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The concept of a system of dynamical equations of a theory is introduced in the framework of 
Wightman axiomatic field theory. A dynamical equation is a relation of the form a(g) = 0, a(g) 
being defined in Eq. (1) below in terms of the field operator cp(x) of the given theory and 

is an element of the test function space (on which the Wightman functional W is defined (usu­
ally the test functions gi(Xio ... , Xi) are chosen to belong to the space S of infinitely differen­
tiable rapidly decreasing functions). The relation among theories possessing identical sets of 
dynamical equations is analyzed. From this point of view, the choice of the space on which the 
functional W is defined is very important: the larger this space, the larger is the number of 
dynamical equations which can be written down, and consequently, the more information is con­
tained in these equations. For a sufficiently wide class of theories (including in particular all 
local theories) it is shown that the functional W can be defined on a class of test functions which 
is wider than the space S. The fundamental result is the proof of the following statement: an ir­
reducible Wightman functional W, defined on this extended space can be defined dynamically 
(i.e., is uniquely determined by the associated dynamical equations). If the functional W is re­
ducible, but decomposes into a finite number of irreducible parts, its dynamical equation sys­
tem determines the irreducible parts in a unique manner. 

1. INTRODUCTION 

WITHIN the axiomatic approach to field theory, 
which was developed successfully within the past 
few years, the physical theory is constructed as a 
representation theory of an abstract involutive al­
gebra A by means of an algebra R(A) of operators 
in a Hilbert space. 

From the algebraic point of view each such rep­
resentation is determined by its kernel, i.e., the 
set of all elements of the algebra A which are 
taken into the zero-operator by the homomorphism 
A - R(A). Two representations R1 and R2 having 
the same kernels M1 = M2 are isomorphic and in­
distinguishable from the algebraic point of view. 

This does not yet imply that the physical the­
ories described by R1 and R2 are equivalent, 
since the physical theory is defined by the repre­
sentation, and the representations R1 and R2, al­
though isomorphic, can be different. It is natural 
to expect, however, that theories which corre­
spond to algebraically equivalent representations 
will in a certain sense be close in their physical 
content. 

Within the axiomatic school there exist two 
fundamental approaches: the Haag approach and 
the Wightman approach, differing in the choice of 
the fundamental algebra A. Within the Haag ap­
proach, the problem of the relation among equiva-
lent representations has been investigated ear­
lier. [1, 31 

Kastler and Haag[ 11 have shown that two alge­
braically equivalent representations are physically 
equivalent in the sense that no observer can dis­
tinguish one theory from the other by making use 
of the data from a finite (although arbitrarily large) 
number of experiments, carried out with finite 
(although arbitrarily small) errors. 

Misra[ 21 has introduced another concept of 
physical equivalence: two representations R1 and 
R2 in the Hilbert spaces H1 and H2, respectively, 
are physically equivalent if they are algebraically 
isomorphic and if for each open bounded region A 
of space-time there exists an isometric mapping 
U(A) from H1 to H2 such that the isomorphism 
of the subalgebras R1 (A) c R1 and R2(A) c R2 of 
quasilocal operators corresponding to the region 
A is implemented by this isometric operator 
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Making use of some additional assumptions, Misra 
has shown that algebraically isomorphic represen­
tations are physically equivalent in this sense. 

Wightman[ 3 J has obtained the same result under 
somewhat different assumptions. 

In the present paper we shall consider the rela­
tion between algebraically equivalent representa­
tions in the framework of Wightman's axiomatics. 
In this scheme the initial algebra A is usually 
chosen to be the algebra consisting of finite se­
quences of functions (the elements of A will be de­
noted by g, h): 

g = {go; gl(xl); o o o; gn(X! o o o Xn) ;0; 0; 0 •• ), 

where Xi= (xio• xi), go is a complex number, 
gk(x1 ••• Xk) is a function belonging to the space 
S(x1 ••• xk) of infinitely differentiable rapidly de­
creasing functions of the 4k variables x1 ••• Xk· 

The operation of multiplication in this set of 
elements is defined as the ''convolution:'' 

k 

(gh)k(xro o oxh) = ~ gz(Xro •• Xz)hk-z(Xl+!· o oxk) 
1=0 

and the involution + is defined by 

(g+)k (xr o o o Xk) = gk (xk. 0. x1) 0 

Each representation of such an algebra by means 
of an algebra of operators on a Hilbert space is de­
fined by a (multiplicatively) positive functional W 
(i.e., such that W(g+ g) 2:: 0): 

W(g)= ~~ •o• ~ dxro .. dxkWk(xr .. oxk)gk(xro .. xk), 
k 

where the Wk(x1 •.• xk) are functionals on 
S(x1 ••• Xk ), i.e., generalized functions of moderate 
growth ("moderate distributions"). 

The Hilbert space and the field operator cp(x) 
(considered an operator-valued distribution) can 
be reconstructed from the functional W. One can 
also construct the algebra of field operators 

a(g)= ~~ •oo ~dxr .. odxkgk(Xroooxk)cp(x!).o.cp(xh), (I) 
k 

which realizes a representation of the algebra A.[ 4J 

By definition, the kernel M of this representation 
is the set of all g E A for which a(g) = 0. Conse­
quently, the kernel of a representation has a sim­
ple physical interpretation in the Wightman scheme: 
knowing the kernel means knowing the set of dy­
namical equations of the theory. These equations 
have the form a(g) = 0, gEM. We note that in con­
tradistinction from the equations which are usually 
derived from a Lagrangian, these equations are 
correct, since the operator valued distribution 

cp(x) "integrated" appropriately with the compo­
nents g(x1 ••• xk) of the element g E A yields a 
well-defined operator in Hilbert space. As regards 
the equations derivable from a Lagrangian, the 
combination of field operators which is set equal 
to zero may not even be defined as a Hilbert space 
operator if the field exists only as an operator­
valued distribution. 

Thus the problem of existence of different iso­
morphic representations of a given algebra and the 
various relations among these representations can, 
in our case, be reformulated as follows: do there 
exist different solutions of a given system of dy­
namical equations, and if they exist, what is the 
relation among these solutions? Obviously, one 
should not consider all possible solutions of the 
dynamical system, but only those which in addition 
satisfy the requirements of relativistic invariance 
and positivity of the energy-momentum spectrum. 
The requirement of locality (we shall consider 
only local theories) need not be imposed separately, 
since it is dynamically formulated, and conse­
quently the corresponding equations are already 
included among the ones that define the kernel M. 

Naturally, the most desirable solution of the 
problem would be the possibility to determine the 
theory uniquely, i.e., to determine the Wightman 
functional, knowing the kernel of the representa­
tion. This would mean that the theory can be dy­
namically defined, i.e., via a set of equations for 
field equations. 

From the point of view of the possibility of dy­
namically defining a theory the choice of the start­
ing algebra A is essential. Indeed, if one could 
define the Wightman functional W as a functional 
over some algebra A' which contains A, the cor­
responding kernel M' would contain more dynami­
cal equations, which would make it more likely that 
the theory can be uniquely determined by the ker­
nel. 

On the other hand, any extension of the initial 
algebra leads to a restriction of the class of func­
tionals defined on it. Therefore an algebra may be 
extended only to the point at which one can be sure 
that any functional in the class that interests us is 
well defined on the elements of this extended alge­
bra. 

There is a simple consideration which makes it 
plausible that such an extension is possible. The 
function Wn(xl> ... , xn) is first defined as a func­
tional over the space S(x1 ••• xn), i.e., may have a 
power-law growth as its arguments become infi­
nitely separated. On the other hand, it is known 
that for a local theory these functions must con­
verge to constant values for space-like separation 
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of their variables. Therefore the class of local 
functionals is considerably narrower than the class 
of all possible functionals on S, and consequently 
the local functionals can be defined on a much 
wider class of test functions, having a slower de­
crease in space-like directions than the functions 
belonging to S. It turns out that one can indeed 
construct an extension of the algebra A, such that 
the functional W can be reconstructed uniquely in 
terms of the kernel if the functional W is irredu­
cible. We recall that a positive functional W is ir­
reducible if it cannot be represented as a sum 
W = p1W1 + p 2W2, with p 1 2 > 0 and W1 2 positive 
functionals. A functional'which admits' such a rep­
resentation is called reducible. Physically, an ir­
reducible functional describes a theory with a non­
degenerate vacuum, and a reducible functional de­
scribes a theory with degenerate vacuum. [ 41 The 
kernel of a reducible functional is the intersection 
of the kernels of all irreducible functionals which 
make it up. Therefore two reducible functionals 
consisting of the same irreducible components, 
but with different coefficients, 

W = ~paW a and W' = ~ pa'Wa 

have the same kernel 

M = nMa. 
Gt 

Consequently, a reducible functional is never 
uniquely determined by its kernel, since the coef­
ficients of its irreducible components W are al­
ways arbitrary. The most one can expect here is 
to determine the irreducible components W a which 
comprise it. It turns out that after extending the 
algebra this can indeed be done for a functional 
consisting of a finite number of irreducible func­
tionals. For more general situations one can de­
rive only a weaker result (theorem 3). 

For simplicity we consider here the case of a 
single scalar field, but all results can be directly 
generalized to the case of an arbitrary number of 
fields with any spins. In fact, the class of theo­
ries to which the results derived here are applica­
ble is wider than the class of local theories, to 
which we restrict our attention (cf., in this connec­
tion the remark at the end of Sec. 3). 

2. CONSTRUCTION OF THE EXTENDED 
ALGEBRA 

Consider a theory defined by a Wightman func­
tional W. Let gi(x0), ••• , gn(Xo) denote arbitrary 
functions of the space S(XQ). Consider the expres­
sion 

If one knows about Wn(xi ... Xn) only that it is a 
~nctional on S(xi ... Xn) one can say about 
W(xi ... Xn) only that it is a functional on 
S(xi ... Xn ). If in addition the functional W satis-
fies the condition that the energy is positive, then, 
as has been shown by Borchers, [ 51 W(xi ... Xn) 
will be a function belonging to the space 
OM( xi ... Xn) of infinitely differentiable functions 
of temperate growth. If in addition W _satisfies 
the condition of locality, the function W(x1 ••• Xn) 
(and also all its derivatives) will be a bounded in­
finitely differentiable function. This consideration 
is put at the basis of the construction of the ex­
tended algebra. 

In constructing the required extension it is 
more convenient to deal with another algebra, to 
be denoted by QS, rather than with the algebra A 
defined in the Introduction. In a certain sense the 
algebra Qs is equivalent to the algebra A. For the 
construction of the algebra QS we select an arbi­
trary number n and the functions gi (Xo) ... gn(xo) 
belonging to S(x0). We consider the family of 
operators of the field operator type, but depending 
only on the three-dimensional vector x : 

At(x), ... ,An(x); A;(x)=~ dxog;(xo)cp(x). 

Here cp(x) is the usual field operator of the theory 
and Ai(X) is at least defined as an operator valued 
distribution (moreover, Borchers [ 51 has shown that 
Ai (x) is well defined as an operator on Hilbert 
space for any fixed x ). 

Considering Ai(x), ... , An(x) as a system of n 
fields depending on x we construct the functional 
W in the same manner as the Wightman functional: 

W;, ... im (Xt ... Xm) = <Q, A;, (xt) ... A;m (xm) Q), 

where Q is the vacuum vector of the theory and m 
takes on all the values from zero to infinity; each 
ia can take on the values from 1 to n. For a 
fixed number m of variables there are nm differ­
ent functions Wii ... im (xi ... x m). 

We now construct the algebra Qs(n, gi··· gn) on 
which the functional W is defined in the same man­
ner as one constructs the algebra A for a system 
of n fields. The only distinction consists in the 
fact that now the elements of the algebra will be 
functions depending on the three-dimensional x 
only. Thus the elements of the algebra 
Qs(n, gi··· gn) consist of terminating sequences: 
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where each index ia takes values from 1 to n, go 
is a complex number and the gi1 ... ik (xi ... xk) 

are functions belonging to the space S(x1 ... Xk). 
The functional W is defined on g in the following 
manner: 

n 

W'(g) = ~ ~ ~ ... ~ dx1 ... dxmW';, ... im (xi ... Xm) 
m it ... im=i 

The usual multiplication and involution laws 
hold in Qs(n, g1 ... gn ): 

k 

(gh) ii...i" (x1 ... xk) = ~ g;, ... ;1 (xi ... Xt) h;1_H ... ik (xt+! ... xh), 
l=O 

(g+) ;, ... ii< (xi ... Xn) = g;,_ ... i, (xn ... x1) 

and the space S has the usual topology. 
The algebra QS is constructed as the set­

theoretic union of all QS(n, g1 ... gn): 

Qs- U Q8 (n,gi···gn). 
n, gJ ... gn 

W is defined as a functional over Qs in the follow­
ing manner: from a given g E- Qs one determines 
the algebra Qs(n, g1 ... gn) containing that g; then 

one constructs the corresponding W and one takes 
W(g). The algebra QS is equivalent to A in the 
sense that each W defined on A is uniquely de­
fined on Qs and vice versa. In constructing the 
algebra Qs only the fact has been taken into ac­
count that Wn (x1 ... xn) is a funct~nal on 
S(x1 ... Xn), and consequently that Wit ... im (xi ... Xm) 

is a functional on S(x1 ... Xm)· Making use of the 
result of Borchers, according to which all 
Wi1 ... im(X1··· Xm) are infinitely differentiable 

bounded functions, it is not hard to extend the alge­
bra Qs. For the construction of such an extension 
it is sufficient to select some topology on the set 
of infinitely differentiable bounded functions and to 
consider the set of functionals which are continu­
ous in this topology. As will become clear in the 
sequel, for the proof of the assertion made in the 
Introduction, it is sufficient to select the topology 
of the space C(xb ... Xm) of continuous bounded 
functions; C(x1 ... Xm) is a Banach space (i.e., a 
complete normed space) with the norm 

1/fll= sup Jf(xi···xm)J. 
x 1 ••• xm 

The general form of a functional on C(x1 ... Xm) is 
given by the Radon integral (cf. Appendix): 

where <I>(x1 ... xn) is a finitely additive set func­
tion of bounded variation, defined for all subsets of 
the 3m-dimensional space of x1 ... xm. 

Since it is more convenient to consider together 
the set of all function~ls for all i1 ... im, rather 
than each individual W1· 1· (x1 ... Xm), it will be 

1""· m 
expedient to introduce the Banach space 
Cn(x1 ... Xm), having as elements the ensembles of 
of nm functions 

fn={/;, .. im(Xj ... Xm)}, ia=1,2, ... ,n 

and with the topology defined, for instance, by the 
norm 

llfnll =max sup Jh ... i,, (xi ... Xm) J. 
lt···1m xi"'xm 

The general form of a linear functional on this 
space is 

n 

cDn Un) = ~ ~ ... ~ h ... im (xi ... Xm) dcD;, ... im (xi ... Xm). 
i 1 ... im=1 

Therefore we can take as the extended algebra 
Q(n, g1 ... gn) the set of terminating sequences 

with the usual laws of multiplication and involution. 
Clearly Qs(n, g1 ... gn) C Q(n, g1 ... gn) and to the 

elements of the space QS(n, g1 ... gn) are associated 
measures admitting the representation 

with 

The extended algebra is defined as the union 

Q= U Q(n,gi ... gn). 
n, gt···gn 

It is easy to see that for given n, g1 ... gn, <I> the 
expression 

n 

a(cD) = /; 

is a well defined unbounded operator in Hilbert 
space. Its domain contains at least the vectors of 
the form a(clt')Q, where Q is the vacuum vector 
of the theory, <I>' is an arbitrary element of Q 
(here and in the following the symbol <I> denotes 
not only the functional <I> but also indicates to which 
algebra Q(n, g1 ... gn) it belongs). 

The kernel M of the algebra Q is the set of 
those <I> for which a( <I>) = 0. Obviously 
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M(n, g1 ... gn) = M n Q(n, g1 ... gn), 

M= U M(n,gi···gn). 
n, g, ... gn 

If for two theories W and W' the kernels M and 
M' coincide, then obviously 

M(n, g1 ... gn) = M'(n, g1 ... gn) 

for any n, gi ... gn. This means that the isomor­
phism of the algebras 

R(Q} = {a(<D); <De::Q} andR'(Q) = {a'(<D); <De::Q} 

is equivalent to the isomorphism of 

R(Q(n, g1 ... gn)) and R'(Q(n, g1 ... gn)) 

for any n, gi ... gn· 

3. PROOF OF THE FUNDAMENTAL RESULTS 

This section contains only a purely formal 
proof of the assertions made in the introduction, 
the principal among which was the following: the 
kernel of an irreducible representation of the ex­
tended algebra determines this representation 
uniquely. 

We first prove several lemmas. 
Let D.Xo be an open bounded set on the time 

axis, and .6x an open bounded set in the three­
space of four-dimensional space-time. We denote 
by QD. the set of all <I>E Q for which the functions 
gi(x0) ... gn(x0) are nonvanishing only in D.Xo, and 
all d<I>ii ... im (xi ... Xm) are nonvanishing only for 
Xi E ,6 X ... Xm E ,6 X. 

Lemma 1. Assume that for some <I> E Q 

(a(<D')Q, a(<D}a(<D')Q) = 0 

for all <I>' E Q~ (D. fixed, arbitrary). Then a( <I>)= 0, 
i.e., <I>E M. 

This is a direct consequence of the Reeh­
Schlieder theorem. [Sl Indeed, taking 

<D' = J..1<D/ + Az<Dz', <D1,2' E Q!!.•, 

we have <~>1, 2 E Q~ and consequently 

<a(<D/) Q, a(<D)a(<D2') Q) = 0 

for any <I>~ 2 E QS. According to the Reeh-Schlieder 
theorem, the set of elements of the form a(<I>f), 
<~>1 E Q~, is dense in H. Consequently, for any 
G E Q, and any <I>2E Q~ 

<a(G)Q, a(<D)a(<Dz')Q) = 0. 

Letting the operator a( <I>) act on the left vector and 
making use again of the Reeh-Schlieder theorem, 
we obtain 

<a(<D+)a(G)Q, a(G')Q) = <a(G)Q, a(<D)a(G')Q) = 0 

for all G, G' E Q, which proves the lemma. 
Lemma 2. Let the functions gi (Xo) ... gn(Xo) be­

longing to S(Xo) be nonvanishing only for x0 

E D.':xo• where D.~ is an arbitrary but fixed 

bounded set on the time axis. We consider the 
function 

<a(<D)Q, At(x!) ... An(Xn)a(<D)Q), 

A;(x) = ~ dx0g;(x0)cp(x), 

where <I> E Q~ (here Q~ = Qs n QD_; D. is also an 
arbitrary fixed domain of space-time). Then for an 
irreducible functional 

lim (a(<D)Q, A1(x1 +a) .. . An(Xn + a)a(<D)Q) 
lal-+oo 

=II a (<D) Qll2 (Q, A1 (xi) ... An (xn) Q) 

for any fixed xi ... Xn· 
Proof. It is clear that for any fixed xi ... Xn, .6, 

D.~ there exists a number r > 0, such that for all 
a (I a I> r) any point from any of the segments 
(Xio• Xi+ a), Xio E D-~0 , in four-dimensional space­
time will be separated from any point of the do­
main D. by a space-like interval. Due to local 
commutativity for such a we have 

(a(<D) Q, At(x1 +a) ... An (xn + a)a(<D) Q) 

= (a(<I>)Q,a(<D)A1(xt+a) ... An(xn+a)Q) 

= (a(<I>+<I>)Q, U(a)A1(x1) ... An(xn)Q), 

where U(a) is the unitary operator representing 
the space-like translation by a. For an irreduci­
ble theory, we have for arbitrary <I> and <I>' 

lim (a{<I>)Q, U(a)a(<I>')Q) = (a(<I>)Q, Q) (Q, a(<D')Q), 
lal-+oo 

which completes the proof of the lemma. 
Definition. Let B be a Banach space (i.e., a 

complete normed spacA) and Bi, ~ two of its 
subspaces. We call such subspaces separated if 
si = Bi n s and s2 = ~ n s, where s is the unit 
sphere of B, are separated by a finite interval, 
i.e., if 

inf llxt - xzll = d > 0 for x1 E s1, xz E s2. 

Lemma 3. If two subspaces Bi and ~ of a 
Banach space B are separated, the set 

B1 +B2 == {x1 +x2: Xt E B~, xz E B2} 

is closed. 
Proof. Let x E Bi + ~ (L denotes the closure 

of the set L in the norm of B). Consequently there 
exists a sequence Xn E Bi + B2 such that Xn - x. 
By definition of Bi + ~ each Xn can be represen­
ted in the form 

Xn = x~> + x~l , where x~1l E B1, x~> E B2. 
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We prove that the set II x~ >II is bounded from 
above for all n. Assuming the contrary, one could 
select from the sequence xi{> a subsequence x\,i~ 

l 

such that llxn<1.>11- oo, Dividing by llx~.>11 we have 
l l 

Xnll) Xn\2) Xni 0 
II Xnl1) II + II Xn11) II = II Xnp> II __.. ' 

since Xn·- x by definition. Thus llx~~ ll/llx~.>11 
l l l 

- 1. Indeed: 

< 1111:~~:, ~ + II~~~~) II II__.. 0. 

But then 

11~,~!;),1 + 11::~::,1 II= ll~~:j~)~~ + 1,::1~~,~~ 
+ Xnla) ( II Xn~2l II - !I x~p> II ) II < 1111~~1~) II + 11~:;:, II II 

I llxnl2) II I 
+ i- Jlxnj1> II ' 

It has been shown that the right hand side of the 
inequality converges to zero. Since x~.> I II x~.>11 
E s1 and -x~2.>; II x~2.>11 E Sz, it follows uiat l 

l l 

inf !I xi - X2!1 = 0 (Xi E Si, X2 E S2), 

in contradiction with the assumed separability of 
the sub spaces B1o ~· Consequently the set II x~1lll 
is bounded. Obviously, the same is true for the 
set II x~>JI. 

Since a bounded set in a Banach space is weakly 
compact, one can select from x~1l a weakly con­
vergent subsequence. Without loss of generality 
we can assume that the sequence xi{> itself con­
verges weakly to some x<1> and the sequence x~2 > 
to some x<2 >. Since a subspace of a Banach space 
contains the limits of weakly convergent sequences 
of elements of that subspace, it follows that x<1> 
E B1 and x< 2>E ~· 

By assumption, the sequence Xn = x~> + x~> 
converges strongly to the element x, and, as 
proved, converges weakly to the element x<1> + x(2). 
Consequently x = x<1> + x<z> E B1 + B2, Q.E.D. 

Let us consider two subspaces of the Banach 
space C(x1o ... Xm) of bounded continuous func­
tions: the subspace C0(x1 ... Xm) consisting by 
definition of those functions f(x1 ... Xm) for which 

lim /(xi+ a, ... , Xm +a)= 0 
1&1->-oo 

for any fixed x1 ... Xm, and the subspace 
Ct(x1 ... Xm) consisting of translatiohally invariant 

functions, i.e., functions for which f(x1 +a, ... , 
Xm + a) does not depend on a. 

In the same way one can introduce the sub­
spaces C~(x1 ... Xm) and ct(x1 ... Xm), consisting 
of elements for which each component 
f1· 1· (x1 ... Xm) belongs respectively to 
1"' m 

CO(X1 ... Xm) or ct(x1 ... Xm)· 
Lemma 4. The subspaces C0 (X1 ... Xm) and 

ct(x1 ... Xm) of the space C(x1 ... Xm) are sep­
arated. 

Let 

foE C0 (xi ... Xm); ft E C1 (xi ... Xm). 

We select arbitrary, fixed x1 ... Xm· Then 

lifo- ftll ~sup l/o{xi +a, ... , Xm +a) 
a 

+a)- ft(xi ... Xm) I= lft(xi ... x,;) I· 

Since the x1 ... Xm are arbitrary, 

11/o-ftll~ sup lft(xi ... xm)l=llftll. 
xt···xm 

If II fo II = II ft II = 1, II fo - ft II 2:: 1, which completes 
the proof. In the same manner one can prove the 
separateness of the sub spaces C~(x1 ... Xm) and 
ct(x1 ... Xm) of the space Cn(X1 ... Xm ). 

We are now ready to prove the fundamental 
theorems. 

Theorem 1. Consider two functionals W and 
W', satisfying the requirements of relativistic in­
variance, positive energy and locality, as func­
tionals over the extended algebra Q. If the theory 
described by W is irreducible and if M' 2M, then 
W = W' and consequently M' = M. 

We take some ~5-:0 , an arbitrary number n and 

the functions g1 (Xo), ... , gn(Xo) which are non van­
ishing only for Xo E ~~- We consider the algebra 
Q(n, g1 ... gn)· The assumptions of the theorem im­
ply: 

We select arbitrary m, ~ = (~xo e.x) and con­
sider the set of elements of the Banach space 
Cn(X1 ... Xm) of the form 

Wi, ... i m (<D, Xi ... Xm) = <a(<D) Q, A;, {xi) ... A;m (xm)a (<D) Q), 

where <1> E Q~ and each ia takes on values from 
1 to n. 

We prove first that under the assumptions of 
the theorem the elements W1! i (x1 ... Xm) of 

1· .. m 
the Banach space Cn(X1 ... Xm) belong to the clo­
sure of the linear hull of the elements 
wi1···im (<1>, x1 ... Xm)· 
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A known[ 71 necessary and sufficient condition 
for this is the following criterion: any functional 
which vanishes on all elements w1· 1· ( <P x1 ... Xm) 

1"' m ' 

must vanish also on the element W. . (x1 ... x ) . 11 ... 1m m 

Assume now that some functional <I>' vanishes 
on all w. This means that 

<a(<D)Q,a(<l>')a(<D)Q) = 0 

for all <I><=- Q~. It follows (lemma 1) that <I>' 
<=- M(n, g1 ... gn) and since by assumption M' C M, 
<I>' EM'. Consequently 

n 

W'(<l>') = ~ I I W' LJ J . . . .l i; ... im (xi ... Xm) 

Xdct>;, ... i (xi ... Xm) = 0 
m 

(the functional W always vanishes on the elements 
of its kernel). It follows that there exists a se­
quence of linear combinations of elements 
wi1 ... im(cf>, X1 ... Xm) which is norm-convergent 

to the element W'1- 1- (x1 ... Xm ). 1 ... m 

Consider now the function 

(t):, ... im (<I>, X! ... Xm) = lim (t); 1 ••• im (,Ill, X1 +a, ... , Xm +a). 
la!~oo 

According to lemma 2, 
t 

(t)i1 ••• im (Ill, X! ... Xm) = !la(i<l>) Q!l2 W;, ... im (xi ... Xm). 

Consequently an arbitrary element w admits the 
representation 

+!Ia (Ill) QII 2W;, ... i,. (xi ... Xm), 

with wt .. im(cf>, x1 ... Xm)<=- C~(x1 ... Xm) and the 

element Wit ... im (x1 ... Xm) forms a one-dimen-

sional subspace Cii (x1 ..• Xm) contained in 
C~(x1 ... Xm) and consequently separated from 

C~(x1 ... Xm). 
It has been shown that any wi1 ... im (<I>, X1 ... Xm) 

is an element of 

c~ (xi 0 0 0 Xm) + C;:' (xi 0 .. Xm). 

Applying now lemma 3 to the separated subspaces 
C~(X1 ... Xm) and C}f(x1 ... Xm), we conclude that 
any limit of a sequence of linear combinations of 
elements belongs to 

C~ (X! ... Xm) + C~ (xi ... Xm), 

i.e., admits the representation 

tY h ... im (xi ... Xm) + CW;, ... im (xi ... Xn), 

where C is a constant and 
0 h ... im(x!+a, ... ,xm+a)--0 as lai--oo. 

If this limit belongs to C~(x1 ... Xm) (here this 
is a consequence of translation invariance of W' ), 
then fi i (x1 ... Xm) vanishes identically. Con-

i"' m 
sequently 

wt.im (xi 0 0 ° Xm) = CW;, ... im (xi. 0 0 Xm) 0 

The reasoning was carried out for a fixed alge­
bra Q(n, g1 ... gn)· We show that the value of the 
constant C is independent of the choice of 
n, g1 ... gn. Let us assume that for two different 
algebras Q(n, g1 ... gn) and Q(Z, g~ ... g z) the con­
stant C takes on different values. We then take 
the algebra 

Q(n + l, gi ... gn, gn+! ... gn+l), gn+k = gk'· 

Repeating the reasoning given above for this case 
we find 

where each ia ranges over the values 1 to n + l. 
This system of equalities (their number equals the 
number of sets i1 ... im) contains as subsystems 
the same kind of relations as obtained directly for 
the algebras Q(n, g1 ... gn) and Q( l, g{ ... g z ) . 
Since the constant C does not depend on the choice 
of the indices i1 ... im, the constants for 
Q(n, g1 ... gn) and Q( l, g1 ... g z) cannot differ from 
each other. 

It remains to be shown that the value of the con­
stant C is independent of m also, i.e., does not 
depend on the number characterizing the given 
Wightman function. 

We select arbitrarily the numbers m and m' 
and construct the Banach space of pairs (fm,fm') 

fm E Cn(X! ... Xm), fm' E Cn(x/ ... Xm/). 

The norm in this space is defined by 

II Um, fm') II =max {11/mll, 11/m'll}, 

where II fm II and II fm' II denote the norms of the 
elements fm and fm' considered respectively as 
elements of the subspaces Cn(X1 ... Xm) and 
Cn(Xi ... X~). For the space of pairs (Cn(x1 ... Xm), 
Cn(Xj_ ... xfnJ) the previous arguments remain un-
changed, and one obtains 

(W~, ... i m (xi ... Xm), w:,' ... ;;,.., (xt' ... Xm/)) 

= C (W;, ... im (xi ... Xm), Wi,' ... i~, (xt' ... xm/)). 

It is clear that the values of the constants C are 
the same for any two m, m'. If the two functionals 
W and W' satisfy the usual normalization condi-
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tion W(1) = W'(1) = 1, it follows that C = 1. Conse­
quently 

Since from the very beginning the functions 
g1(x0) ... gn(x0) which generate the algebra 
Q(n, g1 ... gn) have been selected so that they are 
nonvanishing only in a given region ~~0 , and are 
now otherwise completely arbitrary, the preceding 
relation means that the Wightman functions of the 
theories W and W' must coincide when the argu-
ments x10 , ... , Xmo belong to the given region ~~0 
and the X1o ... , Xm are arbitrary. 

It should be noted that since the Wightman func­
tions can be considered as boundary values of ana­
lytic functions of several complex variables, [ 4] 

their equality in a given region implies their equal­
ity for all x10 , ... , Xmo• xi> ... , Xm, thus concluding 
the proof of the theorem. 

Theorem 2. Let W be a functional consisting of 
a finite number of irreducible ones: 

N N 

W = :6 paW a, p"a.> 0, :6 pa = 1. 
a=i a=i 

Let W' be a functional such that M' =: M. Then W' 
is constructed from the same irreducible func­
tionals as W, i.e., 

N N 

W' = :6 pa'W a, pa' ~ 0, ~ pa' = 1. 
a=i a=i 

The numbers p~ are all nonvanishing, only if 
M' = M. 

The proof of this theorem is carried out in the 
same manner as that of theorem 1. The difference 
consists only in the fact that instead of the system 
of functions 

=<a (<D) Q, A;, (xi) ... A;m(xm) a(<D) Q) 

one must now take the larger system 

W;(~).im (<D, Xi ... Xm) 

=<a (<D) Qa, A;, (xi) ... A;111 (xm) a (<D) Qa), 

where a = 1, 2, ... , N and Qa is the vacuum vec­
tor of the functional W a• i.e., 

The subspace C~x1 ... Xm) will now be a finite­
dimensional subspace spanned by the N elements 
w~a> . (Xt ... Xm ), a = 1, 2, ... , N, and not a one­

It··· lm 
dimensional space, as before. In proving that 

one must take into account the fact that the vanish­
ing of the functional <I>' for all w1! a> 1· (<I>, X1 ... Xm) 

1··· m 
for fixed a implies (cf. the proof of theorem 1) 
that <I>' E Ma (Ma is the kernel of the functional 
W a) and the vanishing of this functional on all 

w1~a> 1· (<I>, x1 ... Xm) for any a implies that 
1··· m 

<D' E nMa = M. 
a 

All numbers p~ must be nonnegative, due to the 
positiveness of the functional W' and their sum is 
one, due to the normalization condition of the func­
tional. 

Let us prove the last assertion of the theorem. 
If there are no zeros among the numbers then ob­
viously M' = n Ma = M. Conversely, let M' = M. 

a 
Assume that some p(y0 = 0. Interchanging the roles 
of the functionals W and W' (this can be done 
since M = M') we would reach the conclusion that 
W is composed of the same irreducible functionals 
as W', i.e., W does not contain the functional W ao 

either. This contradiction proves the assertion. 
For theories with infinitely degenerate vacuum 

similar reasoning leads only to a weaker result. 
Theorem 3. Let W be a functional with infi­

nitely degenerate vacuum, i.e., a functional which 
admits the representation 

W = ~ W(a) dJl(n). 

If for some W' we have 

M'~M= nMcah 
a 

where M<a> is the kernel of the irreducible com­
ponent W<a>, then f~r any choice of n, g1(XQ), ••• , 
gn(Xo), the element W1· 1· (Xl ... Xm) of the space 

1··· m 
Cn(x1 .•• Xm) can be obtained as a strong limit of 
some sequence of linear combinations of elements 
-<a> Wl· 1' (xi ··· Xm ). 1··· m 

A complete analog of theorem 2 in this case 
would be the assertion that W' admits the repre­
sentation 

W' = ~ Wcaldll' (a) 

with another positive measure Jl'(a). Unfortun­
ately, in distinction from the preceding case, we 
have not succeeded in proving that any limit of a 
sequence of linear combinations of elements 
W1<. a l 1· (Xi ... Xm) admits such a representation. 

1··· m 
Remark. It is clear from the proof that the re­

quirement of locality is necessary only insofar as 
locality automatically guarantees the fulfillment of 
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the following two statements: 
1. W'i,.:.i m(Xi • • • Xm) 

= ~ ... ~ dx1o ... dxmo g;, (x10) ... g;m (Xmo) W m(Xt ... Xm) 

is a bounded function for any gl(:xo), ... , gn(Xo) 
E S(XQ). 

2. lim W. . (x1> ... ,x~r, X1m + a, ... ,xk+l +a, 
lal-oo 1 1" · 'm 

Xk+l+l•· .. ,Xm) = W;, ... ikilr+l+l'" im (Xloo•XkXk+l+l•"Xm) 

XW;k+l'"ik+l (Xk+t ... Xk+l) 

holds for any k, l, m if the theory is irreducible. 
Therefore the class of theories to which the re­
sults derived here are applicable is wider than the 
class of local theories and includes all those for 
which the Wightman functions possess these two 
properties. 

I make use of the occasion to thank L. V. Prok­
horov for useful discussions and a reading of the 
manuscript. 

APPENDIX 

SOME PROPERTIES OF ADDITIVE FUNCTIONS 
OF BOUNDED VARIATION AND OF THE 
RANDOM INTEGRAL 

For simplicity we restrict our attention to the 
consideration of real additive functions of bounded 
variation, defined on the set T of all subsets of 
the one-dimensional Euclidean space R1. Detailed 
information about additive functions of bounded 
variation and the Radon integral can be found in 
the book by Kantorovich and Akilov[ 71 (Chapter 6, 
§ 4). 

Let T denote the set of all subsets of the one­
dimensional Euclidean space R1. If we associate 
to each subset e E T a real number <I>( e) we de­
fine a set function <I> on T. The function <I> is said 
to be additive if for any two disjoint e1, 2 E T we 
have <I> ( e1 U e2) = <I> ( e1) + <I>( ez). 

The function <I> is said to be of bounded varia­
tion if 

n 

<i>(Ri) =sup~ Jll>(en) I< oo, 
h=i 

where the upper bound is taken over all partitions 
of R1 into parts e1 ... en. If the function is of 
bounded variation, obviously sup i<I>(a)l <co, One 

eET 
can show that this condition is also sufficient. 

Let f(x) be some real function defined on R1. 
We consider the partition of the real line 

... < Lm < ... < Lt < lo < lt < ... < lm < ... , 

such that 

Lm-+- oo; 'A= sup Jln+t -lh I < oo. 
k m~oo 

Define the sets 

en= {x E Rt: ln ~ f(x) < ZA+t}. 

Let <I> be an additive function of bounded varia­
tion. The Radon integral 

~ f(x)dll>(e) 
R, 

is defined by 
co 

lim ~ l~t 11> (en), 
~ k=-00 

if the limit exists and does not depend on the 
choice of the successive partitions { lk}. 

If, in particular, f(x) is a bounded function, the 
Radon integral exists and the following estimate 
holds: 

I~ f(x)d<I>(e) I ~ supJ/(x) l·cD(R1). 
R, X 

It follows that 

~ f(x)dll>(e) 
R, 

is a continuous linear functional on the space M Rt 

of all bounded functions on R1 (the norm in M R1 is 

defined as II f II = sup I f(x) I). It can be shown that 
X 

any bounded linear functional on MR1 is of this 
form. 
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