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The change in the surface tension of liquid helium, due to dissolution of small amounts of an 
impurity, is determined. The change is negative or positive, depending on the presence of sur
face impurity levels. The experimental data indicate the presence of surface levels in solution 
of He3 and apparently their absence in solutions of He4 in He3• 

LIQUID He 4 is a quantum liquid at low tempera
tures. This circumstance exerts a strong influence 
on the behavior of impurity particles dissolved in 
it (in practice this impurity is always the isotope 
He3). Indeed, the impurity atom placed in the liquid 
behaves like an excitation with dispersion law 
(see[1•2J) 

(1) 

where E is the excitation energy, p the momentum, 
and ~ and M are constants, the first of which is· 
equal in order of magnitude to the boiling tempera
ture of liquid helium and the second to the mass of 
the helium atom t>. At sufficiently low tempera
tures T, the main contribution to all phenomena is 
made by excitations whose wavelength A.= li/p 
"'li/../mT is much larger than the interatomic dis
tance. 

The purpose of the present paper is to show that 
the quantum character of the liquid makes it possi
ble to change the variation of its surface tension 
when sufficiently small amounts of the impurity 
are dissolved. Relation (1) is valid at large distan
ces from the boundary of the liquid. It constitutes 
an expansion of the excitation energy in powers of 
(pa) 2 (a is the interatomic distance). Near the boun
dary, besides the correction for~ (proportional 
to p2), there appears a correction U which depends 
on z (we assume that the liquid fills the region 
z > 0). When z »a, the latter is small compared 
with ~. but can be larger than p2 /2M. The Hamil-

1>The value of the effective mass M of the He1 atom in liquid 
He 4 is known [•]. The value of l:i can be determined from an 
analysis of the experimental data on the dependence of the 
saturated-pressure over a weak solution of He1 in He 4 on the 
temperature. The corresponding processing of the results of 
Sommers [•) gives a value l:i ~ -2. 7°K. 

tonian of the impurity has therefore, for z »a, the 
following form: 

H = 1\ + p2/2M + U(z). (2) 

The dependence of U on the momentum p can, of 
course, be neglected. The presence of the energy 
U(z) is connected with the long-range forces of 
electromagnetic (van der Waals) or acoustic origin 
(see [ 4]). We can therefore state that U depends on 
z in power-law fashion: 

U(z) = Uo(afz)n (n > 2), (3) 

where U0 is a constant of the order of~. 
On the basis of (2) we can write an equation for 

the wave function of the impurity with energy E: 

V21Jl + 2Mii-2[E- .1- U(z)]W = 0. (4) 

By virtue of the homogeneity of the problem in the 
directions x andy, the wave function is of the form 
f(z) exp (ikxx + ikyy). Substituting this in (4), we 
obtain 

q2 = 2Mii-2(E- l:i- k,?- k.}), (5) 

In region 1/q » z » a we can neglect the two 
last terms in (5). Indeed, if this is done, we obtain 

f(z) =A +Bz, (6) 

where A and B are constants that depend on the 
form of U(z) at atomic distances. Regarding now 
the discarded terms as a perturbation, we can 
readily see that the first of them makes a contri-
bution of the order of (qz) 2 « 1, and the second of 
the order of (a/ z)n- 2 « 1. Since the quantity q does 
not enter in the equation at all in the region under 
consideration, the ratio of the constants A and B 
does not depend on q. When z »a we can neglect 
only the last term in (5). We then obtain 
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f = const·sin (qz +b). 

The phase 6 is determined from the condition for 
joining with (6) when qz « 1, from which we get 
that 6 ooq. 2) At the small values of q of interest to 
us, we can therefore put 6 = 0. 

Thus, the system of solutions of the wave equa
tion (4), describing reflection of excitations from 
the boundary, consists of the functions sin (qz) 
· exp (ikxx + ikyy), with energy E = fi2(q2 + k~ 
+ k~)/2M. The square of the modulus of the wave 
function 

(7) 

determines the probability density of the different 
values of the coordinate of the impurity in a state 
with given q. To find the coordinate dependence of 
the density of the number of impurities n(z), ex
pression (7) must be averaged over states with 
different values of q. Recognizing that the proba
bility of the given value of q is proportional to 
exp (-fi2q2/2MT), we obtain 

00 

n (z) = const · ~ sin2 qz. exp ( -li2q2/2MT) dq. (8) 

Further, carrying out simple integration and de
termining the constant from the condition n( oo) 
= cp/m, where c is the concentration of the solu
tion, p the density of the liquid He 4, and m the mass 
of its atom, we have 

n(z) = cpm-1 ['1- exp ( -2MTz2 I li2)] (9) 

We see from this formula that the density of the 
impurities is much below the value for z -- oo at 
distances of the order of n/v'MT from the boundary, 
that is, at a distance of the order of the excitation 
wavelength. 

Let us calculate the excess number of impuri
ties per unit surface area: 

00 

n,= ~ [n(z)-n(oo)]dz. 
0 

With the aid of (9) we readily obtain 

ns = -c lip (-n:_\. ''• 
2m 2MT) . 

(10) 

(11) 

This exhausts all the excess number of impuri
ties only in the case when there are no surface 
levels, that is, levels with energy lower ~ localized 
at atomic distances from the boundary. We assume 
that such levels exist, and denote their minimal 

2 >we note that the situation arising here is similar to the well 
known problem of scattering of slow particles [ •]. 

energy by~- Eo (E 0 > 0). Near this energy we have, 
obviously, 

E = ~ - Eo + k2 I 2fl, (12) 

where k is the two dimensional momentum in the 
plane of the boundary of the liquid and J.1. is a cer
tain constant equal in order of magnitude to M. 

With the aid of well known thermodynamic 
formulas and relation (12) we can easily calculate 
the chemical potential t s of the impurities at the 
surface levels. We obtain 

~.=~-Eo-TIn (f!T I nft2N.), (13) 

where Ns is the number of impurities at the surface 
levels per unit area. From the condition that ts be 
equal to the chemical potential of the impurities in 
the volume 

we obtain 

~ = ~ _ T ln [ 2m ( MT \ '''] 
cp 2nli2 J 

. lip J-1. ( 2n: )''• N8 = c-- - e•o!T 
m M MT . 

(14) 

(15) 

It is assumed here that the concentration c is suffi
ciently small to be able to use Boltzmann statistics. 

The total excess number of impurities is equal 
to the sum Ns + ns. However, comparing (15) with 
(11) we see that Ns/ns ~ exp (E 0/T) » 1, so that the 
surface levels, if they exist, make the main contri
bution. 

The surface-tension coefficient a of the solution 
is connected with Ns + ns by a simple relation [6]: 

( fJa \ T 
-;- I = -- (Ns + n 8 ). 
uC / T C 

(16} 

If the surface levels change, then we obtain with 
the aid of (16) and (15) 

a = ao - c lip -~ ( 2n:T) 't. e•o!T 
m M M ' 

(17) 

where 0! 0 is the surface tension of the pure solvent. 
In the absolute case we have on the basis of (11) 
and (16) 

lip ( n:T )''• a = ao + c -- --. . 
2m 2M, 

(18) 

We see from the obtained formulas, the surface 
tension decreases with increasing impurity concen
tration if there exist surface levels, and increases 
if there are none. Comparison with the available 
experimental data [ 7] gives grounds for concluding 
the presence of surface levels for the He3 atom 
in liquid He 4• Thus, it is necessary to apply the 
formula (17) to weak solutions of He3 in He4• 
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Comparing (17) with the data of Essel'son and 
Bereznyak[7J, we can determine the unknown con
stants E 0 and JJ.: 

If we take into consideration the temperature 
dependence of the surface tension of pure He4, ob
tained by Atkins [ 8] 

( p )'/a T'la 
ao=aoo-A- -a h'la 

(where A is a constant of the order of unity and 

(19) 

a 00 is the value of a 0 at T = 0), then we readily 
note that a does not depend monotonically on the 
temperature. Namely, the function a(T) for the 
solution has a maximum. For the temperature of 
the maximum we obtain from (19) and (1 7): 

T ~ eo 
~ ln(B/c) ' 

We note that such a maximum was observed by 
Atkins and Narahara [sJ. 

(20) 

Finally, we write out an inequality that limits 
the region of concentrations from which formula 
(17) is valid: 

m ( mT )''' c~- - e-•o!T. 
p nh2 , 

(21) 

It expresses the fact that we should have T 0 « T, 
where T 0 is the degeneracy temperature of the im
purities situated at the surface levels. 

We now stop to discuss the case of weak solu
tions of He4 in liquid He3• The reasoning that has 
led us to formulas (17) and (18) remains fully in 
force in this case, too. In order to establish which 
of the two possibilities-(17) or (18)-is realized 
in such solutions, that is, whether or not there ex
ist surface levels for the He4 atom on the surface 
of liquid He 3, we must turn again to the experimen
tal data. Although these data are not available at 

present for weak solutions, measurements of the 
surface tension of concentrated solutions [1o] 

nevertheless make it quite probable that the deriva
tive Ba/Bc is positive for small concentrations of 
He 4• This means that formula (18) should be appli
cable to weak solutions of He4 in liquid He3, provi
ded c is taken to mean the concentration of He4, 

p and m the density and mass of the He3, and M the 
effective mass of the He4 atom. We note that in 
this case the expression for the surface tension 
does not contain at all any constants characterizing 
the properties of the surface. 

I am grateful to L. P. Gor'kov, I. E. Dzyalo
shinskil, and L. P. Pitaevskil for a useful discus
sion. 
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