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The hidden (dynamic) symmetry of the hydrogen atom is discussed from the point of view of 
group theory. It is shown that the transition from the compact group 0 ( 4 ) to its non compact 
analog-the Lorentz group-provides the possibility of including in the description both the 
discrete and the continuous spectrum. In this case the wave functions of the continuous spec­
trum with a given energy E > 0 generate an infinite-dimensional irreducible representation 
D(O,p) of the Lorentz group (p =-./2/E) belonging to the so-called fundamental series of uni­
tary representations; the wave functions for the states of the discrete spectrum with a given 
principal quantum number n generate a finite-dimensional representation D((n -1 )/2, (n -1 )/2) 
of the Lorentz group. A symmetry of the wave functions is found which is specific for the Cou­
lomb potential ( cf., formulas (20) and (20a) respectively for the states of the continuous and 
the discrete spectra). The special case of states with E = 0 (in an attractive field) when the 
Lorentz group degenerates into the nonrelativistic Galilean group is also considered. An ex­
pansion of the Coulomb Green's function (for E > 0) is obtained in terms of the irreducible 
representations of the Lorentz group. An explicit expression is obtained for the Green's func­
tion for the Kepler problem in n -dimensional space and the geometric meaning of the sym­
metry possessed by the Coulomb wave functions is determined. 

1. INTRODUCTION 

IN 1935 Fock [t] discovered the reason for the 
"accidental" degeneracy of the levels of the hy­
drogen atom having the same principal quantum 
number. He showed that the Hamiltonian of the 
hydrogen atom in addition to the explicit symmetry 
with respect to the rotation group 0( 3) also pos­
sesses a "hidden" symmetry of a wider group 
0 ( 4 ) (for E < 0 ) . The method utilized by Fock 
consisted of the transformation of the Schrodinger 
equation for the hydrogen atom (in the p-repre­
sentation) into the integral equation for the four­
dimensional spherical harmonics. Later Alli-
luev [2] has investigated by the same method the 
Kepler problem in a space of n dimensions and 
has shown that the Hamiltonian of the n -dim en­
sional "hydrogen atom" possesses the hidden 
symmetry of the group 0 ( n + 1 ) . In a number of 
papers [a-G] it was shown that in order to obtain 
the energy of the bound states there is no neces­
sity to utilize the integral method[!] and it is suf­
ficient to restrict oneself to a consideration of the 
algebra of the operators generating the hidden 
symmetry group. In essence such an approach is 
already contained in Pauli's paperC7J who first de­
termined the spectrum of the levels of the hydro-

gen atom in accordance with quantum mechanics. 
According to Fock all the states of the discrete 

spectrum of the hydrogen atom are described by 
the irreducible representations of the group 0( 4 ). 
The question arises whether it is possible in the 
language of group theory to describe in a unified 
manner both the discrete and the .continuous spec­
trum. It is clear that this cannot be achieved within 
the framework of the group 0(4), since all its ir­
reducible representations are finite -dimensional 
(just as in the case of any compact group, i.e., a 
continuous group of finite volume ) . Therefore the 
"complete" dynamic symmetry group which to­
gether with the bound states also encompasses the 
continuous spectrum must of necessity be non­
compact. It turns out that in the case of the hydro­
gen atom such a "complete" symmetry group co­
incides with the Lorentz group. In Sec. 2 it is 
shown which irreducible representations of the 
Lorentz group occur in the continuous and the dis­
crete spectra. In Sec. 3 properties of the wave 
functions of the continuous spectrum are investi­
gated and a characteristic symmetry of the wave 
functions is found ( cf., formula (20)) which is di­
rectly related to the topology of ~-space (i.e., the 
space in which the dynamic symmetry group oper­
ates; cf., (10), (14)). It is shown that an analogous 
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symmetry also exists for the states of the discrete 
spectrum ( cf., formula (20a)). Section 4 is devoted 
to a discussion of the special case E = 0 for an 
attractive potential; it turns out that in this case 
the dynamic symmetry group degenerates into the 
nonrelativistic group of Galilean transformations. 

In recent years a number of papers has ap­
peared[a-11] devoted to the calculation of the non­
relativistic Green's function for the Coulomb po­
tential; in such a case the Green's function is usu­
ally sought in the x-representation[8- 10J. 
Schwinger [ 11 ] drew attention to the fact that in 
virtue of the dynamic symmetry of the hydrogen 
atom (which manifests itself in the transition to 
the variables ~J.l. associated with the momentum 
(cf., (10)) the Coulomb Green's function takes on 
its simplest form in the p-representation. This 
representation is also important because the 
Green's function appears in just such a form in 
the Feynman diagrams for nuclear reactions. In 
Sees. 6 and 7 new expansions are obtained for the 
Coulomb Green's function in terms of an orthogo­
nal system of functions, which replace Schwinger's 
expansion in the case E > 0. From the mathemat­
ical point of view the resultant formulas give an 
expansion of the Coulomb's Green's function in 
terms of the irreducible representations of the 
Lorentz group. 

2. THE HYDROGEN ATOM AND THE LORENTZ 
GROUP 

We consider a hydrogen -like atom ( H = p2 I 2m 
+ Z1Z2e2/r ). It is well known that in the case of a 
Coulomb field there exists a vector A which is an 
additional integral of the motion 1>: 

A·=- m'f, (ax_;+__!_ (L·p· + p L··) \ a= Z1Z2e2• (1) ' r 2m 'J J J 'J ) ' 

The commutation relations between the operators 
Li (components of the orbital angular momentum) 
and Aj have the form [ 3, 4•7] 

(2) 

with [ Li, H] = [ Ai, H] = 0. Going over to the op­
erators Ni = (2H)-112Ai we obtain 2> 

[L;, LJ =- [Ni, NJ] = iB;JR.Lh, 

(3) 

1lThe so-called Runge-Lenz vector[12]. 

2>For E = 0 such a transition is impossible; this special 
case is considered in Sec. 4. 

which coincides with the commutation relations be­
tween the generators of the homogeneous Lorentz 
group (the fact was apparently noted for the first 
time by Klein; cf., footnote in the paper by 
Hulthen[3J). 

Since the appearance of the vector A is charac­
teristic of the Coulomb field the Lorentz group de­
scribes the hidden (dynamic) symmetry of the 
Kepler problem. The Hamiltonian H can be ex­
pressed in terms of the generators MJ.l.v in the 
following manner: 

H-1 = -2Ec-1 (F -J- 1), F = 1/zM11vMilv = V- N2, 

}l,'c = ma2 / li2. (4) 

The homogeneous Lorentz group has irreducible 
representations of two types: 1) the finite-dimen­
sional representations D( jl> h) which, with the 
exception of the scalar D( 0, 0 ), are nonunitary 3>, 
and 2) infinite-dimensional unitary representa­
tions discovered by Gelfand and Na!mark [ 13]. The 
latter, in turn, can be divided into two classes 
(representations of the principal and the supple­
mentary series, cf., [ 14 ]) of which to date applica­
tions in physics have been found [ 15 • 16 ] only for 
representations of the fundamental series which 
we shall in future denote by D(m, p ). Referring 
the reader for a detailed exposition of the theory 
of representations of the Lorentz group to the book 
by Na1mark[ 14 J ( cf. also [ 17]) we shall enumerate 
only those properties of infinite-dimensional uni­
tary representations of the fundamental series an 
understanding of which is necessary for the sub­
sequent discussion. 

The numbers m and p uniquely characterize 
an irreducible representation, with m being an 
integer, and p being any arbitrary real number. 
The representations D(m, p) and D(- m,- p) are 
equivalent, as a result of which it is sufficient to 
consider values of p ~ 0 (for either sign of m). 
The invariant operators F and G for the Lorentz 
group (scalar and pseudo scalar) take on the fol­
lowing values for the representation D( m, p ): 

F = 1/zM11vlJ111v =- [1 -J- 1/ 4 (p2- m2)], 

(5) 

From the representations D(m, p) it is possible 
by means of analytic continuation to obtain also 
the usual finite dimensional representations for 
which it is necessary to take into account the con­
nection between the numbers m, p and h, j 2: 

3 >we recall that the spinor with 2j 2 dotted and 2j 1 un­
dotted indices transforms according to the representation 
DU,, j,). 
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From this it follows that for finite-dimensional 
representations p = - ik (k = 2, 3, 4, ... ). It can 
be shown that in the p -plane exact representations 
of the Lorentz group correspond only to the points 
of the semi axis 0 ::5: p ::5: + oo and to the integral 
points p = - ik lying on the imaginary axis. 

From (1) and (4) we obtain the values of the in­
variants F and G in the case of the hydrogen atom: 

F =- (1 +Ec / 2E), G =- (2H)-'Iz(LA) = 0. (7) 

Comparing with (5) we have: 

m=O, 

= {(2EcfE)'I• = 2p0 jp for the continuous spectrum (E > 0) 
P - 2in for the discrete spectrum 

(8) 

( n is the principal quantum number ) . Here PC 
= I Z 1Z 2me2/n I is a momentum characteristic for 
the Coulomb field. 

The system of wave functions of the continuous 
spectrum with a given value of E forms the irre­
ducible representation D( 0, p) of the Lorentz 
group; this representation is infinite -dimensional 
and unitary. Physically the infinite dimensionality 
of the representation consists of the fact that the 
values of the orbital angular momentum Z are not 
restricted in the continuous spectrum; the unitarity 
follows from the fact that the generators Li and 
Ni are Hermitian for H > 0. The states of the dis­
crete spectrum belonging to the level with the prin­
cipal quantum numbers n form a finite-dimensional 
representation D(h,h) with j1 = h = (n-1)/2. 
Since the generators Ni for H < 0 become anti­
hermitian this representation is nonunitary. Its 
multiplicity is equal to ( 2j 1 + 1) ( 2h + 1) = n2. As 
n varies from unity to infinity j assumes all the 
integral and half integral values: j = 0, Y2, 1, % .... 

Thus, the wave functions of the hydrogen atom 
generate all the representations of the Lorentz 
group with m = 0. The last restriction is natural 
since non-vanishing values of the quantum number 
m appear only when the particle has spin [ 15• 16]. 

It is well known that between the finite-dimensional 
representations of the group 0( 4) and the Lorentz 
group there exists a one-to-one correspondence: if 
the representation D( b h) is continued analytically 
into the domain of purely imaginary angles of rota­
tion in the planes (xi, x0 ) the corresponding rep­
resentation of the Lorentz group is generated. 
Therefore, if we restrict ourselves to a discussion 
of only bound levels, then the group 0( 4) can be 
regarded as the group of hidden symmetry. How­
ever, in such a case the continuous spectrum is 
left out of consideration, and in order to describe 

it, it is necessary to go over to a non-compact 
group. Transition to the Lorentz group provides a 
possibility of a unified description both of the dis­
crete and the continuous spectra. Therefore, it is 
natural to regard the Lorentz group in particular 
as the true dynamic symmetry group for the hy­
drogen atom. 

3. WAVE FUNCTIONS OF THE CONTINUOUS 
SPECTRUM 

The Schrodinger equation for a hydrogen-like 
atom has the form 

( !:_-E) Z1Z2e2 1 'IJ(p')dp' =O (9) 
2m 'IJ(p) + 2JTNt .l IP- p'l 2 · 

Following Fock[1] it is convenient to regard mo­
mentum space as a stereographic projection of a 
four-dimensional hypersphere (for E < 0) or of a 
hyperboloid of two sheets (for E > 0 ) . We intro­
duce the coordinates ~f..l: 

£. = {(2PoPi)j(p2 + Po2) for E < 0 
' 2poPif(p2 - p02) for E > 0' 

£ = {(Po2 - P2)/(Po2 + P 2) 

o (p2 + Po2)j(p2- Po2) 

satisfying the conditions 

for· E< 0 

forE>O' 
(10) 

£02 + ~2 = 1 (E < 0), £02- ~2 = 1 (E > 0). (11) 

Here Po = (2m IE I ) 112 • 

Going over from the wave function lf!(p) to a 
new function If!(~) defined on the hypersphere or 
on the hyperboloid: 

(12) 

and taking into account the relations 

(£-£')2=+ 4po2jp-p'j~ dp=/p2±po2,d3£ 
- (P2 + Po2 ) (p'2 + Po2 ) ' 2po £o ' 

(13) 

we bring Eq. (9) to the following form: 

'11 d3£' 'lJ (£') 
'll(£)+ 2n2 ~ w Is- £'1 2 = o. (14) 

In Eqs. (12)-(14) the upper signs refer to the case 
E < 0, the lower signs refer to the case E > 0. 
1) is used to denote the Coulomb parameter: 
1) = Z1Z2e 2m/tip0• It should be emphasized that 
although in external appearance equation (14) is the 
same for positive and for negative energies actu­
ally an essential difference exists between these 
cases (which has already been noted by Fock[1]): 

integration in (14) is carried out for E < 0 over a 
singly connected region (the surface of a unit 
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hypersphere ), while for E > 0 it is carried out 
over the surface of a unit hyperboloid consisting 
of two sheets (the upper sheet given by 1 ~ ~ 0 

< oo, the lower sheet by -1 :>: ~ 0 > - oo ). 

Solutions of (14) for E < 0 are the four-dimen­
sional spherical harmonics Y nlm ( ~ ) which have 
been studied in detail by Fock[1J. We give their 
explicit form: 

Ynlm(a, e, cp) = ITn1(a) Ylm(e, cp), 

n = l + 1, l + 2, ... , -l ~ m ~ l; 

( d )1+1 
X (sin a) 1 --d-- cos n a. 

cos a 
(15) 

The angles a, 13, ({! are introduced on the hyper­
sphere in the usual manner: 

~0 = cos a, ~! = sin a sin e cos <p, 

~2 = sin a sine sin <p, ~3 = sin a cos e. (16) 

The functions Ynzm(~) are solutions of (14) (tak­
ing the upper sign) for 1J = - n and satisfy the nor­
malization condition 

The generalized spherical harmonics in the 
case E > 0 can be obtained from (15) by the re­
placement 

a-+ia, n-+ip/2. 

Here p is a continuous variable, 0 ~ p < oo. This 
has already been noted by Fock[1], and was later 
discussed in detail in the papers by Dolginov et 
al. [ 18, 19] We give explicit formulas for these 
functions: 

Yplm( a, e, cp) = llp1 (a) Y1m (e, cp), 

[ ( p )2( p2 \ 
llp1(a) = n 2, 4 + 12) 

(17) * 
( p2 )J-'J, ( d )1+1 pu ... ~;+zz (sha)l -dcha cosy. 

The normalization condition for Ypzm(a, 13, q;) has 
the following form: 

oo n 2n 

\ sh2 ada ~sine de Jldcp Yp1m (a, e, cp) Yp'l'm' (a, e, cp) 
0 0 0 

= b (p - p') bll'bmm'· (1 7 a) 

Formula (17) for II (a) is convenient for small 
values of l. But if l » 1, then it is better to uti­
lize the expression for II pl( a) in terms of the 
hypergeometric function: 

*ch "' cosh, sh sinh. 

llp1(a) = Np1(sh a)lF 

X ( l + 1 + i~ , l + 1 - i~ ; 
3 . 1- cha) 

Z+f' 2 

N PI = (-) 1+1 [ p; ( p; + 12) ... ( ~ + zz) r I 21+1 r ( l + ~) . 
(17b) 

The analogous formula in the case of the discrete 
spectrum has the form 

IInz(a) = Nnz(sin a) 1F(n + l + 1, 

-(n-l-1); Z+ 3/z; (sin<x/2) 2), 

Nnz = [n2~(n2 - 12) ... (n2 -l2 ) 1"' I 21H'fU + 3/z). (15b) 

The functions Y plm ( a, e, ({! ) form a complete 
system on each of the two sheets of the hyperbo­
loid (on the upper sheet ~ 0 = cosh a, while on the 
lower sheet ~ 0 = -cosh a; the formulas for ~ i 
are obtained from (16) by replacing sin a-- sinh a). 
In the paper by Dolginov and Toptygin [ 18 ] it is 
shown that the set of functions Y plm ( a, 13, ({! ) with 
fixed p forms a canonical basis for the infinite­
dimensional representation D( 0, p) of the Lorentz 
group. Under Lorentz transformations of the vari­
able ~IJ. the hyperboloid ~JJ.~JJ. = 1 goes over into 
itself, and the integral equation (14) remains in­
variant. Therefore, the functions ljl( ~ ) transform 
in accordance with a representation of the Lorentz 
group, and, as follows from Sec. 2, for the states 
with a given energy E this representation coin­
cides with the irreducible representation D( 0, p). 
Therefore, the following equation must be satis­
fied: 

The angle a varies from 0 to + oo; on the upper 
sheet p = Po coth( a/2 ), ~ 0 = cosh a, while on the 
lower sheet p=p0tanh(a/2), ~ 0 = -cosh a. The 
expressions for Y plm ( ~ ) in terms of the angles 
a, 13, ({! have the same form (17) for both sheets. 
The constants C1 and C2 in (18) do not depend on 
l and m; in order to obtain them we substitute (18) 
into the integral equation (14). Taking into account 
the expansion (A. 8) ( cf., Appendix A) for the kernel 
[27r2( ~ - e )2 ]-1 and the normalization condition 
(17a) we obtain for C1 and C2 the system of equa­
tions (the functions F 1 and F 2 are defined in 
Appendix A ) : 

(1 -1)F1)C1 + YJF2Cz = 0, -YJFzC1 + (1 + Y]Ft)Cz = 0, 

from which it follows that 
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If Ci> C2 are normalized by the condition I C1 12 

+ I C2 12 = 1, then we have 

Ci = {1 + e2"TJ)-'f,, Cz = -{1 + e-2"TJ)-'"· (19) 

We now note an interesting symmetry possessed 
by the wave functions of the hydrogen atom in the 
p-representation (for E > 0 ). We take two vectors 
p1 and p2 corresponding to the same values of the 
angles a, fJ, cp (Pt = Ptn, Pz = pzn, P1P2 = P~ ). The 
points p1 and p2 go over into each other under an 
inversion with respect to the spher1,'t'- iJ I = Po in 
momentum space. From (18), (19" it follows that 
for any arbitrary state belonging to the given en­
ergy E the identity 

¢(Pi) = -e-ntJ I Piz- Poz,-z (Pi> Pz) (20) 
¢ (pz) Pz2 - Po2 

is satisfied. Therefore, for a complete definition 
of the wave function 1/J(p) for all values of p it is 
sufficient to specify it only over one of the regions 
I P I > Po or I P I < Po· 

The existence of the symmetry (20) for the Cou­
lomb functions is associated with the topology of 
~-space: the point is that the surface ~IJ.~IJ. = 1 for 
E > 0 is doubly connected. The symmetry (20) is 
also preserved in the case of analytic continuation 
into the region E < 0, i.e., in going over to the 
states of the discrete spectrum. Since in this case 
Po - ip0 (if Po = ( 2mE) t/z), then we must consider 
the values of the wave function at the points p1 and 
p2 which go over into one another after reflection 
in the origin of coordinates and inversion with re­
spect to the sphere I p I = Po (i.e., Pt = Ptn, Pz 
= - pzn, P1P2 = P5 =2m[ E I; in terms of the vari­
ables ~IJ. this transformation is simply an inver­
sion: ~ !J.- - ~ !J.). From (15) it can be seen that 

IInr{:n:- a) = (-1)n-l-1IInz(a), 

from which it follows that 

Ynzm(:n:- a, -n) = (-1)n-iYnzm(a, n). 

For a wave function belonging to a level with the 
principal quantum number n we obtain the rela­
tion 

¢ {~ = (- 1) n-i I Piz + Poz,-z. 
¢ (Pz) Pz2 + Po2 

(20a) 

Formally it follows from (20), if we take into ac­
count that TJ = in for a level with the principal 
quantum number n. Formulas (20) and (20a) show 
that all the states in the Coulomb field possess the 
characteristic symmetry 4 >. 

4 )comparison of (20) with (20a) shows that a transition 
from p1 to p2 in the case E < 0 includes the reflection 
(p -> -p), while for E > 0 it does not include it. However, if 

The behavior of the Coulomb functions 1/J(p) 
near the mass surface p2 == p~ is of a very charac­
teristic nature. We let 

¢Ezm(P) = REI(P) Yzm(8, <Jl); 

and from (18) obtain 

·Const . { I p - Po I } REI (p) = e'~'ntJ/Z sm 1'J ln 2p
0
- + !Jz - !Jo , 

p2- Poz 
(21) 

where the upper (lower ) sign corresponds to p > Po 
( p < Po ) , while az is the Coulomb scattering phase: 
az = arg r (Z+l+iTJ). The point p =Po is not a 
simple pole of ifJEZm (p ), as usual, but a branch 
point. Figure 1 shows qualitatively that the be­
havior of R EZ ( p) for p - p0• Going over from 

REl fPl 

p 

FIG. 1. Behavior of the function REi(p) near the mass 

surface p = Po· 

p 

FIG. 2. Behavior of the radial part of the function 

r/IEim(/J near the mass surface p = Po· 

we go over to the variables {;11 , then we find that in both 
cases the points e. and {;2 are symmetric with respect to the 
origin of coordinates: {;, 11 = -{;211' Therefore, the symmetry 
(20) or (20a) is a consequence of the invariance of (14) 
with respect to inversion in {;-space. Investigating the stere­
ographic projection of the unit hypersphere (or of the hyper­
boloid of two sheets) one can easily see the reason that the 
"corresponding" points p 1 and p2 for E > 0 lie in p-space 
on the same side of the origin of coordinates, while for 
E < 0 they lie on opposite sides. 
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ljJ(p) to the ftmction ljJ( ~) in accordance with (12) 
we see that at the point p = Po the function ljJ ( ~ ) = 0 
and is continuous ( cf., Fig. 2 ) ; moreover, p = Po 
corresponds in ~-space to infinite values of a. 
Thus, the transition from the momentum p to the 
variables ~J.l and from ljJ(p) to 1/J( ~) leads to the 
singularity in the wave function on the mass sur­
face p =Po being smoothed out and removed to 
infinity. 

The statements made above referred to the 
regular solution of the Schrodinger equation in a 
Coulomb field. As is well known, there also ex­
ists an irregular solution which in x-space is ex­
pressed in terms of WhittakerC20 ] functions. We 
describe the principal properties of the irregular 
solutionC21J. For p- Po it has the form 

const { I p - p0 I 1 GEl (p) = ---- e+rrn/2 cos 1'] In --- + a1 - a0 t • 
~-~ ~ J 

(22) 
The points p = 0 and p = oo are also singular 
points; the behavior of the corresponding functions 
ljJ( ~ ) at these points is of the following nature: 

'\jl(~eg)m ~ {(Po!P)1 for p- oo, 

El (P!Po)l for p -> 0 
(23) 

'\jlk"/ng)m ~ { (P!Po) 1+2 for p-> oo • (24) 
(Po!P) 1+2 for p- 0 

Thus, the irregular solution becomes infinite at 
the vertices of both sheets of the hyperboloid 
( ~ 0 ± 1, ~ = 0) and, therefore, cannot be expanded 
in terms of the system of functions Y plm ( ~ ) . 

Finally, we note that the symmetry property (20) 
is preserved also for the irregular solution in a 
Coulomb field [ 21 ]. 

4. THE CASE E = 0 

In an attractive Coulomb field there exist states 
with E = 0. From (2) it can be seen that in this 
case [ Ai, Aj] = 0, and the operators Li, Aj are 
converted into a system of generators of the non­
relativistic Galilean group 5 >. Carrying out in the 
Schrodinger equation (9) the following change of 
variables: 

r: = 2PcP 
"' 2 , p 

I _ , 12 _ 2 Is - s' 12 

p p - Pc s2s'2 (lOa) 

and going over to the new function 

'\jl (s) = const · (p I 2pc) ''ljl (p), (12a) 

5) Or of the group of displacements in three-dimensional 
space which is isomorphic to it; this manner of conversion 
of one group into another is referred to as the contraction of 
the group; cf., for example,[22]. 

we obtain 

1 1 t~J(s') , 
'11-'(s)- 2n2j Is- s'l2 as = o. (14a) 

This equation is translationally invariant in 
three -dimensional ~-space and expresses the 
symmetry characteristic of the Coulomb functions 
of zero energy. Its solution has the form 

lal = 1. 

States with a definite value of the orbital angular 
momentum are obtained by means of the well­
known expansion of a plane wave [Z 3]; they have 
the form 

'\jlozm(s) = const-jz(5) Yzm(s/ 5), (25) 

from where we obtain 

i2Pc\'.(2Pc\ (P\ t!Jozm(P) = const·l-; ]l -) Yzm -1. 
\ p pI P' 

(26) 

From this with the aid of a Fourier transformation 
we obtain the wave function in the x-representa­
tion: 

( 8r )-'12 ( 8r )';, ( r \ t!Jozm(r) = const· - !21+1 - Yzm --;, 
ro ro \ r 

(27) 

well known in the literatureC23 ]. 

We note that the equation for a repulsive Cou­
lomb potential differs from (14a) only by the sign 
in front of the integral. It can be easily shown 
that such an equation has no bounded solutions ex­
cept the one which is identically equal to zero. 
This corresponds to the fact that in a repulsive 
potential the wave function with E = 0 reduces 
to zero. 

5. THE COULOMB GREEN'S FUNCTION FOR 
E<O 

The Coulomb Green's function G(p, p', E) sat­
isfies the integral equation: 

( p2 \ , Z 1Z2e2 1 G (p", p') , 1 

2m -E) G(p,p )+ 2n27tj lp-p"l2dp = -B(p-p ). 
(28) 

As has been shown by Fock [ 1 J, in order to bring 
the Schrodinger equation into a form obviously in­
variant with respect to the group 0(4) it is nec­
essary to carry out the transformations (10) and 
(12). From here follows the necessity of a similar 
transformation of the Green's ftmction ( cf., [it]): 

1 
G (5, 5') = -~ (p2 + Poz) 2 G (p, p'; E) (p'2 + Po2) 2. 

mpo (29) 

The upper (lower) signs here (and in Eq. (30)) re-
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fer to the case E < 0 ( E > 0); E = 0 represents the 
special case discussed in Sec. 8. The function 
G( L e) is defined over a four-dimensional hyper­
sphere (or hyperboloid) and satisfies an equation 
invariant with respect to the appropriate group of 
transformations: 

G( t t')+ _2!_ I d3~" 1 G(~", n = 6(~- ~"). (30) 
"'' "' - 2n2 .) ~o" ( ~ - ~")2 

Since G( ~,e) has simpler properties than the 
initial G ( p, p'; E ) , while the connection between 
them is trivial we shall in future call Gq, e) the 
Coulomb Green's function. Schwinger [HJ has ob­
tained an expansion for it in terms of the irredu­
cible representations of the 0 ( 4 ) group: 

, _ ~ ';1 ~ Ynzm(~)Y,;'zm(£') 
G(~, ~)- Li ..:...J ..:...J 1 + 1']/n ' 

n=ll=Om=-l 

(31) 

which is valid for E < 0 (the functions Ynml ( ~ ) 
are defined in (15)). For the remaining values of 
E one can obtain G ( L e ) by means of analytic 
continuation. One of the possible ways of doing 
this is shown in [l1]; below a somewhat different 
method is given for transforming formula (31) 
which enables us to express G( ~,e) in terms of 
known analytic functions. 

Since the sum 
n-1 l 

~ ~ Ynzm(~) Yn~m(~') 
l=O m=-l 

is an invariant of the representation D((n -1 )/2, 
(n -1 )/2) of the 0(4) group it can be evaluated 
in any system of coordinates. Making the fourth 
axis lie along the vector ~ and utilizing (15), we 
obtain 

n-1 
0 I n Sin nx 

~ ~ Ynzm(~)Ynzm(Sl=--z-z-. --, 
l=O m=-l n sm X 

(32) 

where I~- e I = 2 sin ( x/2 ). Therefore 

1 00 ( 'I'] \-1 
G (~, ~') = . ~ n 1 + -; 1 sin nx 

2:rt2 sm X n=l n (33) 

= 6(~- ~')- 2:rt2(~ ~ ~')2 
+ .'1']~ [<I> ( eix, 11 )- <I> ( e-ix, 11 ) ]. 

4:rt2z sm X 

Here c1> ( z, TJ) denotes the following function: 

00 zn 
<I> (z, TJ) = ~~, lz I< 1. (34) 

n=On 11 

It can be analytically continued into the whole com­
plex z-plane with the exception of the cut 1 < z 
< oo. A summary of the principal properties of the 
function cl> ( z, TJ) is given in Appendix B. 

6. ANALYTIC CONTINUATION INTO THERE-
GION E > 0 

Going over to positive energy we come across 
the cut 0 < E < oo on the upper and lower edge of 
which two different Green's functions G± ( ~, ~' ) 
are defined. In x-space they correspond to di­
verging (converging) waves. Therefore it is nec­
essary to indicate in (30) the rule for going around 
singularities. Moreover, the four-dimensional 
hypersphere in ~-space is converted into a hyper­
boloid of two sheets. 

We introduce two sign functions a and a' de­
fined in the following manner: 

_ {+ 1 on the upper edge of the cut (E = E 0 +ill); 
cr - - 1 on the lower edge of the cut (E = E 0 - ill) 

, {+1, if ~o>O, ~o'>O 
cr = - 1, if ~o < 0, ~o' < 0 · 

From the explicit expression for TJ( E) it follows 
that in order to go over to G(a)(L ~') it is neces­
sary to carry out the following substitutions: 

'11 __.. icrTJ, 112 __.. - 112 + ia6 ( o __.. +O). (35) 

The angle x between the unit vectors ~ and ~ 11 

is defined for E < 0 by the condition ( ~ ~ 11 ) = cos X 
and varies from 0 to n. In going over to E > 0 the 
variable x passes into the complex plane, with 
x- ± ix corresponding to the case when ~ and ~~~ 

lie on one sheet of the hyperboloid, and X- n ± ix 
corresponding to the case when ~ and ~ 11 lie on 
different sheets ( cf., Fig. 3 ) . 

Carrying out in (13) the replacement 

we obtain 

Im (~- ~") 2 = -a(p2 + p"2 - 2po2)o = -crcr'o, 

since the imaginary addition to ( ~- ~~~ )2 in (30) is 
significant only in the case when the points ~, C 
belong to the same sheet of the hyperboloid. On 
the other hand, from the formula 

(~ _ ~")2 = 2(1- cos x) 

it follows that for 0 < Re X < 1r the sign of 

FIG. 3. The contour showing [m ~ 
the variation of the angle 
X- solid line; the region I cor­
responds to E < 0, the regions 
II and III correspond to E > O. 
The scalar product of the vec­
tors ~' and ~ 1 is equal to: 
(~, C) = cos X• cosh X• 
-cosh X respectively in re­
gions I, II, and III. 

u 

a 
I 

m 

ff Rex 
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Im ( ~ - ~~~ )2 agrees with the sign of Im x. From 
this results the following rule for the analytic 
continuation of the angle x into the region E > 0: 

when ~0£0" > 0 
when £0£0" < 0 · 

(36) 

The hyperbolic angle x on the right hand side of 
(36) varies from 0 to + oo; the choice of the sign in 
the second case is unimportant. For ( ~ - ~ 11 ) 2 we 
obtain the following expressions: 

, 2 {-4sh2 (X/2) for ~0£0 " >O 
(£ -- £ ) = 4 ch2 (x/2) for £o£o" < 0 · 

It is convenient to carry out the explicit ana­
lytic continuation of G ( ~, ~ 1 ) with the aid of the 
integral representation (B.5) for the difference of 
the <1>-functions appearing in (33). The final result 
has the form 

where the sign 'F agrees with the sign of E, while 
the function F ( ~, ~ 1 ) has the following integral 
representations: 

F(£, £1 ) = ~ r sh(n- x)k 
smx 0 shnk 

dk 
X -- for E < 0 (cos X= (s£1 )); (38a) 

k2+'ll2 

F(£ £')=-1_r a'k-'l'}cthnk sinkxdk 
' sh X 0j k2 - '1'}2 + iab 

for E > 0, Mo' > 0 (ch x = (££') )·; (38b)* 

F(£ £') = __'!!_ r sin kx dk 
' sh x ~ sh nk ( k2 - '1'}2 + iab) 

for E>O, soso'<O (chx;=-(ss')). (38c) 

7. EXPANSION OF THE COULOMB GREEN'S 
FUNCTION IN TERMS OF THE IRREDUCIBLE 
REPRESENTATIONS OF THE LORENTZ GROUP 

Formula (37) defines G( L e) for arbitrary val­
ues of E. However, for many purposes it is con­
venient to have the expansion of G ( ~, ~ 1 ) in terms 
of an orthonormal system of functions. For the 
case E < 0 such an expansion is given by formula 
(31). For E > 0 the dynamic symmetry of the 
hydrogen atom is described by the Lorentz group, 
and (31) should be replaced by the expansion of 

*cth "'coth. 

G ( ~, ~ 1 ) in terms of the irreducible representations 
of the Lorentz group. 

As follows from Sec. 2, such an expansion con­
tains only the representations D( 0, p) of the prin­
cipal series of infinite-dimensional unitary repre­
sentations of the Lorentz group. The general form 
of this expansion is: 

"" 
G(£,£')= ~ dpg;j(p) 1~ Ypzm(s)Y;zm(s1). (39) 

g !m 

The indices i and j indicate the position of the 
points ~, e on the sheets of the hyperboloid; 
i = 1 ( 2 ) , if ~ lies on the upper (lower ) sheet; 
similarly, the index j is associated with the posi­
tion of e. Since G ( L ~I ) = G ( e, ~ ) , we have 
g12(P) = g21(P ). 

In order to determine the unknown functions 
gij(P) we substitute (39) into the integral equation: 

' 'l'J d£" G± (£", s') ' 
G±(s,£)- 2n2 ~so" (£-£")2-iaa'b =6(£-U.(40) 

The calculation is analogous to that in Sec. 3 for 
the wave function. We give the answer 

( 
'I'} ) p2 

g11±(p)= 1--cthnp 2 2+ .... 
p p -'I'} - ~u 

g12±(p) = g21±(p) = _2!f_ --1--. , 
sh np p2 - '1'} 2 + ~b 

( 'I'} ) p2 
g2z±(p)=-\1+-cthnp 2 2 .b. 

p p -'I'} + ~ 

Here p = p/2, 6- +0. 
With the aid of the identity 

p2 '1'}2 
~--=-- = 1 + -----''-+--­
p2 - '1'}2 + ib p2 - '1'}2 + ib 

(41) 

it is possible to separate out from G( ~, ~ 1 ) its 
most singular terms. Finally, we obtain a formula 
analogous to (37): 

Gii (s, £') = 6 (s- s') + 2n2 (s ~ £1 ) 2 + F;i± (£, s'). (42) 

We note that for the functions G12 ( ~, ~ 1 ) = G21 ( ~, ~ 1 ) 

the delta-function in (42) is identically equal to 
zero. 

Formulas (39), (41) give the desired expansion 
of G ( ~, e ) in terms of the irreducible represen­
tations of the Lorentz group. We now show that 
the Green's function obtained above coincides with 
the expression (37) obtained by means of analytic 
continuation. In order to do this we note that the 
sum over l and m in (39) is an invariant of the 
representation D( 0, p ). Utilizing for its evalua­
tion the same method as in (32) we obtain 

~ Y (t) y. (t') = _P_ sin(px/2) (43 ) 
.LJ plm ;, plm ;, S 2 h 
lm Jt S X 
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(the angle x is defined in (38)). From here we ob­
tain for Fij ( ~, ~ 1 ) a representation in the form of 
a Fourier integral: 

p .. ±(l: J:l>- _TJ2_ r /;j(k_) - . k dk 
'3 "'' "' - 2 2 h J k2 2 + . " sm :X ' :rt S y; 0 -TJ -~u 

/11(k) =k-fjcth:rtk, /12(k) =/21(k) =TJ/Sh:rtk, 

/22(k)=--(k+TJcth:rtk). (44) 

Comparison with (38) shows the identity of the two 
formulas. 

We note that the expansion (39) cannot be ob­
tained from (31) by means of analytic continuation 
with respect to E. From a comparison of formulas 
(31) and (41) it follows that the coefficients in the 
expansion of G( L e) in terms of the representa­
tions D( 0, p) of the Lorentz group (for E > 0) are 
not analytic continuations of the coefficients in the 
expansion of G( L e) in terms of the representa­
tions D(j,j) of the 0(4) group (forE< 0). And 
this is not surprising, since the wave functions of 
the continuous spectrum (18) are already not given 
by a simple analytic continuation of the wave func­
tions Ynzm ( ~) of the discrete spectrum. In the 
final analysis the outcome is associated here with 
the fact that the surface ~/-!~/-! = 1 has a different 
topology for E < 0 and E > 0. 

There exists a different method of expanding the 
wave functions in terms of the unitary representa­
tions of the Lorentz group proposed by Shapiro [ 15 ] 

and developed further in a number of papersC16•24 •25 J 
As has been shown in [ 15 ], such an expansion of the 
scalar function f( ~) given over one of the sheets of 
the hyperboloid ~ !-!~ J-! = 1 has the form 

1 •;, d3s Cp (n) = (-) \-(so- ;nrl+iP/2 I (S), 
4:rt' J So 

1 .,, 00 

f (S) = ( 4:rt) ~ p2 dp ~ dQn (so- ;n)-1-iP/2 Cp (n). (45) 
0 

The amplitudes Cp(n) for a given value of p trans­
form in accordance with the representation D( 0, p) 
of the basic series with 

The constants C1 and C2 are defined in (19) and 
correspond to the cases ~ 0 > 1 (p >Po) and ~ 0 < - 1 
( p <Po); a z is the Coulomb scattering phase. The 
corresponding expansion of G ( ~, ~ 1 ) follows in a 
similar manner from (39) and has the form 6> 

c± (s, n = 4~2 ~ p2 dp 
0 

X ~ dQn I So- ;n l-1-ip/2 1 so'- fn 1-l+ip/2 gtj (p) (48) 

(the spectral densities gfj ( p ) are defined in (41)). 

8. THE SPECIAL CASE: E = 0 

As has been noted already in Sec. 4, a special 
case arises for E = 0 in an attractive field: the 
Lorentz group degenerates into the nonrelativistic 
Galilean group. In accordance with this there 
arises the expansion of the Coulomb Green's func­
tion for E = 0 in terms of the representations of 
the Galilean group. For the Green's function in­
stead of (30) we have the equation 

G (1:: 1::1) + _1 r dl:" Go(5, 5") = 6 cr: _ r:l) 
o ~· ~ - 2n2 .l ~ I 5 - 5" J2 . ~ ~ , 

I (ppl) 4 
Go(s,s)=- 16mpcp(p,p1 ;0); (49) 

the signs ± correspond to repulsion (attraction), 
while the variables ~ are related to the momen­
tum in accordance with (1 Oa). 

The solution of (49) has the form 

1 ~ ( 1 )-~ Go(5, 51)=~- 1 +- exp [ik(5- 51)] dk. 
(2:rt) k ' 

(50) 

The plane waves eik~ generate the irreducible 
representations of the Galilean group. Picking out 
in (50) the most singular terms we obtain 

Go(5, 5')= 6(5-51)+ 2:rt2 ( 5
1_ 51 ) 2+Fo(5, 5'), 

I - _1_ l tXp [ik(5- 51)] dk 
Fo(5, 5)- (2n)a J k(k + 1) (51) 

~ d;: I I (S) 12 = ~ P2 dp ~ d4~" I Cp (n) 12 • 
(46) (the singularity in F 0 arises only in an attractive 

0 

Utilization of (45) leads to the following expan­
sion of the wave functions of the continuous spec­
trum of the hydrogen atom: 

00 

= ~- P2 dp ~ d.Qn /So- §n [-1-iP/2 C P (n), 
0 

)'2:rt ( ( 2Ec )';,) Cp(n) = Ci-P-(-1)1+1ei(a,-cro>Y1m(n)6 p- ~ 

(47) 

6 )1. S. Shapiro has drawn the attention of the authors to 
the fact that in the usual derivation of the transformation 
(45) it is assumed that the norm of (46) is finite. In the case 
of the continuous spectrum at present under consideration 
the amplitudes C p(n), as can be seen from (47), are not 
quadratically integrable, and yet the integrals in (45) con­
verge. Therefore, in the derivation of formulas (47), and (48), 
it is in effect assumed that the transformation (45) due to 
Shapiro can be generalized to the case of functions with un­
bounded norm. A similar generalization of the Fourier trans­
formation is constantly used in physics, and at the present 
time has also received a rigorous mathematical foundation. 
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field). The function F0 (L~') can be expressed in 
terms of the sine integral and the cosine integral. 

9. GENERALIZATION TO THE n-DIMENSIONAL 
CASE 

In conclusion we shall say a few words regard­
ing the generalization of the problem considered 
above to the case of n-dimensional space 7> (such 
a generalization is not only of methodological in­
terest, but, apparently, can find an application in 
the many-body problem). The Schrodinger equa­
tion with a "Coulomb" interaction has in the n­
dimensional case the form 

in the x-representation and 

( ::- E )1P (p) 

Z1Zze2 ( n - 1 ) (" tP (p') dnp' = O 
+ 2:rt<n+1)/2 r --2- .l I P - p'l n-1 

in the p-representation. 
Let E < 0; going over to the new function 

tP (s) = canst. (p2 + po2) (n+1)/2'P (p) 

and taking into account the equations 

(52) 

(53) 

(54) 

EN= -Ec/2[1V + (n-1) /2)2, 

with the degree of degeneracy of the level of energy 
EN being equal to 

dN = .(N + n- 2)! (2./V + n- 1) / (n- 1) !N! 

Equation (55) is invariant with respect to inver­
sion (~f.!- -~f.!) and as a result of this its solu-. 
tions have definite parity: YNv(-0 = (-l)NYNv( ~ ). 
Taking (53) into account we obtain from this the 
following symmetry relation for the wave functions 
of the discrete spectrum belonging to the level EN: 

tP (P1) I P12 + Po2 ~-(n+1)/Z 
--=(-)1¥ ' 

tP (Pz) Pz2 + Po2 ' 

(56) 

This equation is a generalization of (20a) to the n­
dimensional case B>. It is of interest to note that 
the symmetry (56) follows directly from the invari­
ance of the Schrodinger equation (55) with respect 
to the reflection ~f.!-- ~W 

The spherical harmonics YNv( ~) enter into the 
expansion of the so-called Poisson kernel [26 ]: 

K(s, s'; r) 

' il:(£,£';p)= LJPNYNv(S)YNV*(s'), 1 [ 4po2 J(n-1)12 f "" 
iP=- p' I n-1 = . (p2 + Po2) (p'Z + Po2) [ (s- s')2]<n-1)/2 ' Nv (57) 

we obtain the integral equation 

(here, as before, Po= (2miEI )1/ 2, TJ = ZtZ2e2m/p0 ). 

The solutions of this equation are the spherical 
harmonics in n +!-dimensional space Y N v ( ~ ) ; the 
functions fN = I~ INYNv( ~) are homogeneous poly­
nomials of degree N in the variables ~ t. ~ 2 , ••• , 

~n+ t. satisfying the ( n + 1) -dimensional Laplace 
equation ~f = 0. The number N (the degree of the 
homogeneous polynomial) plays in the n-dimen­
sional problem the same role as the principal quan 
tum number in the three-dimensional case: all the 
states with the same value of N have the same 
energy 

7) The energies and the wave functions of bound states 
for the n-dimensional Kepler problem have been obtained by 
Alliluev[2 ]. 

lim K(s, S'; p) = B(s- S') 
P->-1 

(the letter v denotes the set of several indices 
required for the complete specification of a spher­
ical harmonic, thus, in the case of the hydrogen 
atom considered above N = n -1, n is the principal 
quantum number, while the role of v is played by 
the pair of indices l and m ) . We consider the 
function 

D(t ,_ ) _ 1 ( n- 1 ) ,, s ' p - 2:rt<n+1)/2 r -2--

x Hi- p)z + p(£- £')2]-<n-1)12. (58) 

8 )The symmetry relation for the wave functions of the 
continuous spectrum can be obtained from (56) if we take 
into account that in the n-dimensional case TJ = i[N+(n-1)/2]; 
it has the form 

'¢(Pt) = ;n-te-nn I Pt"- Po2~-(n+t);2 
'¢ (Pz) P2 2 - Po 2 

(the points p, and p2 are symmetric with respect to the hyper­
sphere jpj = p0 , with p, > p2 ). For n ~ 3 we obtain (20) from 
this equation. 
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It can be easily verified that 

K (6, 6'; p) = p(n~3J/2 :p (p(n-IJ/2fl (6, 6'; p)). 

Utilizing (57) we have 

D(6,6';p)=N~o~ N+(::_ 1)12 YNv(6)YNV*(6'). (59) 

Setting here p = 1 we obtain the expansion of the 
kernel of the integral equation (55) in terms of 
spherical harmonics. Utilizing further the same 
method which was used in [1!] for the case n = 3, 
we obtain the desired expansion of the Green's 
function: 

(60) 

For n = 3 this expression goes over into formula 
(31). 

A generalization of formula (32) to spherical 
harmonics in ( n + 1 ) -dimensional space is given 
by the following formula: 

L Ys, (S) YNv· (6') 

1 r ( n- 1 ) ( N + n - 1 ) C(n-1)/2 (cos x) 
2n(n+1)/2 2 \ 2 . N ' 

where cw-l)/2( z) is a Gegenbauer polynomial, 
cos x = ( H 1 ). With the aid of (59)-(61) we can 
represent G ( ~, e ) in the following forms which 
are equivalent to one another: 

G(6.61
) = o(6- 6')- 11D(6, 61 ; 1) 

(61) 

TJ 2 ( n- 1 ) 1 + 2n(n+1)/2 r 2- ~ (6, 6 ) ' (62) 

where 

~(6, n 
{ 
I 

= ~ 

2n(n+l)/2r-l (n-:- 1) ~ YNv (~) Y~v (£') 
2 Nv (N + (n -1)/2] [N + (n -1)/2 + l]] 

I 
l 

oo cYJ-ll/2 (cos X) ~ x(n-a)/2+'11 dx 

1~0 N + (n- 1)/2 + l] = ~ [(1 _ x)2 + x (~ _ £')2](n-l)/2 

(63) 

The last form of G( ~.e) generalizes Schwinger's 
result[HJ to the n-dimensional case. 

We emphasize that all the formulas obtained in 
this section for G ( ~, ~ 1 ) refer directly to the sim­
plest case E < 0; the corresponding expressions 
for E ~ 0 can be obtained by means of analytic 
continuation. As can be seen from Sec. 3, this op­
eration is by no means trivial. 

In conclusion the authors wish to express their 

sincere gratitude to Ya. A. Smorodinski1, I. S. 
Shapiro, and E. I. Dolinski! for discus sing the re­
suits of this work, and also to I. A. Malkin for a 
useful communication. 

APPENDIX A 

We assume that on the unit hyperboloid ~5- ~ 2 

= 1 a scalar function f( L ~~) is given which de­
pends only on the square of the four-dimensional 
interval: 

/(6, S') = j( (6- 6')2). (A.1) 

We expand it is terms of the irreducible represen­
tations D( 0, p) of the Lorentz group: 

00 

/((6-6')2)= ~ dpF(p) ~ Yplm(6)Y:Zm(6'). (A.2) 
0 lm 

In order to obtain the "spectral density" F ( p ) we 
utilize the invariance of f(( ~ - ~~ )2 ) under Lorentz 
transformations and go over to the rest system of 
the vector ~. From (17) it follows that 

p llpo(,a) __ _ 1 sin (pa/2) ·, llp1(0) =---= Bw, 
2-.'n l'n sh a 

the sum over l and m in (A.2) reduces to one term 
with l = m = 0, from where we have 

~1Yplm(6) Ypl':n(6') = 8P 2 sin (~x/2 ). (A.3) 
lm Jt S X 

The angle x introduced here is the "hyperbolic 
angle" between the points ~ and ~': 

(66') = +ch x. (6- 6')2 = +2 (ch x + 1) 

(the upper (lower) signs correspond to the case 
when the points ~ and ~' lie on the same (on dif­
ferent ) sheets of the hyperboloid). 

In the former case, ~ 0~ 0 > 0 we obtain the equa­
tion 

j (- 4 sh2 -; )= Sn2ish X r dpF(p)p sin ~X, (A.4) 

which is a Fourier sine-transform. Its solution 
has the form 

8n 'f . PX 
F!(p)=- j/(2(1-chx)) sm-2 shxdx 

p 0 

= 4: ~j(-t) sin[pln( V ~+ V: + 1)] dt. (A.5) 

A similar solution is also obtained for ~ 0 ~ 0 < 0: 

8n r PX 
F2(p) =- J /(2(1 + chx)) sin 2 sh x dx 

p 0 

= 4; ft(t)sin[pln(V~+ V~-1)]dt. (A.6) 
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From here in the special case f(( ~- e )2 ) 

= [ 2rr2( ~ - e )2 ]-1 we obtain 

2 :rtp 
F2(p) = -sh-1-. 

p 2 

Thus, we have 

(A. 7) 

2:n;2(~-nz=~ dpF(p) ~ Ypzm(s)Y;zm(s'), (A.8) 

where 

£oso'> o 

APPENDIX B 

The function <I> ( z, rJ) introduced in this paper 
( cf., Sec. 5) is a special case of the function 
<l>(z,s,rJ) (cf., [ 27J, p. 27) for s = 1. Since we do 
not encounter other values of the parameter s we 
have intrqduced the abbreviation <I> ( z, 1, rJ) =<I> ( z, rJ). 

<I> ( z, rJ) can be expressed in terms of the hyper­
geometric function: 

For z - 1 it has a logarithmic singularity: 

1 
<D(z,'Y])=ln 1 _z-['1jJ('I'])-'IJ(1)]+ ... , (B.2) 

where lj!( T/) is the logarithmic derivative of the 
r -function. The discontinuity of <I> ( z, rJ) at the 
cut 1 < z < oo has a simple form: 

- 1/zi[<D (z +is, '11) - <D (z- is, '11)] = :n; / z'l. (B.3) 

For certain values of rJ <I> ( z, rJ) is expressed in 
terms of elementary functions, thus, for example, 

1 1 
<D(z, 1)=-ln--, 

z 1-z 

As can be seen from (33), the following combina­
tion of the functions <I> ( z, rJ) appears in G( ~, ~~ ): 

H (z, '11) = - 1M[ <D (z, '11) - <D (z-1, '11)] (B.4) 

for z = eiX. With the aid of the Sommerfeld­
Watson transformation we can easily obtain for 
the integral representation: 

1 7 ( _ z) iv _ ( _ z-1) iv 
H(z,'Y])=- j dv, 

4 -oo ('I'] + iv) sh :rtv 

which is valid under the following conditions: 

Rev> 0, larg (-z) I< :rt, larg (-z-1) I< :rt. 
In the case I, 0::::; x::::; rr, - z = eiCX-1T) ( cf., 

Fig. 3) and from (B.5) it follows that 

r sh(n-x)k 
H(eix,'Y])='Ilj (k2+'112)sh:n;kdk, 

(B.5) 

and this gives the formula (38a). In a similar man­
ner from (B.5) one obtains the representations 
(38b) and (38c). 
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