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Quasilinear equations are obtained for an inhomogeneous plasma in a magnetic field: these 
equations take account of convection of charge across the magnetic field. The equations are 
used to treat the quasilinear pumping of energy associated with electron plasma oscillations, 
excited in a plasma by an inhomogeneous electron beam, into low-frequency oscillations. It 
is shown that this phenomenon can lead to a substantial reduction of the energy of the plasma 
oscillations. 

1. INTRODUCTION 

I!<' a given class of waves is excited in a plasma 
the energy of these waves can, by virtue of non­
linear interactions (for example decay), be trans­
formed into energy associated with waves of 
another class. This phenomenon has been studied 
by many authors, one of the earliest of whom is 
Sturrock. [t] However, in addition to the interac­
tion between waves, another mechanism for the 
transformation of wave energy can be associated 
with quasilinear phenomena. The case of a uniform 
plasma in a magnetic field has been treated by 
Andronov and Trakhtengerts.C2J The effect is the 
following: The plateau formed in velocity space as 
a result of any one of a number of interactions be­
tween particles and waves (Cerenkov (vz = w/kz), 
or cyclotron (vz = (w - nwB)/kz, n;.! 0), is unstable 
with respect to another mechanism. Thus, the 
plateau of the initially excited waves does not re­
main as such; in addition to the wave excitation 
there is also an absorption effect. This effect is 
due to the fact that the equilization of the distri­
bution function f(vz, v 1), which leads to the plateau, 
proceeds along different lines in velocity space 
depending on the type of interaction. (For example 
in the Cerenkov interaction the plateau equation is 
of the form 8f/8vz = 0, while in the cyclotron inter­
action the equation is of the form O!of/Bvz 
+ {38f/8vl = 0 where 0! ;.! 0 and {3;.! 0.) The neces­
sary condition for wave transformation in a uniform 
plasma is the requirement that both wave classes 
interact with the same resonance particles: 

(rot- ntWB) I ktz = (w2- ~WB) I k2z, 
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and n1 ;.! n2• 

In the present work we consider quasilinear 
transformation of waves in an inhomogeneous 
plasma. The qualitatively new feature is the intro­
duction of convective (drift) effects. [a] In the linear 
approximation, taking account of particle convec­
tion in the direction of the plasma inhomogeneity 
means that the growth rate (or damping rate) of the 
oscillations depends on arbitrary distributio~ func­
tions which describe the distributions in coordinate 
space as well as velocity space, [ 4] that is to say, 

v "' aat I av. + ~at I av .L + aat I or, 
while the plateau for waves in this plasma corre­
sponds to a line in the generalized phase space. In 
contrast with the case of a uniform plasma, quasi­
linear transformation in an inhomogeneous plasma 
is possible only by virtue of a particular kind of 
interaction, for example the Cerenkov interaction 

Wt / ktz = w2 I k2z, nt = n2 = 0, 

which, incidentally, plays the principal role in most 
of the instabilities of an inhomogeneous plasma. 

Energy pumping is investigated for a system 
consisting of a cold plasma penetrated by a thin 
electron beam. This example gives results which 
are clear and also of direct interest for a number 
of experiments concerned with the interaction of a 
beam with a plasma, in particular, [5] • 

We show that high-frequency (plasma) oscilla­
tions, the relaxation of which is treated below, are 
excited by an electron beam with transverse dimen­
sion a which moves along the axis of a plasma 
cylinder of radius R located in a longitudinal mag­
netic field. Thus, the present work is essentially 
the nonlinear extension of the linear theory of the 
interaction between a plasma and a spatially in­
homogeneous electron beam presented in an earlier 
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paper by the present authors.C 4J All of the basic 
assumptions and, wherever possible, the notation 
are the same as in the earlier paper. [ 4] In par­
ticular, it is assumed that the ratio of the beam 
density to the density of the cold plasma is a small 
quantity (N « n0) and that the dimensions of the 
beam are smaller than the radius of the cylinder 
(a < R); the analysis is restricted to irrotational 
electron plasma oscillations (E = - \71/J). 

In Sec. 2 we derive the basic equations of a 
quasilinear approximation for this inhomogeneous 
system and obtain the time integrals. In Sec. 3 we 
consider the quasilinear pumping of energy of the 
high-frequency oscillations into the low-frequency 
region of the spectrum. The original beam distri­
bution function is assumed to be a wide step formed 
earlier because of the smearing of a a-function 
(in velocity) beam; the total initial energy of the 
high-frequency oscillations is estimated to be of 
the same order as the kinetic energy of the beam. 
(In this formulation of the problem we are thus as­
suming that the usual beam relaxation process, as 
treated, for example, by Shapiro[sJ has already 
terminated. It is shown in [s] that as a result of 
this process approximately 2/3 of the energy of the 
o function beam remains in the particles of the 
smeared out beam while 1/3 goes into the high­
frequency oscillations.) It is assumed that the 
radius of the beam remains unchanged during the 
time in which the low-frequency oscillations grow 
and it is shown in Sec. 3 that for a sufficiently high 
initial amplitude of the high-frequency oscillations 
almost all of the high frequency energy is conver­
ted into low frequency energy. During this time 
the kinetic energy of the beam does not change sub­
stantially (it remains of the same order of magni­
tude) and in this sense the stage of the process 
considered in Sec. 3 can be called the initial stage. 

Section 4 is devoted to the analysis of a later 
stage in the growth of the low-frequency oscilla­
tions and the relaxation of the beam distribution 
function. In this stage the negative derivative of 
the velocity distribution function becomes appreci­
able and this implies damping of the low-frequency 
oscillations; this effect compensates for the exci­
tation of these oscillations by the spatially inhomo­
geneous beam. As in Sec. 3, we neglect the effect 
of the spatial broadening of the beam. Under these 
assumptions it is shown that the energy acquired 
by the low-frequency oscillations directly from the 
beam is a small fraction of the energy obtained 
from the high frequencies if the frequency exceeds 
the characteristic drift frequency of the beam: 
w2 > wdr = v~lml/a2 wB (m is the azimuthal wave 
number). If w 2 :; wdr these energies become com­
parable. 

In Sec. 5 we estimate the effect of beam expan­
sion on the growth of the low-frequency oscilla­
tions. A criterion is obtained for which this effect 
can be shown to be unimportant; it is shown that 
the analysis in Section 3 and 4 is valid with respect 
to this criterion. The growth of low-frequency os­
cillations under conditions of beam expansion is 
also investigated. 

2. QUASILINEAR EQUATIONS FOR AN INHOMO­
GENEOUS PLASMA 

In the quasilinear approximation the equation for 
the slowly varying (in time) part of the distribution 
function F is of the form: 

aF aF aF e < ajo>) at+ v ar + [vron] av = lll V¢ av = S. (2.1)* 

Assuming that F varies slowly over a period of the 
cyclotron gyration of the particles BF/Bt « WBF 
we simplify this equation by an expansion in powers 

of w ~· writing 

F = p<o> + p(!) + F<2> + ... 
We now introduce a cylindrical coordinate system 
in velocity space v 1• a, and v z and assume that the 
plasma is uniform in the direction z II B. In the 
zeroth approximation we have from (2.1) 

aF<0> I aa = 0, (2.2) 

whence p<ol = F 0 (v1, Vz, r, t). 
In the next approximation, the oscillatory part 

(with respect to a) of Eq. (2.1) is 

8F<0> 8F(I> _ 
v---wn--=S-S ar aa ' 

where the bar denotes an average over a. The 
quantity p<tl can be computed from Eq. (2.3): 

(2.3) 

FO> = ~[ Vj_ sin a aF<O)- Vj_ cos a aF<OJ- (' (S- S)da] . 
Wn 8x 8y .) 

(2.4) 

Substituting the expression for p<ll in the equation 
for the non-oscillatory (with respect to a) part of 
Eq. (2.1), we obtain the required equation for the 
time variation of p<ol: 

8F<0l 1 _ _ --+ -- rotz vS = S. 
'8t WB 

(2.5)t 

Hereinafter we limit our analysis to the beam­
plasma system assuming that the plasma is at zero 
temperature and that the beam particles have only 
a longitudinal component of velocity v z. Under 

*[vw8 ] "'v x Wa· 
t rot = curl. 
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these conditions we can integrate Eq. (2.5) over 
transverse velocities and take the limit v 1- 0. 
Then the following equation is obtained for 
F0 = jF<o>dv1: 

fJFo ie (" 1 1 { 1 0 1 1 } -at= M J dk dw k. av. + WB [Vk ]. ¢h'6l'j(!J(r.L, v., ~) 

X ei(k'r-ID't>, (2.6) 

where f<t > is the rapidly varying part of the distri­
bution function, an expression for which can be 
obtained from C4J: 

RtJ( e {k• 8Fo/8v, _V.=.L..:...(F...:.o_V .L¢) 
J' r.L,v,,t)= -M- ¢+ 

w - k,v, 2wB 

X ( 1 _ 1 ) +. [VF0, V¢]. 
w - k.v.-wB w-k.v, + WB '--:iw;-

For the case of a cylindrical beam which is coaxial 
with the cold-plasma cylinder it follows, in par­
ticular, that 

8F0 e2 ~ ( a m a ) ·{ ( 8Fo -=- dk.~ k.--+-- 'ljJ 'ljJ k.-
f)t 2M2 OVz l'WB or OVz m,n 

m¢ 8F0 ] 'Y } 
+---,--a; (w-k,v.+wB) 2+y2 • 

(2.8) 

Here it is convenient to isolate the part corre­
sponding to the resonance particles of the beam 
("hot" particles) and the cold plasma Fe: 

aFh = nez ("ldk. ~ (kr-~--+-"!-~J l¢• 
f)t 2Md OVz rwB or m,n 

Xil(w-kzVz+WB), (2.9) 

oFc - _::___ I dk ~ (k _!__ _!!!___!_ ) •{ ¢'Y 
ot - 2M2 J z · z ov, + rwB or 'ljJ (w- k,v,)2 m,n 

( 8Fc m 8Fc) 1 [ F · X k,-0-+---0- +-2 - V .L( cV .L¢) 
, v. rwB r WB 

m¢ 8Fo] 'Y __ 1_[ V (F V •I•) ----- .L c .l't' 
r Or (w-kzVz-WB) 2 2WB 

m¢ 8Fc ] 'Y + -r- -{}r- ( w - k,-'-v.-+-w_B __ )_2 · (2.10) 

The equation for the variation in the energy of 
the oscillations can be obtained from Poisson's 
equation and (2. 7) (this has been done in C4J). 

The result is then 

__ 1_ (1V.L¢12Fh+ ml¢12 8Fh) b(w-k.v.-wB) 
2WB r Or 

1 ( ml¢1 2 fJFh) + 2WB IV.L¢1 2Fh--r-Tr ll(w-k,v,+wB). 

(2.11) 

Here, Wm n k (r) has the meaning of the energy 
• ' z 

density of the oscillations and is given by the ex-
pression 

1 {} 
Wm,n,h.(r)= 16now{w[IV.L¢I 2e.L+k.2l¢12e11]}, (2.12) 

where 
Wp2 

B.L = 1- 2 2' 
W - WB 

while the oscillation frequency w (m, n, kz) is de­
termined by the dispersion equation for the cold 
plasma (cf. [ 4J). 

Equations (2.9)-(2.11) form a closed system of 
equations in the quasilinear approximation for an 
inhomogeneous electron beam and a nearly homo­
geneous cold dense plasma. The equations for a 
more complicated system would be of analogous 
form but these will not be treated in the present 
paper. 

We show that our quasilinear equations, like the 
equations for uniform plasma, have an integral in 
time. In order to be convinced of this we integrate 
Eq. (2.9) over the transverse coordinates and Eq. 
(2.11) over transverse wave numbers (that is to 
say, we sum over nand m). Combining these two 
results we obtain a conservation law in time for a 
function which contains the parameters of the beam 
and the energy of the oscillations. 

Quasilinear Integral for Cerenkov Interaction 

Retaining terms that contain o (w - kzVz) in the 
right sides of Eqs. (2.9) and (2.11) we have 

where, the quantity kz is to be replaced by 
kz = w/vz. 
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Quasilinear Integral for the Normal and Anomalous 
Doppler Effects 

Similarly, if we take account only of the terms 
containing o(w- kzvz ± wB) in the right sides of 
Eqs. (2.9) and (2.11) we have 

f) {I d f) 1 "" (wm,n + WB) lwm,n +<DB I 
- J Fh r.L ----- LJ'-
fJt OVz Mvz3 <Dm n 

m,n ' 

X~ Wm,n(r)dr.L} = 0, 

where kz = (wm, n ± wB)/vz. 

(2.14) 

Another interesting consequence of the quasi­
linear equations is the fact that spatial diffusion 
of the beam corresponds to axisymmetric waves 
only (m ;t- 0). Actually, by integration of Eq. (2.9) 
over velocity one is easily convinced that BN/Bt if 
m = 0 in the right side of Eq. (2.9). This result is 
a consequence of the slowness of the relaxation 
processes that are being considered a ln F/Bt 

3. QUASILINEAR TRANSFER OF ENERGY OF 
HIGH-FREQUENCY WAVES INTO THE LOW­
FREQUENCY REGION OF THE SPECTRUM 

We now use the equations of the preceding sec­
tion to analyze the possibility of energy transfer 
from the high-frequency waves w1 f::::: wp to the low 
frequency waves w 2 « wp· This transfer is a con­
sequence of the fact that the plateau on the beam 
distribution function for one frequency range 
(high-frequency range) is not a general plateau for 
the other (low-frequency). 

For reasons of simplicity we assume that as a 
consequence of the initial conditions there are ex­
cited in the plasma two wave classes with frequen­
cies that are appreciably different w1 » w2• We 
limit our analysis to the case of Cerenkov interac­
tion and assume that in the high-frequency region 
it is legitimate to neglect the effect of gradient 
terms (this requires that Wp » Wdr = mvVa2wB). 
Let t = t 0 be the time at which the high-frequency 
oscillations are excited by the usual beam mechan­
ism, forming a plateau on the distribution function 
BFn/Bt = 0. In the absence of convection the forma­
tion of this plateau would be the terminal stage of 
the process. However, the convective effects can 
be extremely important in the low-frequency region 
so that it is necessary to trace the further change 
in the distribution function and the resulting trans­
fer of energy from the high-frequency waves to the 
low-frequency waves. 

As in the linear theory, [4] we choose a beam 
distribution function of the form 

Fh = F(vz, t) exp (-r2 / a2) 

and assume that the beam width a does not change 
in the course of the entire process. (The validity 
of this assumption is discussed in Sec. 5.) We also 
assume that BF/Bvz terms can be neglected in 
Eq. (2 .9) for the low-frequency oscillations when 
comparison is made with the corresponding terms 
with the high-frequency oscillations. This implies 

(3.1) 

where W1 and W2 are the total energies associated 
with the corresponding wave classes. If Eq. (2.9) 
is integrated over the transverse coordinate dr 1· 
assuming that the assumptions given above are 
satisfied, we have 

fJF = ne2 _fJ_ {[ ~ I 'I'd 2 <Dt2 fJF J 
f)t 21112 OVz 1 vi OVz kzc=ootfvz 

(3.2) 

where 

I qr 12 = ~ I \jl 12 e-r'!a' r clr I ~ e-r'/a' r clr. 

Here, in the summation over m we actually sum up 
to a value of m which corresponds to the maximum 
growth rate in the low-frequency region. 

Solution of the Kinetic Equation 

In order to proceed with the solution of Eq. (3.2) 
we assume that as a consequence of the initial con­
ditions the region of excitation of the low-frequency 
oscillations in velocity space is narrower than the 
region of high-frequency oscillations so that 

for U2 > Vz > Ut, 

for v2 > Vz > Vt 

(3.3) 

(3.3') 

where the limits of these regions satisfy the in­
equality u1 < v1 < v2 < u2• Hereinafter we denote the 
regions in the following manner: 

I == (zlt, Vt); II = (v~, v2); Ill == (v2, u2). 

From the point of view of energy transfer, the most 
interesting region is II. However, in order to find 
the solutions in this region we must solve Eq. (3.2) 
and determine the boundary conditions at the points 
v1 and v2 at which the potentiallj; 2 vanishes. Inas­
much as low-frequency oscillations are not excited 
in regions I and III, it is legitimate to assume that 
the relation BF /Bvz holds in these regions through­
out the entire process. Then, using Eq. (3.2) we 
obtain the following approximate boundary condi­
tions: 
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[8F /8vz]vz =v,, v, = 0. (3.4) 

It should be noted that these conditions would be 
exact boundary conditions for regions I and lli if 
lw212 = 0 as well in region II. Thus, in choosing the 
boundary conditions in the form in (3.4) we are 
neglecting the interaction between regions. In 
order to obtain the variation in the number of par­
ticles in regions I and III we must invoke the con­
servation of the total number of particles in the 
beam: 

"' 
N = F1(t) (v1- Ut) + ~ F2(vz, t)dvz 

"' 
+ Fm(t) (u2 - v2) = const (3.5) 

and the condition of continuity on the distribution 
function F. 

In order to obtain the function Fn(vz, t) we solve 
Eq. (3.2) by a method similar to that used in the 
derivation of the basic quasilinear equations in 
Sec. 2. For values of the time that are not too 
large t > t 0, for which the term lw 112 dominates, 
we can use the following method of successive ap­
proximations: The quantity Fn is written in the 
form of a sum Fn = F0 + F1 + F 2 in which each term 
satisfies the boundary condition (3.4). Then, to a 
first approximation, using the equation 

(3.6) 

and (3.4) we find that 

Fo = CI(t). (3. 7) 

In the next approximation we introduce the effect 
of the low-frequency oscillations on the distribution 
function: 

__!_ [~ l'l'dL-~.~ 8Ft] 
OVz · Vz3 OVz It =ro 1fv 

i l z 

(3. 8) 

In view of the fact that the quantity lw212 vanishes 
at the boundaries of region II, using (3.4) we can 
write 

(3.9) 

where 

The constant C2(t) is determined from the con-

tinuity condition on F at the points v1 and v2 and 
from the conservation of the number of particles 
(3.5). The corrections to the distribution functions 
Fit (t) and Fn11 (t), which describe the slow change 
of the plateau in regions I and Ill, are given by 

Fn(t) = C2 (t); Fnu(t) = t}(v2, t) + C2 (t), (3.10) 

so that the complete distribution function in this 
approximation F is given by 

(3.11) 

Substituting (3.11) in (3.5) and assuming that the 
boundary points u1 and u2 are independent of time, 
we have 

(3.12) 

In the next approximation we find 

iJFo :n;e2 a { ~ I I W12 8F2 
fit = 2M27fV .LJ '¥ 1 ' 21)3 a;;-

z i z % 

(3.13) 

Using (3.4) we find that the orthogonality condition 
for Eq. (3.13) reduces to the form 8F0/8t = 0, that 
is to say, F 0 = N/(u2 - u1). 

We note that the condition for applicability of the 
method used above to obtain successive approxima­
tions J.(v2, t) « 1 means, in order-of-magnitude 
terms, that W2(t)/W1(t) « wplwdr· Taking account 
of (3.1) and assuming that the beam radius a re­
mains constant, the condition for applicability of all 
the results obtained above can be written in the form 

a:;:::::: const. (3.14) 

Effect of Energy Transfer 

Using the results obtained in the above sections 
it is easy to compute what fraction of the energy 
that is converted into low-frequency oscillations in 
region II comes from the beam and what fraction 
comes from the high-frequency oscillations. We 
first compute the variation in the energy of the 
high frequency oscillation owP. For this purpose, 
in Eq. (2.11) we replace F by (3.11) and take ac­
count of the time dependence I w 21 2 ~· exp (2y 2t) 
where y2 is the maximum growth rate in the low­
frequency region, this quantity being of order [4] 

:n;'l•aN 
V2:;:::::: ~ lwdrl· (3.15) 

As a result we find 
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R 

g = na2 ~ I 'l't 12 Wt / ~ ~ I 'I'd 2 Wt dr ..L· (3.16) 
i 0 1 

The variation in this fraction of kinetic energy 
of the beam which, in region II, is converted into 
the energy of low-frequency oscillations, can be 
written in the form 

v, 

6W ~~ = ~ e-r'fa' { ~ (Fn (t)- Fn (to)) ~ Mvz2 dvz 
,,, 

- 1/aM (u23 - v23) (Fm(t)- Fm(to))- 1/aM (vt3 - u13) 

X (Fx(t)- Fx(to))} dr ..L· (3.17) 

In order to determine the order-of-magnitude of 
the ratio owP;owrin we must estimate the integrals 
appearing in Eqs. (3.16) and (3.17). For reasons of 
simplicity we take v1 ::::: u1 and v2 ::::: u2 so that the 
order of magnitude of this quantity is found to be 

blF!1 (t) Wp R Wi(t) 
0 lFII. ~ I Wdr I -; --w;;- ' 

km 

(3.18) 

where W0 = 1ra2NMv~/2 is the total energy of the 6 
function beam while W1 (t) is the total energy of the 
high-frequency oscillations per unit length in the 
z-direction. 

It follows from Eq. (3.18) that when the initial 
energy of the high-frequency oscillations is not too 
small, in which case 

Wt(to) ~Jwdrl .!:_ 
lVo Wp R' 

(3.19) 

in the initial stage (when W1 (t) is still comparable 
with W1(t0)) the energy growth of the low-frequency 
oscillations is due to the transfer of energy from 
high-frequency oscillations rather than from the 
beam. If the high-frequency oscillations are exci­
ted by a beam which is not smeared out greatly 
so that W1 (t0) ::::: W0, then at time t 1, at which point 
one expects 

(3.20) 

almost all of the energy in the high-frequency os­
cillations has been transferred to the low-frequency 
region whereas the change in the kinetic energy of 
the beam is still negligibly small. It is evident 
from (3.18) and (3.20) that the first of the condi­
tions (3.14) is not violated when t ::::: t 1• (The condi­
tion a ::::: const remains satisfied as before.) 

We now estimate the ratio 6W1 (T)/6Wkin(T) for 
later times t ::::: T when the first condition (3.14) is 
violated, that is to say, when 

W2(-r) ~min( -1 Wp I, Wp) W1('t'). 
Wdr W2 

(3 .21) 

Substituting Eq. (3.21) in Eq. (3.18) we find 

bW1(-r) ~ R W2 (-r) max ( 1 ~) 
6Wkin('t) a Wo 'lwdrl • 

(3.22) 

We now consider the following two limiting 
cases. 

1. Let 

Wi(to) >..!:... . (1 lwdrl) 
W ?"-" Rmln ' . 

o W2 

It follows from Eqs. (3.21) and (3.22) that W2(T) 
::::: W1 (t 0). This means that after time T almost all 
the energy of the high-frequency oscillations has 
been transferred to low-frequency oscillations and 
that the amount of energy transferred by this 
means from the latter is not smaller than the 
energy transferred from the beam. 

2. Let 

Wt(to) /W0 ~a/R 

(assuming for simplicity that w 2 < lwdrl). Then, 
when t = T the amount of energy obtained by the 
low-frequency oscillations from the beam is grea­
ter than the energy obtained from the high­
frequency oscillations. If the initial energy of the 
high-frequency oscillations is so small that the 
stronger inequality 

Wt(to) / Wo ~ (a/ R) Wdr2 / Wp2, 

is satisfied then at time t ::::: T there will be trans­
ferred only a small fraction of the high-frequency 
energy. In the opposite case 

a/ R ';:;P Wt(to) /Wo~ (a/ R)wdr2 / wi, 

the energy of the high-frequency oscillations is 
almost completely transferred to the low frequen­
cies although, as indicated above, its fractional 
effect in the energy balance is small. 

4. ENERGY OF THE LOW-FREQUENCY OSCILLA­
TIONS IN THE STATIONARY STATE 

As a consequence of the effect described in the 
preceding sections the energy of the low-frequency 
oscillations is increased as the energy of the high­
frequency oscillations is reduced so that the con­
dition in (3.14) must ultimately be violated. It is of 
interest to determine what amount of energy will be 
transferred to the low-frequency oscillations in the 
course of the entire process in which a steady 
state is established. If we neglect effects such as 
beam expansion, particle collisions, or excitation 
of other waves which do not appear in our two wave 
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classes, then at long times t---. 00 we have 11/1 112 

-- 0, oFh/ot---. 0, using Eq. (2.9) we find that the 
function F satisfies the following equation: 

Integrating Eq. (4.1) with respect to velocity and 
assuming that when t ---. 00 the quantity 

!_ (' Wdr.L -+0, at J 

we find that in the region in which II/I 212 ,e. 0, 

8F _ 2mvz F = O. (4 .2) 
OVz a2wnw2 

If, for simplicity we take 11/1 212 ""0 for v2 > Vz > 0 
and at t = t 0 F is equated to the constant part, F 0, 

then when t ---. oo we find 
v, 

F = Fov2exp(mvz2/a2wnro2) j ~ exp(mvz2/a2wnw2)dvz. (4.3) 
0 

In order to determine the kinetic energy of the 
beam Wfkin when t- 00 we consider the following 
two limiting cases. 

A. w2 » lwdrl· In this case using Eq. (4.3) we 
find 

(4.4) 

where Wi kin is the kinetic energy of the beam for 
t = t 0 so that when t ---. 00 

6Wi W2 wi (to) 
C\Wkin ~ lwdrl w;;-· (4 .5) 

It is then evident that if 

the fraction of the total energy obtained by the 
low-frequency oscillations from the high-frequency 
oscillations will be appreciably greater than the 
fraction of the energy obtained from the beam par­
ticles so that the final energy level of the low­
frequency noise can be properly estimated only if 
the quasilinear energy transfer is considered. 

B. w2 « lwdrl· In this case, using Eq. (4.3) we 
find 

Wt kin I W; kin ~ W2 I I Wdr I, 
so that when t - 00 we have 

(4.6) 

(4. 7) 

This means that when w2 < lwdrl the final fraction 
of the energy obtained by the low-frequency oscilla­
tions from the beam will exceed or be of the same 
order as the energy obtained from the high-fre­
quency oscillations, in determining the final energy 

level of the low-frequency noise in this case the 
effect of energy transfer is not so important. How­
ever, this effect is always important in estimating 
the level of the high-frequency oscillations because 
of the quasilinear transfer the level can be apprec­
iably smaller than would be expected from the 
theory of a uniform plasma. 

5. EFFECT OF SPATIAL BROADENING OF THE 
BEAM ON QUASILINEAR ENERGY TRANSFER 

We now discuss the validity of our assumption 
above that the spatial diffusion of the beam can be 
neglected in the transfer of energy. We also con­
sider the case in which this assumption does not 
hold. Integrating Eq. (2 .9) with respect to dv z and 
retaining the term that corresponds to the low­
frequency oscillations we have 

a ne2 (' 2m2 a 
-Ne-r'!a' ~ --.) dkzdVz ~ -- -(l'i'21 2Fh) at 2M2 

2 a2wn2r or · 

X 6(w- kzVz). (5.1) 

Here, as before, we assume that the particles have 
a Gaussian distribution in space. Integrating Eq. 
(5.1) with respect to dr 1 and keeping in mind the 
fact that R » a, we can replace the limits of inte­
gration by infinity in the left side of this equation, 
thus obtaining 

(5.2) 

where N0 and a0 are the values of N and a at t = t 0• 

Estimating the value of the expression on the 
right side of Eq. (5.1), in order-of-magnitude terms 
we have 

aN(t) I at~ N(t) W2(t)m2v22 I Mnoa"(t)R2wn2W2. (5.3) 

Making the substitution 2y2W2(t)---. dW2(t)/dt, and 
using Eqs. (3.15) and (4.2) we can now integrate 
Eq. (5.3): 

( N(t) )-'/, = 1 + lwdrl ~ W2(t) . (5 .4) 
No w2 R Wo 

Then the condition that the number of particles at 
the axis at time t remains essentially unchanged 
N(t) - N0/N0 « 1 can be written in the form 

w2 R 
W2 (t)~-, -

1 
- Wo. 

(!)dr ao 
(5.5) 

In particular, it follows from Eq. (5.5) that all 
the calculations in the earlier sections remain valid 
so long as 

~!!_>1 
I Wdr I ao . 

(5.6) 

If the condition (5.5) is not satisfied when W2(t) 
""W1(t0) (as is possible when Rw 2/a0 lwdrl < 1), an 
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important question arises as to whether it is gen­
erally possible for the high-frequency oscillations 
to transfer energy into low-frequency oscillations 
because the spatial diffusion of the beam can occur 
so rapidly that all particles will reach the walls of 
the chamber. At the limit of applicability of Eq. 
(5.4), where the width of the beam a(t2) R: R, W2(t2) 

reaches the value 
ro2 R 

W2(t2) ~ -, -, - Wo, 
<Odr ao 

(5. 7) 

which coincides with the right side of Eq. (5.5). 
It is not difficult to analyze the continuation of 

the process of spatial diffusion when a(t) R! R as­
suming that the transverse dimensions of the beam 
are not changed but that the dependence of N(t) on 
time is determined by loss of particles to the 
chamber walls. The correction obtained in this 
way to the energy of the low frequency oscillations 
W2 is R/a0 times smaller than W2(t2) so that it can 
generally be neglected. Thus, if one satisfies the 
inequality which is the inverse of (5.6) the deriva­
tions of Sees. 3 and 4, which were obtained without 
taking beam expansion into account, no longer hold. 
In this case the fraction of the energy obtained by 
the low-frequency oscillations is determined by 
Eq. ( 5. 7). When W1 (t0) ~ W 0 this means that the 
energy obtained by the low frequency oscillations 

from the high-frequency oscillations represents a 
small fraction of W1 (t0) so that the total trans­
formation of high-frequency energy into low­
frequency energy holds only when the initial energy 
of the high-frequency oscillations is sufficiently 
large. 
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