx 4:rtJ,L. 
dz = -c-Jy(x, z)' (3) 

where € and f.l are the dielectric constant and 
magnetic permeability of the medium through 
which the beam moves, while p and j are the 
nonequilibrium charge density and current den
sity. We have jy = Vp, where V = {3c is the mean 
longitudinal velocity of the particles so that Hx 
= Ef.J.f3Ez. We substitute (2) in (3) and integrate the 
resulting expression over all momenta and over 
the x coordinate. Then, making use of (1) and as
suming that the function .P is stationary and that 
the particle motion along the z axis is periodic 
and nonrelativistic, we obtain an equation for Ez: 

4 2N oo "" z 
E.(z)=-e-(B-1-J.L~2 ) ~ ~ g(py)dpy ~ dz' 

W n=i-oo -oo 

~ nwz dpz " { i}(l) } 
X •. (w- kv )2- n2w 2. ~ -8 Ez. 

-oo Y z · Pz _, 
(4) 

where Wz is the frequency of the betatron oscilla
tions with the effect of the field of the equilibrium 
beam taken into account. 

We assume that the particle density in the beam 
is small (this criterion will be refined below). In 
this case (4) will have a solution only when the de
nominator of one of the terms in the series tends 
to zero while the other terms can be neglected. We 
shall assume, for the time being, that the beam is 
monoenergetic and that the betatron oscillations 
are linear. The function .P depends on the square 
of the amplitude of the oscillations U and (4) be
comes 

4e2 Nn (e-1 - "A2) .. ~ 
E(z) = · rt' K(z, z')E(z')dz'; 

:n:myhw [ (w - k V) 2 - n2wil -oo 

~" ( z2 - 2zz' cos o(lo + z'2 ) 
K(z, z') = h tD · . lsinno(lojd{lo, (5) 

sm2 {lo 
-rr 

where m is the mass of the particle, '}' = (1-{32)-l/2, 

and in contrast with (1) and (4), the function .P(U) 
is now normalized so that 

00 

~ tD(U)dU = 1. 
0 

The quantity n in (5) is understood to be an inte
ger which corresponds to the region in which the 
denominator in ( 4) approaches· zero. 

DISPERSION EQUATION 

The equation in (5) is a Fredholm equation with 
a real symmetric kernel. Hence, we can write 

4e2 Nn 
(w-kV)2-n2wi= (e-1-J.L~2), (6) 

:n:myhw'), 

where the dimensionless number A is one of the 
characteristic values of (5) and depends on the 
form of the distribution function. It is assumed 
that the right side of (6) is small compared with 
cw~. Making use of the conditions 

w Im e(w) ;;;::: 0, w Im J.L(w) ;;;::: 0, 

we find that when A > 0 an instability is possible 
in the region ikVI > nwz, and that the solution 
which corresponds to growing waves can be writ
ten in the form 

kV [ 2e2N J 
Re·w = kV -lkVI. nwz + :n:myw.hw'), Re(e-1- J.L~2) , 

(7a) 
2e2N (lim el ) 

Imw = h '), - 1 -12-+ ~2 llmJ.LI , (7b) :n:mywz w 8 

where E(w) and f.J.(w) are to be taken at w = kV 
- nwzkV /I kV I. In the coordinate system fixed in 
the beam the frequency of the perturbation is ap
proximately a multiple of the betatron frequency. 
If A < 0, the growth rate is given as before by (7b) 
while the oscillation frequency becomes 

2e2NRe(e-1- J.L~2) 
R kv+ for kV> -nw., e w = nw. - h I ' I :n:myw. w " 

(Sa) 

R kv + 2e2NRe(B-1 - J.L~2 ) f kV < e w = - nw. , or nw,. 
:n:myw.hwj'),l 

(8b) 
Thus, the existence of dissipation in the medium 

surrounding the beam leads to an instability, the 
boundary region of the instability being determined 
by the sign of the quantity A. It is shown in the 
Appendix that when .P'(U) < 0 all the A are posi
tive. The focus beam then represents an ensemble 
of moving oscillators. The condition .P'(u) < 0 
means that it is the lower energy levels that are 
primarily filled in the system. The instability of 
this beam is the result of the anomalous Doppler 
effect which arises when 0 < vph < v where vph 
is the phase velocity of the wave, as indicated by 
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(7a). The energy which drives the transverse os
cillations and is responsible for the growing field 
comes from the longitudinal motion, and the ab
sorbing medium plays the role of an intermediate 
agency. If the beam is at rest with respect to the 
medium this instability cannot arise. 

If the condition ~'(U) < 0 does not hold, there 
will be both positive and negative characteristic 
values and, in accordance with (8), both waves of 
the above type and waves characterized by a phase 
velocity greater than V (or directed in the oppo
site direction) can be unstable. The mechanism 
responsible for this instability is the normal Dop
pler effect. In this case the growing electromag
netic field is produced as a result of the excess of 
induced emission over absorption. Hence, the in
stability can also develop in a beam at rest, and 
the effect of the instability is to smooth the dis
tribution function. 

CHARACTERISTIC FUNCTIONS OF THE BEAM 
OSCILLATIONS OF THE HIGHER MOMENTS 

The asymptotic behavior of the perturbation is 
determined by root of the dispersion equation with 
the largest imaginary part. According to (7) and 
(8) the effect of space charge is reduced as I;\ I 
increases. Estimates of the minimum character
istic value and corresponding characteristic dis
tribution function for the equation in (5) for the im
portant case ~'(U) < 0 are given in the Appendix. 
Making use of the results obtained there, we write 
the frequency and growth rate of the oscillations: 

I 3n WL2 
Re wl = lkVI- nwz- Re(e-1 - 11~2 ) (9a) 

4n2 -1 2ywz ' 

I 3n WL 2 ( I Im e I \ 
moo= -- ---+~2 11m Ill I 

4n2 - 1 2ywz I E 12 / 

(9b) 

( wL is the mean plasma frequency of the beam). 
In this case the particle distribution in the non
equilibrium deviation is given by 

d ( 2z) p(z)"' dz sin narccosh 

p(z) = 0 

for l2zl < h, 

for l2zl >h. 

If ~(U) is a power function which vanishes when 
U > h2/4, then the expression for p is exact and the 
equilibrium charge density p0(z) is proportional 
to [1- (2z/h)2] 1/ 2• When n = 1 the nonequilibrium 
density is proportional to Po (z) so that the pertur
bation leads to the displacement of the beam with
out a change in cross section. When n = 2 the 
beam perturbation consists of a uniform compres
sion or extension along the z axis with p(z) 

,.., [zp0(z)] '. If n > 2, oscillations of the higher mo
ments appear but these do not cause a displace
ment or change in dimensions of the beam and 
are less dangerous. 

The results given here apply so long as the 
terms proportional to the particle density can be 
regarded as corrections, that is to say, so long as 
the inequality wi_ y - 1 1 E - 1 - J.J.f3 2 1 « w~ is satisfied. 
In vacuum this relation yields the simple criterion 
w2 « w2 'Y3 L z 

As an example we consider the passage of a 
beam through an isotropic plasma; the dielectric 
constant and the permeability are given by 

(wp is the plasma frequency and Veff is the ef
fective collision frequency in the plasma). In a 
toroidal geometry, waves can propagate for which 
the chamber length is an integer multiple of the 
wavelength. Assuming this to be the case and in
troducing the symbol D for the mean angular ve
locity of the particles and Q = wz/D for the num
ber of betatron oscillations per turn, we get from 
(9b) as an approximation 

{ 'V eff [ Q2 ]2}-1 
X , Q2(l- nQ)2 + 1-·Wp2 (l- nQ)2 ' (10) 

where l > nQ is an integer. The expression in 
(10) is a sensitive function of the frequency of the 
perturbation Re w RJ D( l - nQ) and is a maximum 
when Re w RJ wp. If D /wp » 1 this condition can 
only be satisfied for a minimum l > nQ, whence it 
follows that perturbations with the longest possible 
wavelength are favored for the oscillations of any 
moment. A strong functional dependence E(w) can 
cause a significant increase in the growth rate for 
any one of the oscillation modes. 

A plasma can be formed in an accelerator or in 
a storage ring by ionization of the residual gas. In 
the case of an electron accelerator, which we shall 
use as an example, it is only necessary to take ac
count of the positive ions, which are bound by the 
attraction of the beam. Hence Veff denotes the 
frequency of collisions between ions and neutral 
atoms: Veff Rl VTSeffNn where VT is the thermal 
velocity of the ions ("" 10 5 em/sec), Seff is the ef
fective geometric cross-section of the atoms 
( ~ 10-15 cm2) and Nn is the concentration of neu
tral atoms. We make use of the results of earlier 
work[ 31 and substitute the numerical values for a 
number of quantities which are usually approxi-
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mately the same for different accelerators; in this 
way we find that the ratio of the growth rates for 
the "plasma" instability and the "wall" instability 
is of order 

(Im ro) p ~ 105a3P (Re ·rolrop)2 
( 11mro) w· ~ hwQ'I• [1- (Re rolrop)2:f! ' 

(11} 

where P is the chamber pressure (in mm Hg); the 
chamber height a as well as h and w are meas
ured in centimeters and Q is measured in sec-1. 
It is assumed that Re w = Q ( l - nQ) '4: wp. 

Thus, the relative influence of the conductivity 
of the medium increases with increasing chamber 
dimensions and pressure of the residual gas and 
with reduction in the cross-section area of the 
beam. For the values of these parameters usually 
encountered, the first factor of the right hand side 
of (11) is small compared with unity and it follows 
that the effect of the medium is important when 
Re w f::j Wp. The ion density required for this con
dition to obtain lies in the range 107-1010 cm-3 if 
the rotational frequency is 107-109 sec -1. 

EFFECT OF ENERGY SPREAD AND NON
LINEARITY OF THE BETATRON 
OSCILLATIONS 

In order to take these effects into account we 
make use of (4}, retaining only one term in the 
series as before, and making use of perturbation 
theory. In this way we find[ 3• 41 

1 =-A 1 r <P'{U) U dU g(py)dpy' (12} 
0 -oo (·ro- kvy) 2 - n2roi 

where A is the right side of the dispersion equa
tion (6) with the nonlinearity and energy spread 
neglected. 

We shall investigate the effect of the nonlinear
ity separately, limiting our analysis to the import
ant case <I>'(U) < 0. We seek a solution close to 
kV + nwz, n = ± 1, ±2, .... We first introduce the 
following notation: u0 is the square of the ampli
tude at which the function U<I>'(U) reaches a maxi
mum; o + it = w - kV - nwz (Uo} is the deviation in 
the oscillation frequency from the value obtained 
without the beam field taken into account; o0 + ito 
= A[2nwz(Uo}1 -1 is the same deviation for the lin
ear oscillations; u = U- Uo - (u + u0}<I>'(u + Uo). 
Using (12} we have 

1 r f(u)du 

J 6 + i~ - nu &roz/ au 
-uo 

(13} 

Let us consider the right side as a function of 
the complex variable o + it. The lines t = const 
> 0 is mapped by closed curves C t located in the 

lower half plane, and the line C0 = Cl-+ 0 en
closes all the C t > 0 lines. When t -co the· curves 
contract to the origin. Hence the system is unsta
ble if the point (o0 + ito) -1 lies inside C0. If this is 
not the case, the oscillations are characterized by 
constant amplitude (if (o0 + it0) -1 lies on C0) or 
are not excited at all. Hence, the system is stable 
if to < 0, that is to say, the existence of a nonlin
earity does not lead to the appearance of new re
gions of ~nstability. 

Computing the right side of (13) for E- + 0 and 
using the criterion given above, we obtain the sta
bility condition: 

O<Oz 6oUt, 2 p ~ j(u) du 
n-- ~ I ' OU 6o2 + {;o2 1 - U Ut, 2 

(14a) 

where P denotes the principal value of the integral 
while the quantities u2 < 0 and u2 > 0 are solutions 
of the equation 

f(u ) = ~oln&w.l&uj 
1,2 n(6o2+~2) . (14b) 

If the function f(u) approaches zero rapidly as 
I u I increases and oo « I o0 I , the parameters u1 2 
represent the maximum deviations of the ampli~ 
tude from the mean value while nu1, 2 8evz/8u repre
sents the corresponding deviations of the charac
teristic frequency from kV + nwz(Uo). It follows 
from (14a) that stabilization of this beam requires 
the presence of a rather intense component with 
the characteristic frequency equal to the frequency 
of the wave kV + nwz(Uo) + Oo. 

As an example, we consider the distribution 

1 
«D(U) = .1u e-U/liu. 

When Eo « I o0 I one of the stability conditions is 

aw. I 
- n au .1u 6o > 1, 

this condition being possible when 8wz/8u < 0. The 
function f(u) does not have a sharp boundary for 
positive values of the argument and the parameter 
u2 must be determined from the equation 

1 ( Uz ) { ( Uz ) } 7:o I aw. I - 1+-- exp - 1+- =-·- n- . (15a) 
.1u .1u .1u n6o2 au 

The corresponding stability condition is given by 

1 aroz 00~ xe-"' dz 
-n-uz~P , 
l'lo au ~ 0 1 + (1- x).1uiUz 

(15b) 

this being possible when 8wz/8u > 0. If the right 
side of (15a) is small, then D.u/u2 « 1 and the ap
proximate criterion for stability is 
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Thus, for this distribution, in order to obtain sta
bilization it is feasible to take 8wz/8u > 0, this re
sult being connected with the presence of particles 
exhibiting large oscillation amplitudes: U > ~ u. 

In a cyclic accelerator the characteristic fre
quency of the beam also depends on the energy: 
w = n ( l - nQ). Deviations of the characteristic 
frequency from the mean value are given by 

[ aQ oQ J ars ( l- nQ)- nQ ars (),.[g !,2, 

where ~& 1 2 are the deviations from the mean 
energy. In ~rder to obtain a stability criterion 
this quantity must be substituted in (14b) in place 
of nu1, 2 8wz/8u and the energy distribution func
tion must be substituted in place of f(u). 

APPENDIX 

ANALYSIS OF THE INTEGRAL EQUATION 

We write the equation for the electric field (5) 
in the form E = A.GE and set up the quadratic form 

J(q) = ~ q(z)Gq(z)dz, 

where q(z) is an arbitrary continuous function. 
After a number of transformations we find 

hoo n - .2 

l(q)= ---;: S<D'(U)Udu[ ~ q(l'Ucos'l't)sinn'l'tsin'l'td'l't J. 
o -n 

(A.1) 

it is then evident that when <I>' (U) < 0 the quantity 
J(q) is positive for any function q(z), this being 
the necessary and sufficient condition for making 
all the characteristic values of the equation posi
tive (for example, [ 51). In this case (A.1) can be 
used to determine the minimum characteristic 
value. For this purpose we treat J(q) as a func
tional which is determined from the class of nor
malized functions. The quantity A.min can then be 
determined from the equation 

1 = Amin max J ( q), llqll = 1, (A.2) 

in which that function for which J (q) reaches a 
maximum value is the characteristic function cor
responding to the characteristic value A.min· Using 
the theorem of the mean in (A.1) we have 

~ n h 2 

l(q) = n[ ~ q ( -zcos'l't )sinn'l'tsin'l'td'l't]. (A.3) 

Using the Bunyakovski1 (Schwartz) inequality, we 
have from (A.3) 

4h 11 h 11 

J(q)~-;: ~q2 ( 2 cos'l't )sin'l'td'l't~ sin2 n'l'tsin'l'td'l't. (A.4) 
0 0 

The integral of the function q2 is computed from 
the normalization condition. In this way we obtain 
the upper bound on the functional. Substituting this 
in (A. 3) we have 

1 32n 
(A.5) --=-,----

Amin 4n2 -1 

The functional reaches the upper bound if 

q (x)"" sin (narc cos 2: l, 
as can be shown quite simply by direct calculation. 
If we write wi, = 128 e2N /37rmhw, then (9) follows 
directly from (A. 5) and (7). 
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