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Deformation of a magnetic field in a compressible conducting medium in the vicinity of zero 
field lines is considered. It is demonstrated that displacement of the currents producing the 
field gives rise to some regions in which an increase of the field gradients is accompanied 
by a decrease in the density of the medium. Under c:ertain conditions this leads to violation 
of the freezing-in of the field and to the appearance of strong electric fields that accelerate 
the charged particles of the medium. The process is essentially a nonstationary one and 
results in the transformation of the excess magnetic energy into kinetic energy of the fast 
particles. The mechanism may be the cause of generation of fast particles in cosmic con­
ditions and in laboratory plasma. 

THE mechanism of generation of cosmic rays and 
of fast particles in general under cosmic condi­
tions [ 1, 2J, and the causes of appearance of fast 
particles in some laboratory experiments [ 3], are 
still unclear. This problem is especially acute in 
the case of solar flares, a prolonged study of which 
has made it possible to accumulate abundant ob­
servational material still awaiting a sufficiently 
exhaustive interpretation L4J. A characteristic fea­
ture of these phenomena is the rapid realignment 
and dissipation of magnetic fields, accompanied by 
the appearance of particles which are accelerated 
to high (sometimes ultrarelativistic) energies. One 
might think that solar flares are only examples of 
a certain universal mechanism of the transition of 
the magnetic energy into kinetic energy of acceler­
ated particles. 

field of such currents can be expressed with the 
aid of a vector potential A = { 0, 0, A0 } having 
only a z component. Namely, 

Here 

1<-1 I 
Ao== ~ -[ln{1-2rcos(cp-cp;)+r2}-C;] 

i=O C 

I 
= -[ln {1- 2r~< cos kcp + r2"}- C). 

c 

The constants Ci and C = I:Ci (summation from 
0 to k- 1) are determined here by the total 
geometry of the currents, taking into account the 
closing of their circuits at large distances far 
from the region of space under consideration. 

(2) 

We discuss below the possibility of relating 
such a mechanism with certain characteristic 
features of the dynamics of a conducting medium 
in the vicinity of a zero field line 0 . 

1. MAGNETIC FIELD IN THE VICINITY OF THE 
ZERO LINE 

Let k currents of equal strength I be located 
on the lines 

We are using a Gaussian system of units, with 
c the velocity of light in vacuum. The line r = 0 
is th.e zero field line ( H = 0 when r = 0). In its 
vicinity, r « 1, the potential is of the form, ac­
curate to terms of higher order in rk, 

r = R = 1, <p; = 2ni I k (i = 0, 1, ... , k -1; k ~ 2) 

of a cylindrical coordinate system. The magnetic 

l)See also[•], in which the two-current case is considered 
and possible applications are discussed. 

Ao(r, cp) = -hork cos kcp- hoC I 2, ho = 2I I c. (3) 

Expression (3) is the general equation for the po­
tential of the magnetic field in the vicinity of a 
zero line of arbitrary order [S]. We note that, in 
accordance with the definition (1) of the line, 

Ao(r, cp) = const (4) 

754 
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FIG. 1 

are the force lines of the magnetic field. The 
pattern of the force lines in the plane z == 0 is 
indicated in Fig. 1, where we put k == 4. 

Assume now that the currents in question have 
changed by an amount D.I (that is, I' == ( 1 + D.) I) 
and have been displaced radially by an amount o 
(that is, R' == R ( 1 + o ); the initial distance from 
the currents to the zero line is assumed to be 
unity, R == 1 ). As in the derivation of (2) and (3), 
we can easily verify that the potential A ( R, cp) of 
the displacement currents in the vicinity of the 
zero line is 

A (r, cp) = -ahork cos kcp +hoP- hoC I 2, (5) 

and differs from (3) by a constant factor 

a= (1 + L\) I (1 + 6)1< ~ (1 + ~) (1- kfJ) (6) 

and by an additive constant h0,8, where 

P = k(1 +~)In (1 +6) - 1/zC~ 

~ kll(1 + ~) (1- 1/z6) - 1lzC~. (7) 

Here the increments D. and o are assumed small. 
Under conditions when the field is frozen in 

(see below), the conservation at the additive con­
stant in the expression for the potential has a defi­
nite meaning and is equivalent to specifying the 
boundary conditions in the problem of the displace­
ment of a conducting medium. In fact, during the 
displacement of the currents the additive constant 
h 0 in expression ( 5) is a function of the time and 
defines in the considered vicinity of the neutral 
line a homogeneous electric field 

E = _ i_ a~ = _ h0~ e,. 
c dt c 

In the presence of a conducting medium, under 
conditions when the motion of the medium is com­
pletely determined by Maxwell's equations and 
inertia can be neglected, the medium will move 
under the influence of this field with the ''electric­
drift'' velocity* 

(EH] hoP 
v = c Jji:"" = lJ2 [He.]. 

Thus, the additive constant in (5) plays an es­
sential role in the determination of the character 
of motion of the medium. 

2. TWO-DIMENSIONAL (PLANE) MAGNETOHY­
DRODYNAMIC FLOW 

Assuming that all quantities are independent of 
the coordinate z, let us consider the flow of a 
medium with frozen-in magnetic field in the 
( x, y ) plane. The magneto hydrodynamic equations 
have in this case the form 

dp d" dA O dt= -p lVV, dt= , 

dv 1 1 
-= ---Vp--M VA. (8) 
dt p 4:rtp 

Here d/dt == a; at+ ( v · \7 ), and v, p, and p are 
the velocity, density, and gas pressure of the 
medium; the dissipative terms are assumed to be 
negligibly small. 

We shall henceforth take as the initial equili­
brium state, subject to perturbations with small 
or finite amplitude, a state with constant density 
and pressure 

Vo = 0, Po= const, po = const, ~Ao = 0. (9) 

The initial magnetic field H == J \7 A0 I will be 
assumed to be sufficientl~rong to make the 
Alfven velocity VA == H/Y4rrp much larger than the 
adiabatic speed of sound s = [ ( a p/ a p )s J 11 2 every­
where except in small vicinity of the zero line. 
Near the zero line, in accord with (1) and (3), the 
field is H == kh 0rk-i, and therefore the condition 
VA >> s is equivalent to the condition r > rs, 
where 

r, = [sl'4:rtp I kho]1!(1<-i) = [4:rtynoxT I k2h02)112(h-t). (10) 

On going over to the second expression in (10), the 
gas is assumed ideal and the adiabatic exponent is 
assumed equal to y; n0 is the concentration of 
the atoms, T the gas temperature in the initial 
state, and K Boltzman 's constant. We assume 

*[E H] =EX H. 
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also that the gas is sufficiently ionized so that the 
electron concentration is ne R: n. 

The assumed condition VA » s, together with 
the condition for the applicability of the approxi­
mate expression (3) for the potential A, denotes 
that we are considering the region of values 

(11) 

For sufficiently strong currents and a sufficiently 
low gas concentration, such a region always ex­
ists, but with increasing number of currents k, 
other conditions being equal, the region (11) nar­
rows down and vanishes in final analysis, since it 
follows from (10) that rs- 1 as k -oo. Most 
convenient in this respect, is the minimum number 
of currents k = 2. Since, however, many-current 
systems of the type under consideration can arise 
under certain conditions [7], we shall investigate 
the general case with k ~ 2. 

3. SMALL PERTURBATIONS IN THE VICINITY 
OF THE ZERO LINE 

For a small perturbation the values of v, p, p, 
and A of the initial equilibrium state (9) of Eq. (8) 
reduce to the following: 

ap . aA at= -podtvv, at= -vVA0, 

8v 1 1 
-= --Vp---VAoM. (12) 
at Po 4npo 

Hence, 

82A = (VAo)2 M +~ VAo Vp, 
ot2 4npo Po 
a2v 1 
-=s2Vdivv+-4-VA0!1(vVAo). (13) o2t npo 

The condition (11) assumed above, that is, the 
condition VA ( r) » s, allows us to discard in (12) 
and (13) terms that depend on the pressure gradi­
ent. U we denote here, the perturbation-induced 
displacement of the medium by ~ ( r, t) and use 
expression (3) for A0 ( r ), then (12) and (13) can 
be reduced to the following system: 

o2A { o ( OA ) o2A} ~ = V 2,-2(A-2J r- r-- + --atz a or ar Oq>2 ,, 

o2s 1 
- 2 =-4-VAoll(sVAo), at npo 

v = 86 I ot, p = -po div s, A = - (sV)Ao. (14) 

Here V~ = ( h0k) 2 I 47rp 0, and we use the expression 
for the Laplace operator in cylindrical coordinates. 
As follows from (14), the perturbation propagates 

with local Alfven velocity, and the displacement ~ 

is directed along VA0, that is, transverse to the 
magnetic force lines. This means that in the re­
gion (11) the initial perturbation propagates 
primarily in the form of fast magnetohydrody­
namic waves, and pure hydrodynamic spreading of 
the gas along the magnetic force lines is much 
slower. This can be readily verified also if ac­
count is taken of the fact that the perturbations 
under consideration correspond to fast magnetic­
sound waves (see [B] ), whose phase velocity for 
VA» s is 

'Cil I k ~ VA (1 + (s2 / V A2 ) sin2 8) ~ VA, 

where 8 is the angle between the direction of 
propagation of the wave and the direction of the 
magnetic field. In fast magnetic-sound waves, 
under the condition VA » s, the motion of the 
medium is practically transverse to the magnetic 
force lines (the ratio of the longitudinal and the 
transverse components of the velocity of the 
medium is vu/v1 R: (so/2V~)sin 28). Under the 
same conditions the slow magnetic-sound wave 
propagates with velocity s cos 8, and the motion 
of the medium in such a wave is along the field 
(v1/vu R: (so/2V~) sin 28). 

We now examine the first equation of (14) for 
the potential A. In the general case of arbitrary 
k > 2 its solution can be obtained in the form of a 
Fourier-Bessel integral. The solution is particu­
larly easy to obtain in the case k = 2, when the 
equation for A, in variables x = ln r and cp, re­
duces to the usual wave equation 

azA ( OZA azA ) 
fJt2 = Va2 M + ot:p2 • (15) 

Let us consider an axially symmetrical (inde­
pendent of cp ) initial perturbation of the potential 
A ( r, cp, 0) = .P ( r ), where .P ( r) is an arbitrary 
function of the radial variable r. As follows from 
the expression for the potential of the displaced 
currents in (5), an axially-symmetrical perturba­
tion of the potential corresponds to a simultaneous 
displacement and change in the maritude of the 
currents such that ( 1 + ~ )/ ( 1 + o ) = 1. In this 
case the general solution of (15) will be 

A(r, t) = <l>(exp{lnr+ Vat}). (16) 

The plus sign is chosen because we are interested 
in a wave that converges to the zero line. As seen 
from (16), this is a converging cylindrical wave 
whose velocity decreases on approaching the zero 
line: 

V(r) ==drldt= -Vur= -VA(r), (17) 

Thus, the wave propagates with local Alfven ve-
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locity. If the change from A = 0 in front of the 
wave to A = h 0{j behind the wave (see expressions 
(5) and (7)) occurs over a distance ~r = l, then 
the width of the front of the wave decreases on ap­
proaching the zero line like 

l =.lor I R, (18) 

where 10 is the width of the front at a distance R 
from the neutral line. Simultaneously, the field 
intensity and its gradient increase: 

R 
n(r) = n(R) -, 

r 
an an ( R )2 -(r)=-(R) -
or or r ~19) 

Thus, a cylindrical wave converging to the zero 
line leads to a unique cumulative effect with re­
spect to the field and its gradient. 

From (14) we can easily determine also the 
displacement ~ and the change in density p. 
Namely, taking into account that by virtue of the 
second equation of (14), ~ is directed along \7A 0, 

we obtain 
A 

6 =- (VAo)2 VAo. (20) 

Assuming that A takes on the value A = 2h06 
after the passage of the wave (see (7) with ~ = 0 
and 6 « 1 ), we obtain from this the resultant dis­
placement 

6 = {sr, Srp} = r 16{cos 2<p, -sin2<p}. (21) 

Thus, the magnitude of the displacement also in­
creases as the wave approaches the zero line of 
the field. The change in density of the medium is 
then 

p = -po div 5 = 2r26po cos 2<p. (22) 

It follows from (22) that the density of the medium 
increases in one pair of opposite quadrants, and 
decreases in the other. 

Thus, even the linear approximation shows that 
regions in which the field and its gradients in­
crease and the density of the medium decreases 
are produced near the neutral line when the cur­
rents are displaced. Unfortunately, as follows for 
example from (22), the linear approximation is 
valid only for r » .../26, and this does not explain 
the situation arising in the region r ~ rs if rs 
« -./"26. 

4. DEFORMATION OF THE MAGNETIC FIELD BY 
A QUASI-ADIABATIC DISPLACEMENT OF THE 
CURRENTS 

We now turn to the exact system of equations 
(8). For the first two equations we readily obtain 
the integrals if we go over to Lagrange coordinates 

ro=r-6(r,t), (23) 

where r 0 is the coordinate of the material point 
prior to displacement, r its coordinate at the in­
stant of time t, and ~ ( r, t) the displacement 
vector. Then 

p(r, t) = Po(r- 6(r, t)) D(r- 6(r, t)) (24) 
D(r) ' 

where D ( r 0 )/D ( r) is the Jacobian of the trans­
formation from the coordinates r 0 to the coordi­
nates r. The initial density will henceforth be as­
sumed constant: Po ( r 0 ) = Po = const. 

The integral of the second equation of (8), 
namely 

A(r, t) =Ao(r-6(r, t)), (25) 

where A0 ( r 0 ) is the initial value of the potential, 
expresses the usual magnetohydrodynamic freez­
ing-in condition: when the medium is displaced 
the force lines remain bound to the same particles 
of the medium. 

As is clear from (24) and (25), for a known dis­
placement ~ ( r, t), we can uniquely determine the 
deformation of the magnetic field and the change 
of the density in each part of space. However, to 
find ~ ( r, t) in the general case it is necessary to 
solve the complete system of equations (8) with 
corresponding initial and boundary conditions. A 
solution of this nonlinear system is a very com­
plicated problem. We note here that for an in­
compressible liquid there exists a certain exact 
particular solution of the system (8) in the vicinity 
of the second-order zero line ( k = 2) (see [9 J ). 
Since, however, the compressibility plays the 
fundamental role in what follows; we shall have to 
use certain simplifications. Namely, we assume 
that the displacement of the currents is sufficiently 
rapid compared with the speed of sound, but suf­
ficiently slow compared with the Alfven velocity. 

Under these assumptions the boundary conditions 
of the problem change slowly compared with the 
velocity of the fast magnetic-sound waves. There­
fore, at least during the first stage of the process 
when the perturbations are carried by fast mag­
netic-sound waves, there are no grounds for ex­
pecting the occurrence of shock waves. Shock 
waves can be produced in the region r ~ rs, 
where the Alfven velocity is comparable with the 
speed of sound, and also during the succeeding 
stage of the process, when slow magnetic-sound 
waves which carry matter along the force lines 
come into play. 

If conditions (11) are satisfied, then a region 
exists in which we can neglect, as before, the 
pressure and the gasdynamic flow of the medium 
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along the force lines, that is, we can omit from 
the last equation of (8) the term with the pressure 
gradient. On the other hand, slow displacement of 
the currents (compared with the Alfven velocity) 
allows us to neglect in (8) the acceleration of the 
medium, that is, to assume that an equilibrium 
field 

M.(r, t) = 0 (26) 

has time to become established during each stage 
of the displacement. 

The last assumption denotes in fact that the 
final displacement ~ of interest to us is regarded 
as an aggregate of successive small perturbations 
6~ of the type considered in Sec. 3, each of which 
transforms the system to a neighboring equili­
brium state. 

Under the assumptions made, the displacement 
at each instant of time is transverse to the instan­
taneous force-line pattern, that is, the following 
conditions should be satisfied (see also the Appen­
dix): 

.[ ~t VA (r, t) ] = 0. (27) 

Equations (25)-(27) allow us to determine the dis­
placement ~ ( r, t) for any specified displacement 
of the field sources. 

5. DISPLACEMENT OF THE MEDIUM IN THE 
VICINITY OF THE NEUTRAL LINE 

We shall use (25)-(27) to determine the defor­
mation of the field and the displacement of the 
medium in the vicinity of a zero line or order k. 
As follows from the comparison of the expressions 
for the potentials (3) and (5), the general pattern 
of the force lines near the neutral line remains 
the same when the magnitudes and positions of the 
currents change. Under any such change, the 
equation for the force lines remains 

r< cos kq> = const. 

Therefore, by virtue of the condition (27), the 
displacement of the medium should occur along 
trajectories orthogonal to these lines. The family 
of such trajectories is made up of the lines 

r< sin kq> = r0k sin lc<po, (28) 

where r 0 and cp 0 are the initial coordinates of the 
material plane. 

Further, by way of a solution of (26) satisfying 
the boundary conditions of interest to us (specified 
change in magnitude and position of the currents), 
we must choose the potential (5). Together with 
(25), this yields 

ar< cos kq> - ~ = rok cos kq>o. (29) 

Equations (28) and (29) express the initial coordi­
nates of the material point in terms of its coordi­
nates after a displacement specified by the parame­
ters (6) and (7). Namely, 

r02k = r2k- (1- a2)r2k cos2 kq>- 2aJ~r< cos kq> + ~2, 
ctg k<po = a ctg k<p - ·~ / r< sin kq>. (30)* 

To clarify the picture of the displacements of 
the medium and the deformation of the force lines, 
we assume for concreteness {3 > 0 and denote the 
force lines by indicating the points where they in­
tersect the rays cp = ( 2i - 1 )1rjk, cp = 27Ti/k, and 
cp = ( 2i + 1 )7r/k (see Fig. 2). Thus, for example, 
the line r 2i +1 = ( {3/ a) 1/k denotes the force line 
crossing the ray cp = ( 271" + 1 )7r/k at the point 
r = ( {3/ a ) 1/k. 

As can be verified with the aid of (28)-(30), 
when {3 > 0 the picture of the field deformation 
has the following properties: the neighboring 
branches of the force lines r 2i +- 1 = {31 /k go over 
into the neighboring branches of the force lines 
r 2i = 0, that is, into the rays cp = (2i ±~2 )7r/k; the 
neighboring branches of the force lines r 2i±1 
= ( {3/ ( 1 + a )) 1 /k go over into the force line 
r 2i = ( {3/ ( 1 + a )) 1 lk; the neighboring branches of 
the force lines r 2i = 0, that is, the rays 
cp = ( 2i ± % ) 1rjk, go over into the force r 2i 
= ( {3/a )1/k. The dashed lines with the arrows in 
Fig. 2 indicate the character of the displacement. 

We note immediately that this picture of the 
deformation cannot be extended to include the en­
tire range of values r > 0. First, by virtue of 
condition (11), we exclude from consideration the 
region r ~ rs, in which the decisive role is al­
ready played by purely gasdynamic flows. We shall 
assume that 

Under this condition the displacement in the 
region r > r 1 will differ greatly from that de­
scribed above. 

(31) 

Further, currents not accounted for in the ex­
pression ( 5) for the potential may be produced 
during the course of the displacement. These cur­
rents will distort the picture of the force lines 
near the neutral line. For a rigorous account of 
the influence of the resultant currents it is neces­
sary to solve completely the time-dependent prob­
lem defined by (8). At the same time, an approxi­
mate picture of the deformation of the field in the 
region r ;::::, rs can be established on the basis of 

*ctg =cot. 
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for fi < 0, (34) 

the density is p > p0, that is, compression of the 
medium takes place, whereas in the remaining 
part of space the displacement leads to a decrease 
in the density. In the region r « I {3 j1 lk the 
density of the medium is, in accord with (32), 

P = Poa(rl fi l-i/k)2(k-il. (35) 

It follows therefore that in the region r « I {3 11 /k 
a maximum rarefaction of the conducting gas may 
take place. We note, however, that, in view of the 
foregoing distortions of the character of the de­
formation in the region r < r 1, formula (35) must 
be regarded only as a rough estimate of the real 
rarefaction. 

The field-deformation pattern described above 

~~2_=.:::L_ _ _=:::====~~========= in the vicinity of the zero line is shown in Fig. 3. 

FIG. 2 

the frozen-in property and continuity of the force 
lines and by recognizing that when r ~ r 1 the 
picture of the displacements of the force lines is 
known. 

Finally, it is necessary to recognize that com­
pression regions with high density gradients, 
where the effect of gas pressure can no longer be 
neglected, can be produced during the displace­
ment. The existence of such regions can be readily 
established with the aid of (24). Namely, calculat­
ing the Jacobian of the transformation (30) in the 
cylindrical coordinates, we obtain 

( t) _ ro D(ro, <po) _ ( r )2(k-t) 
P r, -Po D( ) -apo- . (32) r r, <p r0 

It follows from this that at the points whose initial 
coordinates are r 0 = 0, the density of the medium 
becomes infinite. With the aid of (30) we can 
easily verify that in the deformed field pattern 
these points are ( i = 0, 1, ... , k - 1 ) 

r = (fi I a) 11k, <p = 2.rti I k, if fi > 0, 

r = Hfil I a)11k, <Jl = (2i + 1).rt I k, if fi < o. (33) 

In the vicinity of such points, the field deformation 
and the displacement of the medium will be differ­
ent from those obtained above. 

We note that in the regions 

[' fi ]i/k .rt ( . 1 ) .rt ( 1 ) 
r> (1+a)cosk<p 'k 2'--i <<p<k 2i+2 

for fi > 0, 

For the region r :t r 1 and far from the point (33), 
the deformation is described by Eqs. (28)-(33). 
In the region r ~ r 1 and in the vicinities of the 
points (33), only a qualitative picture of the force 
lines is given, based on their continuity and the 
condition for the conservation of the frozen-in 
property during the deformation process. 

Figure 3 corresponds to the case {3 > O, that 
is, as follows from (5), to an increasing distance 
( 6 > 0) between the currents and the neutral line, 
or to a decrease in the magnitude of the currents 
( 6 < 0 ). In this case the regions of plasma com­
pression (such a region is shown doubly cross 
hatched in Fig. 3) and the regions of condensation 

FIG. 3 
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of the magnetic force lines (single hatching) lie on 
the rays cp = 21Ti/k joining the neutral point with 
the points corresponding to the positions of cur­
rents. 

For the case when the currents come closer or 
become stronger ( {3 < 0 ), as can be seen directly 
from (28)-(30), all that takes place is rotation of 
the entire picture through an angle JT/k relative 
to the specified currents. In this case the regions 
of high compression of the medium 
r ~ ( I {3 I I a ) 1 /k and regions of condensation of the 
force lines lie on the rays cp = ( 2i + 1 )1T/k, which 
separate the currents. 

6. VIOLATION OF THE FROZEN-IN CONDITION 
AND DYNAMIC DISSIPATION OF THE MAG­
NETIC FIELD 

The foregoing picture of field deformation in 
the vicinity of the neutral line leads to a very 
unique situation, consisting in the fact that the 
concentration of the particles in the medium de­
creases simultaneously with an increase of the 
magnetic field intensity and of its gradients. Let 
us examine this process in greater detail. 

The magnetic flux 
r, 

<D = ~ Hrp dr =A ( r1, ~ (2i + 1))- A (0) = h0~, (36) 
0 

(37) 

which prior to the displacement crossed the ray 
cp = ( 2i + 1 )1r/k on the segment 0 < r 1, is con­
centrated as a result of the displacement within 
the range of angles 2i1T/k < cp < ( 2i + % )1T/k, and 
in region r « I {3 11/k the field direction will be 
practically radial. This makes it possible to es­
timate both the magnetic field intensity and its 
gradient in this region. Mainly, inasmuch as the 
flux ( 36) crosses after the displacement an arc of 
length r1T/2k, the average field intensity in this 
region is 

H = 2k<D I nr = 2kh0~ I nr. (38) 

Recognizing that the field reverses sign on 
going through the ray cp = 2i1T/k, the field gradient 
has an order of magnitude 

h ~ 2k H = ( 2k )2 ho~ . 
nr l1 r2 (39) 

On the other hand, in the region r « I f31 11k, the 
concentration of matter, in accordance with ( 35) 
amounts to 

n = n0ar2<k-1)~-2(k-1)1k. ( 40) 

It follows therefore that the region h/n is 

h h0 (2k)2 - = -- - wsk-2)/k r-2k 
n an0 n 

and increases rapidly with decreasing r. The 
maximum value of this ratio is attained for the 
smallest values of r for which the foregoing 
picture is still valid ( r ;;:, rs ), and its order of 
magnitude is 

!!__ = !!!___ ( 2k )2 wsk-2)/kr.-2". 
n an0 n 

( 41) 

(42) 

This ratio plays a fundamental role in the prob­
lem under consideration. In fact, the magnetohy­
drodynamic freezing-in condition implies the pos­
sibility of neglecting the displacement currents 
and assuming that the "truncated" Maxwell equa­
tion is valid at each instant of time: 

curl H = 4nc-1j. ( 43) 

However, the current j = neu, where e is the 
charge and u the velocity of the charged particles 
that carry the current, cannot exceed for a given 
concentration n the value j =nee. Therefore, 
putting I curl H I = h, we arrive at the conclusion 
that when 

(44) 

the freezing-in concept is entirely unsuitable. 
Under these conditions we must take into account 
the displacement current in ( 43), that is, we must 
take into account the strong electric fields that 
appear when condition ( 44) is satisfied. A quanti­
tative analysis of the situation arising when 
freezing-in is violated will be given in a separate 
article. Here we shall only dwell briefly on the 
qualitative aspect of the problem. 

Under condition (44), the medium no longer 
exerts an appreciable influence on the propagation 
of magnetic perturbations, which assume the char­
acter of ordinary electromagnetic waves. In other 
words, on going into the region of high rarefaction 
near the neutral line, the magnetohydrodynamic 
waves are transformed into low-frequency elec­
tromagnetic waves. Under the situation considered, 
in each of the regions of condensation ('cumula­
tion') of the force lines shown in Fig. 3 is singly 
hatched, two converging magnetohydrodynamic 
waves form a quasistatic electric-field wave, the 
intensity of which is equal in order of magnitude 
to the intensity of the magnetic field on the bound­
ary of the region when the freezing-in is violated. 
It follows from (38) that the magnetic field in the 
region of accumulation can exceed by 2{3/ 1rrk 
times the initial field in this region. Theref~re 
the produced electric field may reach quite large 
values. 
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We note here that the electric field in the 
region of cumulation is directed along the z axis 
in the same direction as the initial currents when 
{3 > 0, and in the opposite direction if {3 < 0. The 
energy of this electric field and of the magnetic 
field that excites it is consumed in the acceleration 
of the particles contained in the cumulation region. 

Thus, under the conditions considered, the mag­
netic energy stored in the medium, which can be 
regarded as continuous, is transported by magnet­
ohydrodynamic waves into the region of higher 
rarefaction, where it goes over into energy of in­
dividual accelerated particles. Here the magneto­
hydrodynamics of the plasma as a whole merges 
continuously with the dynamics of the individual 
particles in the electromagnetic field. It is pre­
cisely in this sense that the process of realign­
ment of the magnetic field, accompanied by the 
appearance of accelerated particles, has been 
called above dynamic dissipation for short. 

Estimates of the number and energy of acceler­
ated particles are contained in [5]. We shall dwell 
here only on the conditions under which dynamic 
dissipation is realized. 

7. CONDITIONS OF DYNAMIC DISSIPATION 

Using (42), we can rewrite the condition (44) in 
the form 

(45) 

Together with (7), this condition denotes that 
dynamic dissipation can be connected either with 
the displacement of the currents or with the 
change in the magnitude. If the currents change 
in magnitude, then the resultant induced electric 
field and consequently also the quantity {3 (see (5) 
and (7) depend via the constant C on the total 
geometry of the currents, that is, on the manner 
in which the circuits are closed at large distances. 

For currents that remain unchanged in magni­
tude (A = 0 ), the induced electric field E = -c- 1V 
x H is determined by the displacement velocity V 
of the nearest current segments that make the 
principal contribution to the magnetic field inten­
sity. In this case {3 depends only on the resultant 
displacement of the considered parallel sections 
of the current. 

For currents which do not change in magnitude, 
retaining the principal terms in (6) and (7), we 
rewrite the condition for dynamic dissipation in 
the form 

ho (k6)(3A-2)/h r 8-2h k2d; n3e. 
no 

(46) 

It follows therefore that with increasing k the 
condition (46) becomes less stringent, since it is 

assumed that rs < 1. We must, however, bear in 
mind the condition (see ( 31)) 

r. = [ 4nyn0xT I h02k2)112(h-t) ~ ,~t/A ~ 1. ( 47) 

As already noted above, with increasing k the 
quantity r s tends to unity and the approximations 
used in the derivation of the criterion (45) are no 
longer justified. The limiting case k- oo corre­
sponds to a cylindrical current which is homo­
geneous in cp, and for which there is no magnetic 
field at all in the region r < 1. 

We now stop to discuss the temporal charac­
teristics of the process. To be able to neglect the 
spreading of the medium along the force lines and, 
in particular, to prevent the rarefaction region 
with dimensions of the order rs from becoming 
filled with the medium from the neighboring re­
gions, we must stipulate that the time T of the 
process satisfy the condition 

(48) 

This means that the current displacement velocity 
V = 6/ T should be 

Vd:. sO /r •. (49) 

The use of an equal sign is still valid here in the 
sense of order of magnitude, since the amount of 
matter in the neighboring sections bordering on 
the maximum-rarefaction region is small. 

The dynamic dissipation condition ( 45) implies 
acceleration of the particles to relativistic veloci­
ties. Actually, dynamic dissipation can be realized 
also under a less stringent condition, when the 
dissipation of the magnetic field is connected with 
the known phenomenon of particle runaway. It is 
necessary for this purpose that the resultant elec­
tric field exceed the critical field Ecr corre­
sponding to treble particle runaway [10]. In this 
case use in the derivation of the condition (45) not 
the maximum current j = nee but the critical cur­
rent j = a"Ecr• where a is the longitudinal con­
ductivity of the plasma. 

As a result, the condition for dynamic dissipa­
tion accompanied by particle runaway becomes 
(see also [ 5] ) 

ho ( a \ _ k2W3h-2)/k r -2h >- n3a __ E 1 
no 8 cr noc cr;· (50) 

Under even weaker conditions, when the criter­
ion (50) is not satisfied, the number of accelerat­
ing (runaway) particles is small and ordinary 
Joule (ohmic) dissipation, which leads simply to 
heating of the medium in the cumulation regions, 
begins to play the decisive role. In this case the 
situation apparently corresponds to that consid­
ered in [11], the only difference being that two re-

' 
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gions of field cumulation and plasma heating are 
produced. 

8. CONCLUSION 

Possible applications of the mechanism of 
dynamic dissipation and certain numerical esti­
mates are considered by the author in [5]. A 
quantitative analysis of the process of particle 
acceleration will be presented in a separate arti­
cle. We point out here only the possible ways of 
further investigating the magnetohydrodynamic 
stages of the process. We are referring here to 
investigations of the time-dependent problem de­
fined by the system of equations ( 8) under more 
accurate approximations. Ways of carrying out 
such investigations may be as follows: 1) rigorous 
solution of the time-dependent problem, neglecting 
pressure effects but allowing for the finite veloc­
ity of the displaced currents; 2) rigorous analysis 
of the motions in the region r :S r 1, for which only 
a qualitative treatment was presented in this 
paper; 3) analysis of the possibility of formation 
of magnetohydrodynamic shock waves during cer­
tain stages of the processes; 4) development of 
computer programs and analog techniques for the 
analysis of the exact problem. 

The solution of these problems calls for serious 
efforts. These efforts, however, will be fully 
justified by the role that may be played by the dy­
namic dissipation in outer-space physics and in 
plasma physics in general. 

APPENDIX 

We introduce the dimensionless variables v' 
= v/V, p' = pjp0, A'= A/a0, and t' =tVa, where 
v~ = hV 4rrp0, v is the characteristic limiting 
velocity (rate of displacement of the currents), and 
the unit of distance is taken to be the distance R 
from the currents to the zero line. In this nota­
tion, the last equation of (8) takes the form (we 
leave out the primes) 

fJv 1 
e-+ ez(vV)v = --L\A VA. (A.1) at p 

Here E = V /V a; by assumption E « 1. We seek 
the solution of (A.1) in the form 

A (r, t) = A<Ol(r, t) + eA<tl(r, t) + ... , 
(A.2) 

v(r, t) = v<O>(r, t) + ev<1>(r, t) + ... 

then in the zeroth (adiabatic) approximation we 
have (see (26)) 

AA<O>(r, t) = 0. (A.3) 

A solution of (A.3) satisfying the necessary bound­
ary conditions, is (see (5)) 

A<O>(r, t) = -ar" cos kqJ + ~- C I 2. (A.4) 

The solution (A.4) depends on the time only as a 
parameter, via the boundary values of a and {3. 

From (A.4) we obtain the next higher order in 
E: 

av(O) = -~L\A(i) VA<0>. 
at p 

Integrating both sides of (A. 5) with respect to 
time, we get (for v(r, 0) = 0) 

y(O) =- (! ~ ~(i) dt) VA<0>. 
0 

(A.5) 

(A.6) 

From this, in particular, follows the expression 
(27). 

Further, going over to Lagrangian coordinates 
and recognizing that v = {dr/dt, rd <pjdt}, we 
obtain the differential equation for the trajectories 
of the medium: 

dr I rd(jl = -cos kqJ/ sin kqJ. (A. 7) 

Consequently, the trajectories of motion of the 
particles of the medium constitute a family of hy­
perbolas (see (28)) 

r" sin kqJ = const. (A.8) 
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