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The solution of the system of quasilinear equations for cyclotron instability is obtained for the 
case of oscillations with a one-dimensional spectrum. The energy of the electromagnetic os­
cillations excited in a plasma with anisotropic ion velocity distribution by an ion beam passing 
through the plasma is determined with the aid of the obtained formulas. The case of simultane­
ous excitation of several oscillation modes is also considered. 

J. THE dynamics of plasma instabilities can be in­
vestigated in many cases by using a quasilinear 
theory in which the main nonlinear effect is as­
sumed to be the variation of the distribution func­
tion of the resonant particles, for which the follow­
ing relation is satisfied 

(1) 

(vz is the particle velocity in the direction of the 
external magnetic field fio; wk and kz are the 
frequency of the wave and the projection of its 
wave vector on the direction of H0; wH = eflo/mc, 
n = 0, ± 1, ... ). 

Under certain conditions, the resonant particles 
can intensify the waves by exchanging energy with 
them. The change in the distribution function of 
the resonant particles under the influence of the 
wave amplified by them leads to stabilization of 
the instability and to the occurrence of a station­
ary oscillation spectrum. For the quasilinear the­
ory to be applicable it is necessary that this sta­
bilization occur at sufficiently low amplitudes, for 
which the nonlinear interaction of the wave is still 
negligible. 

A solution of the system of quasilinear equa­
tions for the distribution function of the resonant 
particles and the spectral density of the oscillation 
energy was obtained so far for the case of Lang­
muir oscillations and a one-dimensional spec­
trum. [ 1• 2 J In this case the elementary effect caus­
ing the instability is Vavilov-Cerenkov radiation 
(kvres = wk). In this paper we investigate in a 
quasilinear approximation the instability of trans­
verse plasma oscillations propagating along the 
external magnetic field. This instability is con­
nected with cyclotron radiation of resonant parti­
cles due to the anomalous and normal Doppler ef­
fects (kvres = Wk ± WH). An example of this type 

of instability is the cyclotron instability of a plasma 
with anisotropic velocity distribution function, in­
vestigated in the linear approximation by Sagdeev 
and Shafranov. caJ 1l 

2. Let us consider a circularly-polarized trans­
verse wave propagating along an external electro­
magnetic field: E± = Ex ± iEy. The dispersion 
equation for such a wave is 

(2) 

where Exx and E xy are defined by the formulas 
given in the paper of Stepanov and Kitsenko(GJ 
with k 1 = 0. We shall henceforth assume that the 
resonant particles transferring energy to the os­
cillations are ions. 2> 

As usual, we neglect the contributions of the 
resonant particles to the real part of the tensor 
Eik and assume, in addition, that the following 
conditions are satisfied for the plasma particles: 

kvTa. ~ I WHa.- Wh I, kvTa. ~ Wh, a = i, e, (3) 

which are necessary in order to neglect thermal 
motion in the real part of E ik· In this case we ob­
tain from (2) the following dispersion equation 

i:n; wo·2 WH· ~ 
D(wh,k)=+- ' ' dvv.Lb(kv,-wh+WH;) 

2 No 

X [ ofo ± kv.L 8/G J' (4) 
i}v .L WHi i}vz 

1 )we note that, besides the indicated instability, there 
can occur in an anisotropic plasma also an aperiodic instab­
ility which has a nonresonant character in the sense that the 
energy required for excitation of the oscillations is transferred 
to all the particles of the plasma[• ]. A quasi linear theory of 
such an instability was considered in[•]. 

2 )The analysis in the present article can be applied with­
out special difficulty to the case when the oscillations are 
excited by resonant electrons. 

651 



652 ROWLANDS, SHAPIRO, and SHEVCHENKO 

where 

(4') 

f0 is the distribution function of the resonant parti­
cles, wb = 47re2N0/ma, and N0 is the plasma den­
sity. We shall henceforth confine ourselves to an 
examination of the wave E_. All formulas for the 
other polarization direction can be obtained by 
making the substitutions w --w and k - - k. 

Assuming that the growth increment is suffi­
ciently small, 'Y /w « 1, the frequency Wk of the 
wave is determined by solving the equation 

D(w,., k) = 0. (5) 

For a specified k this equation has four real 
roots w = Wkj• j = 1, ... , 4 (see Fig. 1). The cor­
responding growth increments 'Ykj are 

:rt Woi2 Whj f \ [ V .L Ofo 
'Vhi =-2 No oD/ow,.; fki J dv.L VJ.. ~ av. 

WHi ( ofo v 1.. ofo )] 1 (6) 
- WR.j OVJ.. -~ av. . -( + )/' . 

'Vz-IDk COHi"' 

When j = 1 excitation of the wave is impossible, 
sine~ w1 > kc and the resonance condition kvres 
= Wk + WHi cannot be satisfied. 

FIG. 1. Roots of the dispersion equation D(cuk, k): 0 for 
k: const. 

When j = 2 and 3, the dispersion equation can 
be simplified by putting lwjl « -wHe· As a result 
we obtain 

ro2[f + Woi2 / WHi (w + WHi}] = k2c2. (7) 

If lwjl « WHi• we obtain from (7) the dispersion 
equation of the Alfven wave 

'o;2 = k2cA2 (k ~ WHi I cA), (8) 

where we put 

For large k (k » wHifcA) the root w2 coincides 
with the frequency of the helical wave 

(it is assumed that I w2wHe I « w~e), and the 
root w3 tends to - wHi with increasing k. 

(8') 

Using (7) and determining Vres from the reso­
nance condition, we can obtain a simple relation 
between the velocity of the resonant particles and 
the phase velocity of the wave amplified by them 
(see also [ ' 1 ): 

v, •• = Vph 3cA2 / VA2 (vph 2 - cA2) (vph = w I k). (9) 

A plot of Vres(Vph) for Vres > 0 is shown in 
Fig. 2. The region CA ~ Vph < c corresponds to 
the root w2, while the region -CA ~ Vph ~ 0 cor­
responds to w3• We note that in the first region 
there are two oscillation branches with different 
values of Vph and the same value of Vres (v~h 
< v~1>, and for small Vph the first branch goes 
over into the Alfven wave and for large Vph the 
second coincides with the helical wave. It is also 
important that when Vph > 0 there exists a mini­
mum value of the resonant-particle velocity: 

(10) 

whereas in the region Vph < 0 the velocity Vres 
decreases to zero. For the same reason, when 
oscillations with Vph > 0 are excited the aniso­
tropy of the ionic velocity distribution function 
causes the energy of the excited oscillations to be 
exponentially small if v~ » v~n. and when a beam 
with sufficiently small thermal scatter passe!;l 
through the plasma, there is actually no excitation 
of the oscillation branches in question if Vmin > Uo 
(Uo is the beam velocity). 

u,.,siU' II 
I I 
I I 

IJ~-!-- : 
cAr Uph c 

I 
I 
I 
I 
I 

FIG. 2. Velocity v res of the resonant particles vs. the phase 
velocity of the oscillations excited by them, for v res > 0 and 

cu « lcuHel· 

When oscillations are excited in a plasma with 
anisotropic distribution of the ion velocities, the 
first term in expression (6) for the incremental­
ways exerts a stabilizing influence, but at certain 
values of w the second term in (6) may become 
predominant and lead to instability. Then, if the 
condition 
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\ \ v .L~ OJo 
J j 0 dv_1_ >- J-- --dv.L when "z = Vres 

Vz OVz 
(11) 

is satisfied (the longitudinal thermal energy ex­
ceeds the transverse energy), instability sets in 
when w > 0 (j = 2); if the inequality sign in (11) is 
reversed, the unstable waves are those with w < 0, 
that is, with j = 3. The instability is connected 
with the anomalous Doppler effect when w > 0 and 
with the normal Doppler effect when w < 0. 

If the ion velocity distribution function is Max­
wellian with two different temperatures 

m; ( mi )''• { miv.L2 miv.Z } 
lo = No2nT .L 2nTn exp - 2T .L -~ , (12) 

then we have from (6) the following relation for the 
growth increment: 

.--(~\''• C.Ooiz (m;)''•(Tn-T.Lv -vI 
y,- 2} fJD/fJc.o; Tn Tn res Phj 

X exp{- m;v~e• } . 
2Tn 

(13) 

Using (9) and (13), we can obtain the following 
condition on the phase velocities of the unstable 
waves 

vph2 - cA2 V2A Tu ----=---- ~ 1. 
vph2 cA2 Tn-T .L 

When T11 > T 1 the unstable waves are those 
with Vph > CA, and if the condition 

(14) 

(14') 

is satisfied, then the instability occurs in this re­
gion only on the first branch, and with further in­
crease of the temperature anisotropy the second 
branch also becomes unstable; in the case of 
strong anisotropy, T 1 /TII « 1, all waves with vph 
< c are unstable. If T11 < T1 , the waves with Vph 
< 0 are stable, and with increasing temperature 
anisotropy the limit of unstable Vph shifts from 
-cA to zero. 

We shall consider also the case when the insta­
bilities are connected with passage of an ion beam 
through the plasma. We shall assume that the ion 
beam is sufficiently spread out, kvT » y. Then Y 
is given by (6). Assuming that the beam and plasma 
ion distribution function is Maxwellian: 

_ (~)"'r (-mivz) 
lo - No 2nT, l exp 2T 

N1 ( miv.L2 mi(vz- uo) 2·)] 
+No exp -~- 2T 

(15) 

(N1 and N0 are the densities of the beam and of 

the plasma, N1 « N0), we obtain from (6) the fol­
lowing formula for the increment: 3> 

Vn 1 (m·)''•{Ni y;=- -c.oo;2 -• -(uo-vPh) 
2 fJD/fJc.o; T No 

X exp [-; (uo- Vre8 ) 2 J- Vphexp [- ;v~es J}. (16) 

In the case in question instability sets in only 
when j = 2, i.e., it is connected with the anomalous 
Doppler effect. In addition, simultaneous excita­
tion of both branches-Alfven and helical-is possi­
ble when the beam passes through the plane. How­
ever, if Uo » v A• then the growth increment for the 
Alfven wave is much larger, since 

I:: 1/1 :~1 I~ 1, Vph1 ~Vph 11 
and the excitation of the second branch can bene­
glected.4> 

When j = 4 the excitation of the wave is impos­
sible, for in this region Vph » c, and it follows 
from (13) and (16) that the excitation takes place 
either when Vz » VphTII /(Til - T1) or when u0 

>vph· 
3. We now proceed to derive and investigate the 

equations of the quasilinear approximation. The 
equation for the change of the "background" dis­
tribution function f0 under the influence of the os­
cillations is obtained, as usual, by averaging the 
kinetic equation without the collision integral: 

8/oa. = _!!.!::._{( E 8ha. )+!_([vH] ofta. )} . (17)* 
at ma, av c av 

The angle brackets denote here averaging over 
distances that are large compared with the wave­
length of the oscillations, f1 is the oscillating ad­
dition to the distribution function, due to the oscil­
lations, and E and H are the electric and mag­
netic field of the oscillations. Representing f1o E 
and H in the form of a superposition of plane 
waves, and using for the connection of the ampli-

3 )The plasma electrons are not at resonance with the os­
cillations excited by the beam, since the condition kVTe «wHe 
is satisfied for these oscillations. 

4)We do not consider in this paper excitations of the elec­
tronic branch of the oscillations, w - \cuHe I· In the case of in­
stability due to the anisotropy of the ionic temperatures, the 
anisotropy necessary for excitation of this branch should be 
very strong, T.L /1i1 ~ mefmi' In the case of excitation by 
means of a spread-out ion beam, the growth increments of the 
electronic branch (III), which corresponds to large values of 
the phase velocity (~16 > v~~ > v~h ), are small even 
when u0 - v A• and excitation of this branch can be neglected. 

*[vH] = v x H. 
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tudes f k and Ek of these expansions the usual 
formula of the linear theory 

I _ ea. Eh ei0 [( 1 _ kvz) afoa. 
ha. - ima. (J)h - kVz + (J)Ha. (J)h av J.. 

kv J.. atoa. J +--Olh avz -
(18) 

(v1, Vz, and 8 are cylindrical coordinates in ve­
locity space), we obtain after averaging the follow­
ing equation for f001: 

+ [OlHa. + 2(roh- kvz)] kVJ.. :~za.)] 
+ ~ [ ~ I Eh 12 ._k_v_J..--'-'Vh____,---::--:-

avz h lro11.l 2 (kvz-(J}h-(J)Ha.) 2+yh2 

(19) 

As is customary in the quasilinear theory (see 
[Bl), it is necessary to break down the distribution 
function f0 into two parts-the distribution func­
tions of the resonant and nonresonant particles. 
Using conditions (3), we obtain from (19) the fol­
lowing equation for the distribution function of the 
nonresonant particles: 

aFoa. _ e2 ~ 1Hhl 2 
-at - 2ma.2 c2k2 

h 

(20) 

It follows from this equation that the excitation 
of the oscillations is accompanied by transverse 
diffusion of the nonresonant particles in velocity 
space. The oscillations increase the transverse 
energy of these particles by an amount 

A~ a.= A[~ ma.vJ..2Foa.dv] = _!_ ~-~H~_l_2roh2 rooa.2 
2 8n " k2c2 (roh+roHa.) 2 

(21) 

(we neglect the contribution of the initial noise). 
For resonant particles (kvz R: Wk+WH), Eq. (19) 

can be greatly simplified by taking the limit as 
'Y- 0. As a result we obtain the following equation 
for f(es [9- 111 (we shall henceforth omit the suf­
fix "res" for f0 ) : 

ato = ne2 ~ 1Hhl 2 roHi2 [_.!._ ___!__ VJ.. _ kv.1. _a_] 
at 2mi2 h k2c2 VJ.. iJVJ.. OlHi OVz 

[ ilfo kv J.. iJfo J Xll(kvz-roh-roHi) ------- • 
iJVJ.. OlHi avz 

(22) 

The equation for the time variation of I Hk F is 
written in the quasilinear approximation in the 
form 

iJIHhl 2 n 1Hhl 2 s 
--8-t-= No aDjiJroh roo;20lHi VJ..ll(kvz-roh-roH;) 

X [ ato _ kv.1. ilfo J dv. 
avJ.. OlHi avz 

(23) 

Equations (22) and (23) form a closed system of 
quasilinear-approximation equations for the cyclo­
tron instability. The difficulty involved in investi­
gating this system of equations lies in the fact that, 
unlike the case previously considered, [ 1• 2 1 these 
equations are not one-dimensional in velocity 
space and, furthermore, in the general case it is 
possible for several branches of oscillations to be 
excited simultaneously. However, we shall confine 
ourselves throughout, with the exception of Sec. 5, 
to an analysis of the case when only one branch of 
the oscillations is excited in the plasma, and Vph 
is a single-valued function of Vres· As already 
noted earlier, for this purpose it is necessary to 
satisfy the condition (14'), if the instability is con­
nected with temperature anisotropy, or else the 
condition Uo » v A in the presence of a beam. In 
the case under consideration, (22) and (23) can be 
greatly simplified and reduced to one-dimensional 
equations by changing over to the independent vari­
ables5> 

v, 

W = VJ..2 + Vz2 - 2 ~ Vph(vz')dvz', V = Vz (24) 
'Dmfn 

(for concreteness we are considering in this sec­
tion the instability in the region Vph > 0). 

Integrating in (22) and (23) with respect to k 
and v with allowance for the o-function, and going 
over to the variables (24), we obtain the following 
system of equations 

FIG. 3. The lines 
w = const. 

5>An analogous transformation of variables, ·which reduces 
the equation for f0 to one-dimensional form, ·was previously used 
by Andronov and Trakhtengerts. 
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ajlhl 2 n2 2 1Hhl 2 k f ato 
~~=-No Woi an;awh fkl J v.L2(w, v)~dw 

wmin(v) 

(v = (w + wHi) I k = v, •• ). (26) 

Equation (25) describes the diffusion of the res­
onant particles along the lines w = const. The ve­
locity v varies on these lines (see Sec. 3) from 
Vmin to Vmax(w), where Vmax<w) is defined by 

Vmax 

w = v!ax- 2 S Vphdv. (27) 
vmin 

The minimum value of w for a given v, wmin(v) 
is determined from this same equation by making 
the substitution Vmax- v. 

From (25) and (26) we can obtain the energy in­
tegral, which determines the spectral density of 
the oscillation energy in terms of the variation of 
the distribution function of the resonant particles. 
Integrating (25) with respect to w and expressing 

by means of (26) we obtain 

r ato dw = _ 1 ~~ aDjawh 
J at 16n3mic2 av L I v - dw/ dk I 

wmin(v) 

~Hhl 2 ]. 
at 

(28) 

Integrating (28) with respect to t and v, we ob­
tain the following energy integral: 

- foO(w, v')]. (29) 

The contribution of the initial noise, ""' I Hk 12 for 
t = 0, is neglected as usual; vum is the lower 
limit of the spectrum: I Hk 12 VI· = 0; f~(w, v) 

liD 
= f0(0, w, v). 

The diffusion of the particles under the influ­
ence of the oscillations leads as t-oo to occur­
rence of a stationary state with a "plateau" on the 
distribution function 

ato"" I av = 0 for v > Dum""; (30) 

The initial distribution function f~(v) for 
w = const is shown in Fig. 4. For sufficiently 
large w, when Vmax(w) > v*, the distribution 
function has a segment with positive derivative 
afVav, which, in accordance with (26), leads to 
instability. As a result of the development of the 
instability, the resonant particles diffuse into the 

region of smaller v, and a "plateau" f;;" appears 
on the distribution function. The diffusion of the 
particles in the velocity region in which f ;;" < f~ is 
accompanied by absorption of energy at the ex­
pense of the energy of the oscillations generated 
by the particles with large values of w, for which 
f 0 > f~ at the same value of v (see Fig. 4). With 
decreasing v, the interval of values of w in which 
f~ < f~ increases and energy is absorbed, so that 
the quantity 

"" 
~ [/o""(w)- foO(w, v)] dw 

decreases. 
The limit vli.m of the oscillation spectrum as 

t - oo is determined from the following equation: 
00 00 

~ fo""(w)dw = ~ /o0 (w, Dlim"")dw. 
wmin<vlim 00) wmin<vlim00> 

(32) 

If the limit of the spectrum were below viim as 
given by (32) then, in accordance with (29), an in­
terval of v would exist with negative oscillation. 
Actually, however, the oscillation energy attenu­
ates to zero in the region v < vlim (the energy of 
the oscillations generated when particles with 
large w, for which f 0 > f~, diffuse into this region 
of values of v is completely absorbed by the par­
ticles with smaller w, but this energy is insuffi­
cient for establishment of a ''plateau'' for all w). 
Thus a stationary state, defined by relations (31), 
arises when v < vlim· 

Since a I Hk' 12/av = 0 when v < vU.m, we find 
from (29) that the condition (32) for the distribu­
tion function f if (w, v) should be satisfied for all 
v < viim· This condition, however, is insufficient 
for the determination of f0 (w, v). For this pur­
pose it is necessary to consider with the aid of 
(25) and (26) the time evolution of the instability, 
and this is a very complicated problem. We note 
only that the distribution function for v < vlim can-

FIG. 4. Change in the dis­
tribution function of the re­
sonant particles during the 
instability. 
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not coincide with the initial function f~, for other­
wise an unstable discontinuity would exist on the 
distribution function at v = vi'im· The growth in­
crement at the discontinuity is equal to 

co 

y =A ~ (w- Wmin) [/o"" (w)- foO(w, Vum "")] dw 
wmin("lim'~) 

(A > 0, and the region in which f 0 > f~ corre­
sponds to large w). 

In many cases, however, we can neglect the dif­
fusion of the resonant particles in the region 
v < vli.m (see Sec. 4 below). Then we get from (25), 
inasmuch as the diffusion coefficient also vanishes 
at v = Vmax<w) (v 1 = 0), a relation that determines 
f 0 (w) when v > vli.m (the law of conservation of 
the number of particles on the line w = const): 

11mu(w) 

fo""(w)[vmax(w)- Vlim,""] = ~ dv foO(w, v). (33) 
VHm•oo 

If vlim as given by (32) is smaller than the 
minimum value of the resonant velocity (see (10)), 
it is necessary to take Vmin as the lower limit of 
the spectrum. When v < Vmin• the distribution 
function remains unchanged. 

Using (21) and (29), we can readily obtain the 
following energy conservation law: the energy 
given up by the resonant particles during the in­
stability is equal to the energy acquired by the 
nonresonant particles and by the field. Summing 
with respect to k in (29) we get 

an co " 

- ~ IH~tl 2 iJwk :: = 8n2c2 ~ dv Dph (v) ~ dv' 
k "lim "lim 

co 

X ~ dw[fo(t,w,v')-fo0 (w,v')]. (34) 
wmin(v') 

Integrating in (34) by parts and using the law of 
conservation of the total number of particles for 
v ~ Vlim• which follows from (28), we obtain an 
equation for the change in the energy of the reso­
nant particles: 

r m, 
ll~res = J 2(v.L2 + Dz2)•(fo0 - /o)dv 

--~ IH~tl 2 iJD Wk 

- ·~aw" k2c2 

" 
(35) 

In the derivation of (35) we used also the fact that 
the diffusion occurs only along the lines w = const. 

The energy of the electromagnetic field is 

therefore we obtain with the aid of (21), (35), and 
(4') the following energy conservation law: 

(36) 

4. In this section we consider in greater detail 
cases when the instability of the cyclotron waves 
is due to the anisotropy of ion temperatures or to 
the interaction between and ion beam and a plasma, 
and we determine with the aid of the general for­
mulas of the preceding section the spectrum of the 
oscillations excited by such an instability. 

The initial distribution function of the beam­
plasma system is written, in terms of the varia­
bles w and v, in the form 

( m; )'.'• [ m;w m; J fo0 =No -- exp -----CAV 
2:rtT 2T T 

{ N1 [m; mi ]} X 1+-exp -uov--u02 
No T 2T . (37) 

We assume that Uo » CA, ,;T /mi, so that Alfven 
waves with v h Rl cA are excited. 

The distribution function (37) has a minimum at 

_ • _ Uo + T 1 [No CA ]· 
V-V -- --n --

2 m;.uo Nt uo . ' 

for larger v we get af~ ;av > 0 and instability sets 
in. Using (33), we obtain 

fo"" ~ Nt (-m_; )'i• ___ T __ _ 
2nT m;UoVmax(w) 

X ( _ m;w + m;UoVmax(w) ) (38) 
exp 2T T · 

In this formula wmax<w) = cA + (c~ + w)112• The 
distribution function f0 has a maximum at w +w*, 
determined by the relation 

Vmax(w•) = Uo. 

From now on the region w Rl w*, in which Vmax 
» CA and Vmax » VUm• will be important for the. 
calculation of the oscillation energy, a fact we 
have already used when determining f(j. 

To calculate the integral with respect to w in 
(29) we use the saddle point method. As a result 
we obtain 

S dw[io""(w)- foo(w, v)] = Nt '12 ( mi )'''{ ( BT z)''• 
w (v) (2:rt} ' T miuo min 

(39) 
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We have introduced here the symbol .. 
<I> (z) = ~ e-u' du. 

% 

The lower limit of the oscillation spectrum at 
t-oo is determined by relation (32) and is equal 
to 

• oo = ( 2T )'" [No ( miuo2 
)'"] 

Vhm InN T . m; 1 
(40) 

We note that the diffusion of the particles in the 
region v < vlim can in this case be neglected, 
since the width of this region is of the order of 
vum « Uo. An allowance for the particle diffusion 
when v < vlim would lead to small corrections 
...., vlim/u0 in Eq. (33) for f;;". 

Using (39), we obtain from the general formula 
(39) the following relation for the spectral energy 
density of the Alfven waves excited by the beam: 

jllk"" 1~ + 1Ek00 12 = 8n'I•N1m;v3~( 1 + CA
2

) «1>(( mi )"' 
'WHiUo c2 2T 

(k = WH;/v). (41) 

For small v, the quantity I Hk 12 increases in a 
power-law fashion(- v3), reaching a maximum at 
v <>< Uo; with further increase of v it decreases 
exponentially with a characteristic decrement D.v 
...., (T I mi) 1/ 2 • Summing in ( 41) over all k, we find 
that the total energy of the electromagnetic oscil­
lations as t - oo remains smaller than the beam 
energy in a ratio cA/Uo: 

(42) 

The smallness of the oscillation energy is at­
tributed to the fact that in the highest order in the 
parameter CA/Uo << 1 the particle energy 
m(v 1 + v~ ) is conserved on the lines w = const, 
along which the diffusion takes place, and the dif­
fusion merely transfers the energy in the beam 
from the longitudinal to the transverse compo­
nent. A change in the total energy in the beam ap­
pears in the next higher order in the parameter 
cAIUo· 

We now consider a case when the instability is 
due to the temperature anisotropy. We assume 
first that T 11 » T 1 and condition (14') is satisfied, 
so that only one branch of the oscillations with 
Vph > 0 is unstable. In terms of the variables w 
and v the initial distribution function takes the 
form 

(43) X .(T11 - T .L) - ;: ~ Vph(v')dv']. 
vmin 

A plot of this function is shown in Fig. 4. In the 
case which we consider, that of v* for which f~ 
is minimal, is determined from the equation 

v• = Tu ( • 
T T Vph v ) . u- .L 

(44) 

(44') 

It can be shown that an appreciable contribution 
to the oscillation energy is made only by those 
values of w for which Vmax(w)- v $ T11/miv* . 
We shall henceforth assume that the following con­
dition is satisfied 

~~( T .L T11 )''• 
m;v* mi Tu- T.L • 

Introducing the dimensionless variables 

where 

u=a(v-v*), U1,2 = a (Vmax,lim - v*) 1 

( mi Tu-T.L)''• a - ~ --"=::-=-
- 2 T11T.L ' 

we write f~ for u « 1 in the form 

(45) 

foO(w, v) = /o0 (w, v*) [1 + u2 11- Tn ddvv~h\]. (46) 
T11 -T.L } 

We note that this expansion is not applicable if 
v* -vmin• when dvph/dv* - -oo. Inasmuch as 
u...., aT11/miv* and 

dv,ph::::::: cA2 T11 - T .L ( 3 cA2 _ 2 Tu )-1 

dv* vA2 Tu vA2 Tu- T .L 

1 [ CA ]''• 
:;::::: - 3'1• v* - Vmin ' 

the condition for applicability of the expansion (46) 
is 

Using (46) we obtain for f;;" the relation 

/o00 (w) = JoO(w, v*) [ 1 + ~ (u12 + U1U2 + U22) 

(1 _ Tu dvph\] 
X Tu - T .L dv* } . 

(47) 

(48) 

With the aid (46) and (48) we can readily calcu­
late from the general formulas the energy of the 
oscillations and the limit of the spectrum as 
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t-oo. As a result we get 

• 2 T11 
V1· 00 = ll -----

lm 3 miv• • 

IH ool2 = 32 (~)''•N IT - T I (1- Tn dvph) 
k. 3 2 ° 11 .L Tn - T .L dv* 

I v- dw/dkl c2 ( mia )''• 
x v• I&D/&rokl T.L2Tn (v-vlim"")2 

X exp{- mi v*(2v-v*)} 
2T11 

(49) 

(k = ·roHi/{v- Vph(V)]). (50) 

The maximum of I Hk' 12 is reached when v Rj vi'im 
+ 2T 11 /miv*, and I Hk' 12 decreases exponentially 
with further increase of v. 

At t - oo, undamped oscillations exist only 
when v :::: v Um· If t is finite, however, oscilla­
tions that lead to particle diffusion exist also when 
v < vlim· Let us determine the width of the region 
below v lim in which the particle diffusion takes 
place. To this end we estimate with the aid of (29) 
the contribution made to the oscillation energy by 
the particles for which f 0 > f~. As already noted, 
only the diffusion of these particles is accompanied 
by energy transfer to the oscillations. We also as­
sume here that a "plateau" on the distribution 
function is established for these particles. We 
thus obtain an upper bound for I H~ax 12-the max­
imum value of I Hk(t) 12 in the region v < v lim: 

[ m·u·v• J IH~omaxl2~exp --'-- IH""I2; 
aTn 

(51) 

Here I H"" 12 is the maximum in the spectrum of 
I Hk' 12 in the region of the plateau (v > v lim), 

It follows from (51) that the width of the region in 
which 

is 
Av,..... Tn I miv·. 

Outside this region the quantity I H~ax 12 is expo­
nentially small, and particle diffusion can be ne­
glected. Inasmuch as /::iv"" I vlim- Vmaxl• (48) 
and (50) yield in the general case only estimates. 

With the aid of (50) we can readily obtain the 
following estimate for the total oscillation energy: 

( , Tn dvph\) 1 ( Tn )''• 
X 1 - Tn-T .L dv* (v*- Vph~) miv"2 

( mi •2) Xexp ---v . 
2Tn 

(52) 

We note that since mivA » T 11 , the oscillation en­
ergy is exponentially small even for the strongest 
anisotropy. This is connected with the small num­
ber of the resonant particles interacting in this 
case with the waves. 

00 

If vlim is sufficiently close to Vmin<vum 
- Vmin « T 11 /miv* ), then the diffusion in there­
gion of velocities v < vlim is negligible, since the 
particle distribution function does not change when 
v < Vmin· In this case the obtained formula for 
I Hk 12 is exact. When viim < Vmin• the lower 
limit of the spectrum coincides with Vmin· In this 
case we have for the spectral density of the oscil­
lations the formula 

x(v- Vmin) [2(v- Vmin) + 2T11.-3(v"- Vmin) J · 
miv 

x exp [- ~I v• (2v-v") J . (53) 

If the transverse ion temperature exceeds the 
longitudinal temperature, the instability is con­
nected with the normal Doppler effect and occurs 
in the region Vph < 0. The initial distribution func­
tion f~(w, v) has a maximum at a value v* defined 
by (44). At large v the derivative afVav < 0, 
which leads in this case to instability. Calculation 
of fiJ and I Hk'l2 is carried out in analogy with the 
corresponding calculations for case T 11 > T 1 and 
leads to the same formula (50) for I Hk'l2• In this 
case, however, we have for strong temperature 
anisotropy, T 1 » Til• 

and the oscillation energy increases somewhat 
compared with the case T 11 > T 1, when v* ~ v A 
(as before, we are considering the case when 
mivi »T 11 ). It follows from (45), however, that 
in order for the formula obtained for I Hk'l2 to be 
valid the temperature anisotropy must not be too 
large, T 1 « (T~1 mivl) 1 1 3 , and consequently we 

have v* » v'T11 /mi under the conditions when for­
mula (50) is applicable. 

5. In the preceding sections we have considered 
the case when only one of the two branches of the 
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oscillations of Vph(v) existing when vph > 0 is ex­
cited, corresponding to the smaller values of the 
phase velocity vbh < v~h· The "plateau" on the 
distribution function, resulting from the excitation 
of this branch, is stable with respect to excitation 
of a second branch of oscillations. Indeed, substi­
tuting in the expression for the growth increment 
of this branch of oscillations 

where 

v=C a to v.L2 -dwii 
av ' 

:rt2 1 
C = - 2No (l)oi2 aD jaw"> O, 

and the derivative with respect to v is taken at 
vz 

wn = v.L2 + vz2- 2 S Vphii(vz')dv.' == const, 

the distribution function 

fooo(wl) = fooo[ wii + 2 ( (Vphii- Vphl)dv']' 

"min 

we obtain 

r ato00 

'V = 2C J V.L2 (Vph II- Vpl{) awn dwii 
II 

to min 

OQ 

= -2C(Vphii- Vph1) ~ /o00dwii < 0. 
II 

tom in 

(54) 

In many cases, for example when llo ""'VA, si­
multaneous excitation of both branches of oscilla­
tions is possible. In these cases the quasilinear 
system of equations (22)-(23) cannot be reduced to 
the one-dimensional system (25)-(26). However, 
it is possible to write the quasilinear equations in 
a form similar to that used in (25) and (26). Break­
ing up the sum over k in (22) into two terms cor­
responding to the two branches of the oscillations, 
and going over in each of the terms to the varia­
bles v and wf3 , where wf3 is defined by formula 
(24) in which Vph is replaced by {h• we obtain 

ato = _e2_. . ~{v.L2 IH~tlll2 allfo} (55) 
at 4mi2c2 ~~ av 1 v - dwll 1 dk 1 av 

(the summation over {3 is over both oscillation 
branches, and af3;av denotes the derivative with 
respect to the v with wf3 constant). 

From (23) we obtain similarly 

aiH~tllf_=- :rt2 Woi2 IH~t~l2 ri v.L2(wP,v)allfo dwll. 
at No aDjaw,.ll 11 . av (56) 

wmtn 

The system (55)-(56) has two stationary solu­
tions, 

IH"nl 2 = 0, a1fo I av = 0 

or 

Only the first of these, as already noted, is stable 
(see (54)). Thus, the entire energy of the oscilla­
tions excited in the plasma is pumped over, in final 
analysis, into the first branch. 

In the case under consideration, when both 
branches are simultaneously excited, the oscilla­
tion energy can be determined with the aid of the 
energy integral, in analogy with (29). To derive 
this integral we use the system (22)-(23). It is 
necessary to integrate over all v in (22). The 
derivation of the energy integral is the same as 
before (see the derivation of (29)). As a result we 
obtain 

(57) 

As t-oo, when the entire energy is pumped 
over into the first branch, we obtain for the de­
termination of I H k 12 an equation that coincides 
with (29). A "plateau" alqo;av = 0 is established 
on the distribution function at t-oo. However, 
since simultaneous excitation of both branches of 
the oscillations causes the particle diffusion to be 
no longer one-dimensional, it is impossible to ob­
tain in the general case a conservation law similar 
to (33). On the other hand, if the phase velocities 
of both branches are sufficiently close, 

_ Vph11 (v)- Vph1 (v)...,.. 1 
8- l() ~. Vph V 

then the particle diffusion is close to one-dimen­
sional and we obtain for the determination of fo an 
equation that differs from (33) in small terms of 
the order of E. 
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