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Propagation of sound in the intermediate state is accompanied by movement of the interface 
between the phases. As a result, eddy currents appear in the normal layers. The Joule heat 
released in this case leads to additional absorption of sound. It is shown that at low sound 
frequencies (6 »a, where 6 in the skin layer thickness and a is the spacing of the intermed
iate-state structure) the absorption is proportional to the square of the frequency and at not 
very small values of a it exceeds the ordinary absorption due to electron viscosity. At high 
frequencies (6 « a) the additional absorption is proportional to the square root of the fre
quency. 

THE volume of a superconductor in the intermed
iate state is broken up into a system of alternating 
layers of normal and superconducting phases. In 
the regions occupied by the normal phase, there 
exists a magnetic field equal in magnitude to the 
critical field and directed along the layers (see [t]). 
In the superconducting regions there is no magnetic 
field. 

A necessary condition for equilibrium between 
phases is that the magnetic field in the normal 
phase at the interface with the superconducting 
phase be equal to the critical field. Since the criti
cal field depends on the pressure and on the tem
perature, the change produced in the latter by 
passage of a sound wave leads to violation of this 
condition. As a result, the boundary between the 
phases begins to move, and an alternating magnetic 
field appears and induces eddy currents in the 
normal phase. In the intermediate state there is 
thus an additional mechanism, connected with the 
release of Joule heat, for the absorption of sound
wave energy. In this paper we calculate this addi
tional absorption and show that under certain con
ditions it can exceed the usual absorption connected 
with electron viscosity. 

We shall assume that the mean free path of the 
electrons is much smaller than the thickness of 
the normal layers and the skin-layer depth. In this 
case we can use the static conductivity of the me
tal CT. We assume also that the frequency of sound 
is sufficiently low in order for the length of the 
sound wave to be large, both compared with the 
depth of the skin layer and compared with the thick
ness of the normal layers an. 

The magnetic field H in the normal layers is de
termined by the well known equations 

8H c2 
-- -AH = rot{vB], 
8t 4mr 

(1)* 

divH = 0, (2) 

where v = u is the velocity of the medium and 
u = u0exp[i(k · r - wt)] is the displacement vector 
in the sound wave. All the relations must, of 
course, be linearized with respect to u. 

The boundary conditions for (1) and (2) are the 
usual requirements of the vanishing of the compon
ent of H and of the tangential component of the 
electric field on the boundary between phases, in 
a coordinate system attached to the considered 
element of the boundary (see[2•3J). On the other 
hand, the tangential component of the field H should 
equal on the boundary to critical value He. 

We introduce a system of coordinates such that 
the z axis is normal to the boundaries between pha
ses, and the xy plane lies in the middle of the 
normal layer. Let the x axis be directed along the 
magnetic field Reo in the absence of sound. The 
boundary conditions can now be written in the form 

Hx- Hclz=+a /2 = 0, - n Hz- Hco au ·I = 0, (3) 
OX z=±an/2 

where E = (c/47rCT) curl H- (1/c)v x His the elec-

*rot= curl, [ vH] = v x H. 

942 



SOUND ABSORPTION IN SUPERCONDUCTORS 943 

tric field, and U is the deviation of the boundary be
tween phases from the equilibrium position. This 
deviation is represented in the form of a sum 
Uz + t, where u is the displacement of the lattice 
in the sound wave, and t is the displacement of the 
boundary between phases, accompanied by a phase 
transition. It will be shown later that t « u in the 
case considered by us. 

The value of the critical field He which enters 
in (3) differs from the critical field Hco in the ab
sence of sound, owing to the presence of a change 
in the temperature and deformation. We write He 
in the form 

He= Hco(i + auii) + f}Hc T', ar (4) 

where uii = div u. For simplicity we confine our
selves to an examination of the case of an isotropic 
metal and longitudinal sound. The second term in 
the right side of ( 4) describes the change of the 
critical field under the influence of deformation 
and the temperature change caused by it, while the 
last term corresponds to the change under the in
fluence of the change in temperature T', resulting 
from the release or absorption of heat when the 
boundaries between phases move. The constant 
a ~ 1 can be expressed in terms of the derivatives 
(8Hc/8T)p and (8Hc/8P)T: 

p ( 4 ){(fJHc) (fJHc) T(fJp)} 
a = - Hco sl2- 3 Stz fJP T- fJT P pC fJT P ' 

(5) 

where p is the density of the metal, s z and st are 
the speeds of longitudinal and transverse sound, 
and C the specific heat per unit volume of the inter
mediate state. All the thermodynamic quantities 
are defined as averages over the intermediate 
state. For example, C = (anCn + asCs)/(an +as), 
where Cn and Cs are the specific heat of the normal 
and superconducting phases, and as is the thickness 
of the superconducting layers. 

From symmetry considerations it is clear that 
all the quantities are of the form f(z) exp (ikxx 
+ ikyY- iwt). We introduce in place of H a new 
unknown function h: 

i 

(8) 

(9) 

where q = (1 + i)/6, o = clhrruw is the depth of 
the skin layer, and m and n are unit vectors along 
Hco and k. 

To obtain the complete system of equations we 
must also write out an equation for the determina
tion of the quantity T' in the right side of (8). To 
this end we consider the ratio of the time of equal
ization of the temperature in the system r ~ a2/x 
(a = as + an, X is the coefficient of temperature 
conductivity) to the reciprocal oscillation fre
quency. Since X~ vFl, where VF is the Fermi 
velocity of the electrons and l is the mean free 
path, we have 

W't"' wa2 /vFl"' (wa/s),(sa/vFl). 

The first factor in the last expression is small, in 
accord with our earlier assumptions inasmuch as it 
represents the ratio of the thickness a of the layers 
to the wave length of the sound A. ~ s/w. On the 
other hand, the mean free path of the electrons l 
should at any rate satisfy the condition l ~:!', ~ 0 

~ ti VF/Tc, for otherwise the superconductor 
would have negative surface tension on the boun
dary between the phases and the considered inter
mediate state would not be realized. We see now 
that wr « 1 for any reasonable value of a. Under 
these conditions we can assume that the tempera
ture does not depend on the coordinates (more ac
curately, it varies over distances of the order of 
the sound wave) and is determined from the heat
balance equation 

where Q is the heat of transition from the normal 
state to the superconducting state and t ± is the 
value of the displacement t at z = ± an/2. 

Relations (7)-(10) form a complete system of 
equations. From (7) we get 

h = Aeiqz + Be-iqz, (11) 

H- Hco = -rot[vHco] + Hcoh 
(J) 

= i(Hcok)u- iHco(ku)+ Hcoh. 

where A and B do not depend on z. Substituting (11) 
in (8) and (9), and taking (10) into account, we ob

(6) tain 

Substituting (6) in 11)-(3) and taking into consider
ation the fact that only the x component of the 
vector h differs noticeably from zero, as can be 
readily verified, we obtain in our approximation the 
following conditions for the determination of h = hx: 

fJ2h f f)zZ + q2h = 0, (7) 

h = u;; [a+ 1 - Lmn)2] cos qz 
cos ( qan/2)- iqi'JD sin ( qan/2) ' 

TI'J ( oH r 
D = 4nC(as+ an) iJT c 1 • 

(12) 

We are interested in the time-averaged dissipa
tion of the energy per unit volume. 
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that is, the absorption is proportional to the square 
(13) of the frequency of sound and does not depend in 

practice on the temperature. If T/Tc ~ 1, then 

where j is the density of the electric current, ex
pressed in terms of the field h by means of the 
formula 

c ah 
j =-Hco--. 

4:rt az (14) 

From (13), with allowance for (14) and (12) we 
have 

E = ( cHc ) 2 21 U;; l2{a + 1- (mn) 2]2 {sh(an/6)- sin(an/6)] 

8:rt · a(as + an)6 

X { cos2 ( ~~ ) + sh2 ( ;~ ) + D [ sh ( a; ) + sin ( a6n ) J 

+ 2Dz [ sin2 ( ;~) + sh2 ( ;~) n-1
• (15)* 

Taking the ratio of E to the energy flux in the 
sound wave, we obtain the sound absorption coeffi
cient 

r = ( cH c )2 2 [a+ 1 - ( mn) ~]2 [ sh (an/ 6) - sin (an/ {j)] 
\ 8:n: pa(as + an)6s13 

{ ( an ) (a,,\ [ fa, \ (an)] X cos2 -2- +sh2,-j+D sh'l-)+sin .-
6 ' \ 26 \ {j ' ' 6 

+ 2D2 [sin2 (an)+ sh2 (~ )]}-1 

26 ,· 26 I 

(16) 

We note that in the isotropic model considered by 
us r depends only on one angle-between the direc
tion of the magnetic field Hco and the sound wave 
vector k. 

Before we consider different limiting cases, let 
us estimate the value of D, which, as seen from 
(12), determines the influence of the heat released 
during the phase transition on the sound absorption. 
Since 

where Hc(O) ~ TcPF(vFn 3r112 is the critical field 
at T = 0, we get D ~ (o/an)(T/Tc) 2• 

Let an « o. Then for T /T c « 1 we obtain from 
(16) 

r = an3 [a+ 1- (mn)2]2 ( cHc )2 
24(a, + a 11 )pas1364 , 2:rt ' 

*sh =sinh. 

(17) 

We see thus that in this region r is a rather com
plicated function of the temperature. 

Let now an » o. Then automatically D « 1, and 
(16) yield 

r = ( cH c ) 2 4 [a+ 1 - (mn) 2)2 
, 8:n: pa(an + a8 )s136 ' (19) 

that is, r ~ rw, which is perfectly natural, for in 
this case the absorption occurs in a narrow region 
of the order of o near the boundaries between pha
ses. 

Finally, let us estimate the ratio of the coeffi
cient of sound absorption by the mechanism in 
question to the ordinary absorption coefficient, the 
order of magnitude of which is pj_;,Zw 2/ps 3n 3 [ 4J. 
Recognizing that a~ e 2pj;,Z/n3 (e = electron charge), 
we obtain with the aid of (17) for the sought ratio a 
value of the order of (e 2/nc)(vF/c)(a/~ 0) 2, which, 
owing to the last large factor, can be large com
pared with unity. If this is so, then the dependence 
of the absorption on the frequency has the follow
ing form. At very small w (an« o) the absorption 
is proportional to w 2, in the region an » o it is 
proportional tow 112, and, finally, at still higher 
frequencies, when the usual absorption predomin
ates, it is again proportional to w 2• 
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