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The nonlinear differential equation satisfied by the gap A in a superfluid Fermi gas is derived. 
The equation is valid under the condition that the change of A is small over distances of the or
der of the correlation length VF /A in times of the order 1/ A. The equation is obtained for the 
case of absolute zero temperature. It is shown that the hydrodynamic equations of an ideal liq
uid can be derived from the equation. 

IN superconductivity theory great interest has 
recently been stimulated by problems associated 
with the spatial and temporal variations of the 
gap A. These problems include the motion of 
Abrikosov's vortex lines, the theory of the Joseph
son effect etc. All these questions in the Bardeen
Cooper-Schrieffer theory should be answerable in 
principle on the basis of Gor'kov's system of 
equations[lJ [see our Eq. (1)]. However, these 
equations are quite complicated and unamenable 
to a general solution. It is therefore important to 
obtain a differential equation directly for the pa
rameter A. Of course, this can be done only when 
A varies sufficiently slowly in space and time 
(the Ginzburg-Landau equations). In the present 
work we derive this equation at absolute zero. 
Even in this case the problem for a real super
conductor is complicated by the presence of a 
crystalline lattice in a magnetic field. We there
fore confine ourselves to the derivation of equa
tions for an uncharged superfluid Fermi gas. 
Aside from its independent methodological inter
est, the study of this model enables us to elucidate 
fundamental questions that also apply to the gen
eral case. We plan to extend our results to 
charged systems at finite temperatures. 

Gor'kov's equations for a superfluid Fermi 
system are 

( a v2 ) iTt+ 2m G(x,x')-i.i\(x)F+(x,x')= ~(x-x'), 

where G is a Green's function and A* is related 
to F+ by 

.1\*(x) = gF+(x, x) (2) 

(g < 0 is the interaction constant). It will be con
venient for our subsequent calculations to elimi
nate G from (1) immediately. We thus obtain the 
following equation for F+: 

[( 

0 a V2 ) 1 ( 0 a v2 ) 
. zat+ 2m .1\*(x) zat- 2m - 211 . 

- .1\(x) ]F+(x, x') = - i~ (x- x') 0 (3) 

As already stated, we shall assume that A is a 
slowly varying function of r and t. More exactly, 
it will be assumed that the characteristic dimen
sion 1/k of the spatial variation of A and the 
characteristic frequency w0 satisfy the inequali
ties 

Wo~d, kso = kvF I .1\ ~ 1, (4) 

where ~ 0 is the correlation length and vF is the 
Fermi velocity of the electrons. 

Subject to the conditions in (4), F+ can be ex
pressed approximately in terms of A and its de
rivatives. By substituting that expression into (2), 
we shall obtain the desired differential equation 
for 1:::.. In order to represent F+ in terms of A 
and its derivatives we can, in principle, employ 
the following regular procedure. We represent 
F+ by 

where Ft, Fi, F~ etc. are functions of x - x', 
A(x), and A*(x). By substituting this expansion 
into (3), differentiating, and collecting the coeffi
cients of the different derivatives of A, we can 
successively determine F0, F!, F~ etc. However, 
this calculation would be very laborious, and we 
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shall simplify the work considerably by means of 
a more artificial procedure. 

Our method will be based essentially on the 
substitution 

L1(x) = t1~exp [i(qr- Qt)] + A1(x) (5) 

with the assumption ~1 « ~0• This condition for 
~1 permits a relatively easy derivation of a linear 
differential equation as a basis for a nonlinear 
equation that will be satisfied by ~(x). We must 
emphasize that with the customary simple substi
tution 

A(x) = L1o + .!11(x), 

the equation for ~ 1 cannot establish the presence 
of terms containing products of derivatives in the 
equation for A; such products drop out in the 
course of linearization. The substitution (5), how
ever, permits the consideration of these terms. 
We note, to begin with, that this substitution actu
ally corresponds to investigating how small devia
tions of ~ behave in a moving coordinate system. 
This becomes clear from a comparison between 
our equations (5) and (18) for a Galilean transfor
mation of ~-

We make the substitution 

L1(x) = Li(x) exp [i(qr -· Qt)], 

F+(x, x') = F+(x, x') exp {-1/2i[q(r + r') - Q(t + t') ]}. 

(6) 

Inserting this into (3), we obtain 

{[ i (!._- iQ) (V + iq/2)2
] =-!_ [i (!..._ + iQ) 

at 2 + 2m A • (x) at 2 

- (V -;.!q/2)2
- 211 J - 3 (x) } p+ (x, x') 

= -i6 (x -x'). (7) 

If .6(x) = ~0 = const, this equation can be solved 
conventionally by means of a Fourier transforma
tion. Denoting :F+(x,x') as F0(x- x ) for .6(x) 
= ~0 , and introducing the Fourier components 

~ + \ • ~+ d8pdw 
F 0 (r, t) = J exp [~ (pr -wt)] Fooop (2rc)4 , 

we obtain 
-iA0* 

Frio,p = g 2 12 [(w + Qj2)- Sp+qtzl [(w -- I ) + ~p-q/2]-1 Ao 

(8) 

We have here used the notation 

SP = p2 / 2m~ ).I. 

and the customary substitution w - w + f.1.. 

We use 

::i (.:r) = A0 + ::i1 (x), A1 (x) = A1 (x) exp [i (qr- Qt)] (9) 

in accordance with (5), and linearize (7) with re
spect to .6 1 and the addition FI to :F+: 

F+(x, x') = F'o+ (x- x') + F1+(x, x'). 

The equation for Fi is then 

{[i( ~ _ i~~ )+ .<_V + iq/2)2 +!lJ _1 ri (!.- + iQ) . at 2 2m ;10• _ at 2 

__ _{V 2!q/2)2 -!1] -Ao} p1+ = {- [i ( :t- i~) 

+ (V ~!q/2)2 + !1] ( _ :01.:) [ i (! + i ~ ) 

- (_V 2~qf2!~ -!1] + 31} Fo+. 

- -* To solve this equation we represent ~1 and ~ 1 
as Fourier integrals: 

~ \- . d8kdw0 
A1 (x) = J A1 (w0k) exp [z (kr- Wot)] (2rc)4 , 

- • ( ) \ A' * ( k) . k ) d8kdwo A1 x = JLl1 w0 exp [z ( r -wot] (2rc)4 • 

It is then easy to derive an expression for the 
Fourier components of Fi with respect to r - r' 
and t- t': 

...+ r d3kdwo 
p·1,p(r, t)= JQexp[i(kr-wot)] (2rc) 4 , 

where 

Q =- i ~0"2::i1 (wok)+ A1+ (wok) (w + Qj2- Sp+q/2) 

x (w -- wo+Qf2+6P-k-<~/z)l {[(w + Qj2 ·- Sp+q/2) 

X (w- Qj2 + Sp-il/2) -I Ao 121 [(w- Wo + Qj2- Sp-k+q/2) 

X (w -wo- Qj2 + Sp-k-if/2)-J Ao I2Jr1. (10) 

- -The equations for ~0 and ~1 are 

~ l'- d3pdw 
Ao" = g J Fcioop (2rc)4 , (11) 

~. r-+ d8pdw 
A1 = g J F1oop (2rc)4 • (12) 

It is easily shown that, to small terms of the order 
of (q2/4m- Q)/(.1., Eq. (11) is reduced to the ordi-
nary equation 

1/zrc-2gmpo ln (2~ I I Ao I) =! -1, 

where (;; is the cutoff frequency, which is of the 
same order of magnitude as f.1. in the Fermi gas 
model. Equation ( 12) can be rewritten as 

(13) 
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This last equation is the Fourier transformation 
of the desired equation for D.*, linearized with 
respect to 6 r . 

As a further simplification we shall assume 
that the desired equation for D.* can be derived 
through the variational principle, by equating to 
zero the derivative of some real functional with 
respect to D.. This is obviously true for the static 
case, since D.(r) must minimize the free energy of 
the system. The assumption is also reasonable in 
the general case, because the variational principle 
ensures energy and momentum conservation in a 
Galilean invariant system. We shall find that the 
variational principle, unassisted by any additional 
considerations, can be used to derive a unique 
nonlinear equation for D.* from the linearized 
equation ( 13). 

We first obtain an equation that is limited to 
second order derivatives with respect to r and t. 
Expanding Q with respect to k, q, w0, and Q, then 
integrating and confining ourselves to the leading 
terms in I D. 0 l-2, we obtain 

- + gmp0 { [ 2; 1 
L\1 (Wok) - 2:n:2 -In I L\o J + 3 I L\o 12 

x(-- ~02 +vp;k2 )]3l+(w0k) 

(14) 

The functional that will be varied with respect to 
D. for the purpose of obtaining a second order 
equation is 

S = ~ d~x{ ct>(IL\I2)+g ~:~ [ IL\J2n{ a1(aL\;ty L\2 

+~IL\12 oL\* oL\}- Vp2 IL\J2n,{a2L\2(VL\*)2 
2 at at 3 

+ ~ IL\I 2(VL\*) (VL\) }+c. c.]}, (15} 

where c.c. denotes the complex conjugate expres
sion; ci> is an unknown function of I D.l2 ; O'to a 2, 

f3to {32, n1o and n2 are unknown coefficients. In 
writing (15) we took into consideration that S must 
be invariant under the transformations 

[an invariance possessed by the initial equation 
(3)], and also that (14) contains no terms that are 
linear in w0 or Q. 1> 

1lHowever, such terms appear in the next approximation 
with respect to 111 L\0 12 • This leads to the added expres
sion 

We now perform the variation of ( 15) with re
spe_£t to D., linearization of the result with respect 
to D. 1 in accordance with (9), and a Fourier trans
formation. It is easily verified that the expression 
thus derived will agree with (14) only if 

$( IL\1 2) = ( 1 + g ;;o ln 1
2: 1 ) IL\1 2, 

n1 = n2 = -2, U! = U2 = 1/2~, ~I= ~2 = - 1/6. 
Consequently, the functional (15) becomes 

S = ~ d~x { ( 1 + g ;:: ln ~=~ ) I L\ 12 

where we have used the notation 

c:p = ln L\. 

The desired second order equation is then, finally, 

(16) 

When its complex conjugate is subtracted from 
(16), we obtain an earlier equation on the basis of 
a linear approximation by Ambegaokar and 
Kadanoff. [21 When linearized this equation de
scribes sound whose velocity has the ordinary re
lationship to the compressibility of the gas. (For 
an ideal Fermi gas dp/dp = v~/3.) The existence 
of such excitations was first observed by Bogol
yubov, [31 Galitskii, [ 41 and Anderson. [ 51 

Let us now examine Eq. (16) more thoroughly. 
The left-hand side is obviously not affected by the 
substitution 

L\(r, t)-+ L\(r, t) exp [i(kr- w0t) ]. (17) 

This fact is closely associated with the Galilean 
invariance of Gor'kov's equations,2> i.e., if they 

___!__rn(~)d [i~-~v•J d* 
4j.L d at 4m 

on the left-hand side of (20), and the corresponding expres
sion on the left-hand side of (16). This term ensures a change 
of IL\1 when the chemical potential is changed, but is unim
portant for our further discussion. 

2 lThe important role of Galilean invariance in the subject 
of discussion here was brought to the attention of the authors 
by Dr. Nozieres, to whom we are deeply indebted for this 
important comment. 
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are satisfied by ~(r, t) they will also be satisfied 
by 

~(r- Vt, t) exp [i(2mVr- m V2t)]. (18) 

The transformation (18) can be verified directly. 
It follows, of course, from the general formula for 
Galilean transformations of wave functions, which 
is also valid for 1/J operators in the second quanti
zation representation. [Sl Since Eq. (16) has no 
terms of the order 8cp/8t, the leading terms in 
connection with the transformation (18) are clearly 
V' 2c;o and V' 2c;o*, which must themselves be invari
ant under this transformation. This result is pos
sible only if they are invariant under the more 
general transformation ( 17). 

If ~ is replaced by ~0 eiJ. in (16), then ~0 will 
satisfy the same equation as ~. Then in our 
model the asymptotic expansion of the parameter 
~ at large distances from a vortical filament will 
not contain terms "'(~ 0 /r)2 that are present at 
finite temperatures. (The contrary assertion fol
lowing from the work of Rappoport and Krylovet
ski![ 71 is a result of the insufficiently accurate 
approximation used by these authors.) The differ
ence at low temperatures results from the differ
ence between the velocities of normal and super
fluid motion (vn- Vs) around a vertex line; I~ I 
is then reduced far from the line. However, at ab
solute zero the existence of a superfluid velocity 
Vs cannot alter 1~1 because of Galilean invariance. 

It can be seen from the foregoing that Eq. (16) 
is insufficiently accurate to represent the motion 
of the system, at the very least because of the fact 
that in virtue of (17) it possesses very many more 
solutions than are possible in reality. To obtain a 
complete equation we must take higher order 
terms, 8V'2/8t and V' 4 , into account. In the Gali
lean transformation (18) and also in the problem 
concerning oscillations of a vortex line these 
terms are of the same order as the already writ
ten terms of the order a2;at2• We note that all 
terms of the order V' 4, which in themselves are 
invariant under (17), should be dropped because 
they introduce nothing new and their inclusion 
would amount to excessive accuracy. 

In deriving the complete equation we proceed 
as for the derivation of (16). After a tedious cal
culation Eq. (13) has the form, to terms of the or
der ~w0 and k4, 

{ ... } = g mpo ( _1_[ roo kq + 2Q - roo '!:__ 
2n2 l~ol 2 3 2m 3 8m 

1 (kq) 2 1 k~ + k2(kq)- k2q2 J -
-3~-3 16m2 ~t+(wok) 

(19) 

where { ... } designates the left-hand side of (14). 
Terms of the order 1} k4/ I ~0 14 have been dropped 
from ( 19). Although these terms are formally 
large by comparison with k4/l ~0 12, it is easily 
comprehended that because they possess excessive 
invariance under (17) they contribute nothing new 
by comparison with the terms containing V' 2 in 
(16). We must now formulate the general varia
tional principle of suitable order and select the 
coefficients in the functional that will make the 
linear equation agree with (19). When selecting 
the functional S we must take into account that it 
should be invariant under time reversal: 

t-+ -t, A-~·. 

which leaves (2) and (3) unchanged. We shall not 
present all these laborious calculations nor write 
out the expression for S. The nonlinear equation 
for ~* becomes finally (recalling that c;o = ln ~) 

I~ 12In ~o = ~ [ a2cp*-!. a2cp J - vF~!. [ V2cp*-!. V2<p J 
~ 6 at2 2 at2 3 6 2 

- _t {- V2 act:_+!__ [ (V<p)' (V<p)-!. (V<p*)2] 
24m at at 2 

+ div [ acp V<p* + a<v· V<v- acp• V<v*]1J 
at at at 

+ 96~2 {- div[(V<p)2 V<p +(V<p*} 2 V<p* + (V<p)2 V<p* 

+ 2(V<p* · V<p) Vcp] + div(V2<p* · V<p)-~ V2 (V<p*)2). 

(20) 

Equation (20) is the desired equation describing 
the dynamic properties of a superfluid Fermi sys
tem. Its Galilean invariance can be proved directly 
by substituting ( 18). When the complex conjugate 
of (20) is subtracted from it, we obtain a conserva
tion law having the significance of a continuity 
equation for the number of particles: 

a{Jp 
--+div]· = 0 
at ' 

(21) 

where 

6 =A{_!_ a(cp*-<p) 
P 4 at 

+ 2!m [ (V<p*)(V<p)- ~(Vcp*)2+ c.c.J}, {22) 

{ 
VF2 1 

j=A -i-3- 4V(<p*-<p) 
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The expressions for p and j were obtained by 
Stephen and Suhl[Sl up to first order derivatives. 

The undetermined coefficient A can be deter
mined most simply from a linear approximation, 
by calculating the change of density brought about 
through an addition 6G to the Green's function. It 
is easily seen that 

bp(wok) = -2i [bG(x, x)]rook 

Comparing (24) with (22), we obtain 

A= mpo/ :rt2• 

We note that in a linear approximation (22) and 
(25) yield the formula 

i 8(cp*- cp) 
611 = 4 ___;_:___a_t_ 

that has been given in [ 9 1• 

(25) 

It follows from (22), (23), and (25) that if we 
neglect the derivatives of I ~ I and the terms in 
(23) containing second derivatives these equations 
can be written as 

j=(p+bp)v, (26) 

If we now apply the gradient operator to the first 
equation of (26) and use the relationship between 
VF and compressibility, this equation reduces to 

av + V v2 __ Vp 
at -z- -p· (27) 

This is simply Euler's equation for irrotational 
flow of an ideal liquid. Equations (21) and (27) 
comprise the complete system of hydrodynamic 
equations, which thus follow from our basic equa
tion (20). The neglect of terms containing deriva-

tives of I~ I and v in (22) and (23) signifies the 
neglect of quantum corrections to hydrodynamic 
equations. Equation (22) for the variation of den
sity is equivalent to Bernoulli's hydrodynamic 
equation. 

The fact that the equations of hydrodynamics 
can be derived from (20) means, specifically, that 
the dispersion of oscillations of a vortex line in a 
superfluid Fermi gas has the usual hydrodynamic 
form 

k2 1 
w= 2-ln-k . 

m Po 
(28) 

This has been derived with complete rigor, the 
only essential requirement being a limitation to 
distances from the vortical axis that are large 
enough to justify the approximate equation (20). 

The authors are indebted to A. A. Abrikosov, 
A. F. Andreev, and L. P. Gor'kov for discussions 
of the questions considered in this work. 
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