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It is shown that the relatively slowest relaxation process in superfluid helium is the establish­
ment of equilibrium between the phonon and roton gases. A set of equations is obtained which 
describe the propagation of sound waves by taking relaxation processes into account; the set 
of equations is valid for both low and high frequencies. 

THE propagation of sound waves in superfluid 
helium, as is well known, is distinguished by many 
features, the chief of which is the possibility of the 
propagation of sound waves of two types: waves of 
compression and rarefaction of the density (first 
sound) and undamped temperature waves (second 
sound). Because of the interaction of the elementary 
excitations (phonons and rotons) a number of 
mechanisms of energy dissipation are initiated 
and lead to the absorption of sound and to the ap­
pearance of a dependence of the sound velocity on 
its frequency (sound dispersion). A study of sound 
dispersion in a superfluid thus allows us to analyze 
the entire picture of the kinetic phenomena in a gas 
of elementary excitations. A number of theoret-
ical Li-4] and experimental [5- 11 ] researches have 
been devoted to this question. 

At low frequencies (w T « l, w is the sound fre­
quency, and T some characteristic time) the study 
of the problem of sound absorption is carried out by 
means of the hydrodynamic equations of the super­
fluid with dissipation terms. [1] The superfluid 
liquid is characterized by kinetic coefficients: the 
first viscosity coefficient 7], the three second vis­
cosity coefficients !": 1, !": 2, and !": 3, and the thermal 
conductivity x. The absorption coefficient of first 
sound a 1 is equal to 

a 1 = ~ [ ~ 1'] + ~2 + PX ( ~ _ i J J ( 1) 
2pu1 3 C Cv , 

(u 1 is the velocity of first sound and C the heat 
capacity per unit volume of the liquid). The ab­
sorption coefficient of second sound a 2 is equal to 

w2 Ps [ 4 . Pn PX J ) 
U2 = ---- -'I']+ (~2 + p2\;s- 2p\;!) +-- (2 

2pu23 Pn 3 Ps C 

(u2 is the velocity of second sound), and the princi­
pal term in the square brackets in (2) is the term 
containing the thermal conductivity x. 

Thanks to the small difference between Cp and 

cv for liquid helium, the third term in (1) is 
negligibly small. The first experiments on the 
absorption of first sound in liquid helium [9 J 
showed that the coefficient of second viscosity 1 l !"; 2, 

in contrast with normal liquids, where it is equal 
to 1] in order of magnitude, exceeds 7J by approx­
imately one-and-a-half orders. This fact is direct 
proof that slow processes for establishing equili­
brium occur in a gas of excitations. The coefficient 
of first viscosity 7J was computed in [13 ], and the 
coefficient of thermal conductivity x in UJ. The 
principal mechanism of scattering of the excitations, 
which determines the viscosity and the thermal 
conductivity, is the scattering of phonons by the 
rotons. Two slow approaches to equilibrium were 
considered in [ 2], where the coefficients of second 
viscosity were computed: the process of the con­
version of two phonons into three (five-phonon 
process 2>) and the process of conversion of an 
energetic phonon into a roton. The first of these 
processes guarantees the establishment of equili­
brium in the number of phonons, the second has 
such a small probability that it does not play a 
significant role in the phenomena considered here. 

The problem of the propagation of sound in a 
superfluid at high frequencies (w T ~ 1) obviously 
cannot be considered in the hydrodynamic approxi­
mation and can be solved only on the basis of the 
kinetic equation. The present paper is devoted to 
this problem. In this case, as a consequence of the 
very favorable situation with the establishment of 
energy equilibrium in the excitation gas, it is pos­
sible essentially to solve the problem exactly. The 

1lThe coefficient of first viscosity T/ was measured pre­
viously by direct experiments.[12] 

2 lThe decay of one phonon into two is forbidden by con­
servation laws for a phonon spectrum in superfluid helium. 
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fact is that the effective scattering cross section 
of rotons by rotons is sufficiently large and there­
fore in a roton gas one always has a local equili­
brium in practice; that is, the roton gas can be de­
scribed by a quasi-equilibrium distribution function 
with temperature values T r and relative velocity 
Vnr - v s which vary from point to point (v s is the 
velocity of the superfluid part of the liquid). 

The scattering of a phonon by a phonon is not 
accompanied by a change in direction of the 
momenta of the colliding phonons and is anoma­
lously large for collisions of phonons at small 
angles. This process is more rapid than all the 
other processes taking place with phonons and 
leads to the result that there is always an energy 
equilibrium for phonons moving in a given direc­
tion. Moreover, as we shall see, the five-phonon 
process, for phonons colliding at small angles, 
also takes place more rapidly than the process of 
scattering of phonons by rotons, and therefore the 
phonon-number equilibrium is established. Thus, 
the relatively slowest process is the scattering of 
phonons by rotons. The slowness of this process 
leads to the result that the establishment of the 
energy equilibrium between the photon and roton 
gases is made more difficult, whereas in each of 
them it occurs separately. This circumstance 
leads to the appearance in the hydrodynamic 
approximation of a certain second viscosity, while 
in the general case, it leads to absorption and dis­
persion of first and second sound. In this case, the 
theory contains only one characteristic time T pr• 
which is associated with the scattering of a phonon 
by a roton, which can be computed exactly. The 
results obtained will naturally be valid for all fre­
quencies (WTpr 11), provided they do not exceed 
the reciprocal of the characteristic time for estab­
lishing equilibrium in the excitation gas. 

1. SCATTERING OF ELEMENTARY EXCITATIONS 

Let us consider in more detail the scattering of 
elementary excitations in helium II. The change in 
the number of elementary excitations in an element 
of phase space can take place by the following 
paths: scattering of phonons by phonons, of rotons 
by rotons, of phonons by rotons, of rotons by 
phonons, and absorption and emission of phonons 
and rotons in inelastic collisions with one another 
and between themselves. The fundamental laws 
which characterize these scattering processes 
were investigated in [2 ,14]. 

The scattering of phonons by phonons takes 
place mainly in the collision of phonons with 
nearly equal directions of momenta. In phonon-

phonon scattering, the largest contribution to the 
matrix element of the transition of interest to us, 
namely H AF from the initial state A to the final 

state F in the second order perturbation theory 
VI 
"' (V3)Ai(V3)iF +(V) HAF 1 = ,., ~ AF 
....... EA-Ei ' 
i=I 

vp'v 1 a ( c2 ) v3 = -2-+ 3! ap P p'3, 

(v is the velocity of the liquid, p' is the deviation 
of the density from its value for the motionless 
liquid) is made by terms whose denominators 
vanish if the dispersion of the energy of the 
phonons is neglected when the angle between the 
momenta of the colliding phonons is equal to zero.[14] 

Thus, for example, for a specific intermediate 
state in which there is a phonon with momentum 
p + p 1, the energy difference EA - Ei is equal to 

e(p) + e(pt) - e( I p + Pd )', 
and it vanishes for I p + p1 l = p + p 1, that is, when 
the angle between the momenta of the colliding 
phonons p and p 1 is equal to zero. Therefore, in 
the expression for the energy of the phonons, it is 
necessary to consider also the terms that are 
cubic in the momenta 

e(p) = cp(1- yp2). (1.2) 

Inasmuch as yp2 « 1, Eq. (1.2) reaches the 
maximum value at small angles between the 
momenta of the colliding phonons. Thus, in our 
case of phonon scattering, the principal role is 
played only by colliding phonons with nearly 
equal directions of momenta. According to the 
laws of conservation of momentum and energy, 
these collisions are not accompanied by an appre­
ciable change in the directions of the momenta of 
the colliding phonons and consequently they can 
only lead to the establishment of an energy equili­
brium between the phonons moving in a given 
direction. The characteristic time ~p of such a 

scattering process, according to l12J, is determined 
in the case of the scattering of a phonon with high 
energy (and in the following we shall be interested 
only in this case) by the relation 

1 

tpp 

(u + 1) ~ (kT / c) 3 (n3/3) p~ 
( 121i2p) 2cy ( 2nli) 3 

(1.3) 

In the calculation of 1/~p we used the following 

parameters: 

p ac 
u = --;;- = 2.7. (1.4) 

c dp 
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The value of y was computed by interpolation of the 
entire energy curve including rotons. [14 ] It is ob­
viously difficult at present to obtain any informa­
tion on this value from existing neutronographic 
scattering data because of its smallness. However, 
the data of Henshaw and Woods [15] point to a very 
insignificant dispersion of the energy of the 
phonons. These data, and also a comparison of the 
values of the absorption coefficient of first sound 
near absolute zero computed by Andreev and one 
of the authors [3 •4], together with the values of 
Chase and Herlin, [ 6] show that y must be appre­
ciably smaller than 1037 sec 2 - g-2 - cm-2• We 
shall see below that this assumption confirms the 
data of our research on the absorption of first 
sound at low temperatures. Consequently, the real 
value of the time tpp is evidently much less than 
that which is determined from Eq. (1.3) with the 
value of y from (1.4). 

The value of the derivative of c with respect to 
the density was computed from the data of Atkins 
and Stasior [16] on the pressure dependence of the 
velocity of first sound in helium II, and also from 
the data of Keesom and Miss Keesom [17 ] on the 
pressure dependence of the density of helium II; 
it is in excellent agreement with the recent neu­
tronographic data of Henshaw and Woods [15J. 

In what follows we shall need the value of the 
derivatives of the density with respect to the 
parameters P 0 and~ 3 l (P0, ~. and also Jl are 
parameters of the energy of the rotons 
& = (P- P 0) 2/2Jl, Pis the momentum of the roton). 
From current data [i4 •15 •18 •19 J the most probable 
values of the derivatives are 

p aPo p fJ/1 p2 a2!J. 
--=0.4, --=-0,57, --=-5.2. 
Po ap 11 ap 11 ap2 

(1.5) 

The values of the derivatives of P 0 were taken by 
us from the neutronographic data of Henshaw and 
Woods. These same authors obtained (p/ £::.) a~j ap 
= -1 for the first derivative of the parameter~. 
However, in the calculation of this parameter, 
Henshaw and Woods did not consider that~ has a 
large second derivative with respect to the density. 
Therefore, we shall use for the first derivative of 
~ the value (p/ ~)a~; ap = - 0. 57, computed by 
Atkins and Edwards [18 ] from data on the tempera­
ture dependence of the coefficient of thermal expan­
sion of helium II, while for the second derivative, 
we shall use the value (p2/ ~)~/ ap2 = - 5.2 com-

3)The numerical values of the parameters P 0 , /1, c, and 
also Jl are equal to[,s] P = 2.01 x 10-19 erg-sec-cm-1 , /),. = 8.65°K, 
c = 238m/sec, and Jl = 1.06 x 10-24 g. 

puted by us from the neutronographic data of Hen­
shaw and Woods. 

As has already been pointed out above, the 
scattering of phonons by phonons takes place prin­
cipally by means of collisions of particles with 
nearly equal directions of momenta. In comparison 
with this specific scattering, the collisions of 
phonons with change of direction of momenta of 
the colliding particles has a low probability. Never­
theless, in the solution of our problem, one must 
take into account the scattering of phonons by 
phonons with a change of direction of momenta of 
the colliding particles, inasmuch as in the temper­
ature region below 0.9°K, as we shall see, it be­
comes significant along with the scattering of 
phonons by rotons. 

We shall need below, the differential effective 
cross section for the process under consideration. 
It is represented by the relation 

dcrpp(p, p1,p*,p1*) = (2n/ f!c) IJ!AF'I 26(e + e1- e*- ei*)dTp• 

(1.6) 

with the matrix element of transition HAF' from 
the initial state A to the final state F in second 
order perturbation theory determined from 
Eq. (1.1), d T~ is the element of volume in p* 
space, dTp* =p*2dpdo*/(27Tfi) 3 l (do* is the element 
of solid angle). The quantities without and with 
asterisks in ( 1. 6) refer to incident, and scattered 
phonons, respectively. 

The scattering of a phonon by a roton in some 
sense is analogous to the scattering of a light par­
ticle by a heavy one. This analogy is associated 
with the fact that the phonon possesses a momen­
tum that is much smaller than the momentum of 
the roton. With account of the law of conservation 
of momentum, the law of conservation of energy 
for the given process is written in the form 

cp + (P- Po) 2 / 2~-t = cp* + (I P + p- p*j - Po)2 / 2~-t 

(p and P are the momenta of the phonon and the 
roton before collision, p* is the momentum of the 
phonon after collision), hence, after several 
transformations, taking into account the smallness 
of the phonon momenta (p, p* « P 0), we get 

c(p- p*) = (P, p- p*)2 / 2~-tP02 • 

We now make use of the fact that the energy of 
the phonons is E = cp < 3Jlc 2 (just such an inequality, 
as we shall see below, is essential in the interval 
of collision). This allows us to describe the energy 
difference of interest to us in the following way: 

e-e·=p2 (m n-n*)2 
2~-t ' ' 

(1. 7) 
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where m, nand n* are unit vectors directed along 
the vectors P, p, and p*. Taking into account what 
has been said regarding the smallness of the quan­
tity E- t:* ( E- t:* < E and t:*), the matrix element 
of the transition under discussion HAF' from the 
initial state A to the final state F in second order 
perturbation theory, in agreement with [14J, can be 
written in the form 

HAF' = Pop { (n + n*, m) (nn*) + ~ (nm) 2(n*m) 2 +A}. 
2p . ~e 

A =L[fJ2A +~( aP0)2]. 
Poe 8p2 ~ fJp 

(1. 8) 

The value of the parameter A computed by means 
of the values of the derivatives with respect to the 
density of Po and L)., given in (1.5), turns out to be 
very small and approximately equal to- 0.1. 

The differential effective scattering cross sec­
tion of a phonon by a roton is equal to 

dCJpr = (2n I lie) IHAF1 I26 (~ +. ep- ~· -ep*) a. p• (1.9) 

( ~ and ~ * are the energies of the rotons before 
and after collision). We substitute (1.8) in (1.9) 
and integrate over the momentum of the scattered 
phonon; as a result, we have 

dCJpr = ( Pop2 
)
2 [ (n + n*, m) (nn*) 

4nli2pe 

+Po (nm)2(n*m)2+A]do*. 
~e 

In the following, we need the cross section 
dupr averaged over all the angles of the colliding 
particles. It is equal to 

dCJ = ( P0p2 r[~+~( Po ) 2+ 2A Po +A2 ]do*. 
pr 4nli2pe , 9 25 , ~e 9 !le 

(1.10) 

In contrast with the processes described above, 
the scattering of a phonon by a phonon and of a 
phonon by a roton, for which one can calculate the 
effective cross section exactly, the process of 
roton-roton scattering is considered with the help 
of some interaction model. The total effective 
cross section urr of roton-roton scattering was 
computed under the assumption that the interaction 
of the rotons has a 6-type character. According 
to [14.], 

~~==--2~P~,o~~I,_V~o~l2~--~~ 
CJrr = I a~ /BP- a~ dBPd li4 cos('¢/2) (1.11) 

Here Ia~; ap - a~d 8P11 is the relative velocity of 
the colliding rotons, lf! is the angle between P and 
P 1 ( ~. P and ~ 1, P 1 are the energy and momentum 
of the colliding rotons), V0 is the amplitude which 

determines the interaction of the rotons 
(V = V0o(r1 - r), V is the energy of interaction of 
the rotons, r 1 and r are their radius vectors). The 
quantity Vo can be computed from the experi~ental 
values of the coefficient of viscosity of He II L13 •20- 23 J. 
It is seen to be of the order of 1. 7 x 10-38 erg-cm3. 

The reciprocal of the mean time between two 
collisions of a roton trr is obtained from (1.11) by 
multiplication by the total roton current with subse­
quent averaging over all angles formed by the 
momenta of the colliding rotons: 

(Nr is the number of rotons per unit volume). 
From among processes of inelastic scattering 

of phonons and rotons, as was explained pre­
viously, [2] the process of the transformation of 
three phonons into two (five-phonon process) has 
the greatest probability. The five-phonon process, 
as also the process of phonon-phonon scattering 
considered above, is not accompanied by any 
change in the direction of the momenta of colliding 
particles. Actually, the matrix element of interest 
to us of a transition from the initial state A to the 
final state F in second order perturbation theory 
contains the sum 

~~AI ( V3) r n ( Va) IIF 

I 11 (EA- EI) (EA- En) 

some terms of which contain in their denominators 
the product of two equations which vanish when dis­
persion is neglected, when the angles between the 
momenta of the colliding phonons are equal to zero. 
Thus the probability of the process (3 - 2) has a 
maximum for collisions of phonons at small angles. 
Such collisions, as pointed out above, do not lead 
to an appreciable change in directions of the colli­
ding particles; consequently, they can lead to the 
establishment of equilibrium between phonons 
moving in a given direction. 

Calculation of the probability of a five-phonon 
process is very cumbersome. However, inasmuch 
as the expression for this probability contains the 
quantity y 2 in the denominator, while the value of Y 
is known with low accuracy, one can limit oneself 
to obtaining a symbolic formula without a numerical 
coefficient. [2] The presence of such an expression 
permits us to obtain without difficulty the tempera­
ture dependence of the coefficient r P' which deter­
mines the rate of change in the number of phonons 

Np = -arp 
(a is some chemical potential; see below). 
cording to [2J, the value of rp is 

Ac-
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fp = AT11, (1.13) 

where A is a temperature-independent coefficient. 
In addition to the five-phonon process, other in­

elastic processes are also possible which lead to a 
change in the number of phonons and rotons. Let 
us say a few words about one of them, which we 
have considered previously[2J, but which, as it 
turns out, is not essential for the present problem. 
When an energetic phonon (with energy of the or­
der of A) collides with a roton it may become 
transformed into a roton. The probability of this 
process, however, is small and certainly much 
smaller than the probability of scattering of a 
phonon by a roton. Therefore, we can neglect the 
exchange of energy and momentum between the 
phonon and roton gases. 

Having established the basic laws that charac­
terize the interaction of the elementary particles, 
we can describe the form of the non-equilibrium 
distribution function. We begin with the phonons. 
Drawing (a) shows the temperature dependence of 
the times characterizing the phonon processes. In 
a comparison of the times T pr and T3- 2, which 
describe the processes of scattering of a phonon 
by a roton and the transformation of three phonons 
into two, it must be kept in mind that these proc­
esses of scattering enter into the kinetic equation, 
as we shall see below, with different weights, in­
asmuch as the energetic phonons play more of a 
role in the scattering of phonons by rotons than in 
the five-phonon process. In this connection a graph 
of the quantity 

7·216 1 ___ , __ 
has been plotted in drawing (a). This curve should 
be compared with the quantity 1/ Tpr· 

II 
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It is seen from the drawing (a) that in the tem­
perature region below 1.2°K, in which we are most 
interested, the four-phonon and five-phonon proc­
esses guarantee a rapid establishment of equili­
brium both in energies and in the number of phonons, 
for phonons moving in a given direction. Therefore, 
the phonons moving in a given direction can be 
characterized by a certain temperature Tp (a func­
tion of the direction of momentum of the phonon). 
For temperatures above 1.2°K, the characteristic 
time for the five-phonon process becomes com­
parable with the time Tpr and the establishment of 
equilibrium in the number of phonons will not be so 
rapid. In this case, the distribution function for 
phonons moving in a given direction also depends 
on some chemical potential a. Thus the distribution 
function of the phonons is some quasi-equilibrium 
function 

n = [exp (e I kT P +a) - 1]-1, (1.14) 

in which the temperature T p and the chemical 
potential a depend on the direction of the phonon's 
momentum. For temperatures below 1.2°K, in 
accord with what has been said, a can be equated 
to zero 4\ and the departure of the distribution func­
tion from a constant equilibrium value n0 (for 
small departures) is represented in the form 

fJno ( fJe , ) n- n0 = -- - p + ev . 
fJe fJp , 

(1.15) 

The first term reflects the dependence of the 
energy spectrum on the density, the second is ob­
tained by expanding Tp in a series in the difference 
Tp - T 0 (To is the constant-equilibrium tempera­
ture), v is some function of the direction of the 
momentum of the phonon, which is found by solving 
the kinetic equation. Generally speaking, the func­
tion n depends not on E but on the difference 
E - (p, Vnp - Vs), where Vnp - Vs is some relative 
velocity of the phonon gas, which is also a function 
of the direction of the phonon momentum. One can 
see, however, that inasmuch as E is a linear func­
tion of p, the function v in Eq. (1.15) automatically 
takes into account the presence of such a term. 

We now proceed to the rotons. Equation (1.12) 
determines the temperature dependence of the 
characteristic time trr of roton-roton scattering 
(drawing b). A comparison of trr with the time for 
scattering of rotons by phonons shows that at tem­
peratures above 0.6°K the roton-roton scattering 
takes place more rapidly, which assures the estab-

4) Account of a will be taken in a subsequent work of the 
authors.["] 
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lishment of a certain local equilibrium in the roton 
gas. Thus the rotons can be described by some 
quasi-equilibrium distribution function with a tem­
perature Tp and a relative velocity Vnr - Vs, which 
is a point function: 

N [ {8-(P,vnr-Vs)J (1.16) 
= exp - kT . 

r 

Expanding this function in a series in the deviations 
of all the quantities from their constant equilibrium 
values, we get (for small deviations) 

N-N0 = aN [a{Gp'-{GT/_(P,vnr-vs)] (1. 17) 
aEt ap To 

Here T ~ is the deviation of the temperature of the 
roton gas from a constant equilibrium value T 0, No 
is the constant equilibrium distribution function. 

We note that, for generality, one should have 
written a term in the square bracket in the expres­
sion for the contribution to the roton distribution 
function that corresponds to some chemical poten­
tial ar. However, inasmuch as the roton spectrum 
is such that its energy is almost constant and equal 
to b., such a term is impossible to distinguish by 
its dependence on momentum and energy from the 
term {8 T~/T0 ~ .D.T~/T 0 • This circumstance per­
mits us to combine both terms from the very be­
ginning. The physical meaning of this circumstance 
is also simple. Any local change in the number of 
rotons can be described by the local change in 
temperature. 

Let us consider the problem of the limits of 
applicability of the results obtained with respect 
to the frequencies of the sound. It is evident that 
two circumstances are significant for all the con­
siderations that have been made. First, the pres­
ence of an energy equilibrium for phonons moving 
in a given direction; second, the presence of a local 
equilibrium in the roton gas. Therefore, in order 
that these two conditions not be violated, it is ob­
viously necessary that 

rot rr• < 1 and wt PP < 1, (1.18) 

where the time trr is determined by Eq. (1.12) and 
the time ~p by Eq. (1.3). To estimate ~p· it is 
necessary to substitute the energy of the phonons, 
which plays an important role in the range of col­
lisions and is significant for the phenomenon of 
sound dispersion (as we shall see, E: ~ (7 - 8) · kTo) · 
Here, it must be kept in mind that the real value 
of the time tpp• as shown above, is much smaller 
than that determined by Eq. (1.3) with the value of 
'Y from (1.4). 

An appreciable dispersion takes place for first 
sound when w T pr ~ 1, and for second sound, when 
wrpr ~ uJu1. Inasmuch as udu1 :S 1, the disper-

sion of second sound sets in at much lower frequen­
cies than for first sound. It is easy to see that in 
this and in the other case, dispersion begins when 
the wavelength of the corresponding sound is com­
parable with the mean free path of the photon. It 
is seen from the drawings (a) and (b) that there is 
a large range of frequencies for which observation 
of sound dispersion is possible. 

2. KINETIC EQUATIONS 

As was pointed out above, the free paths of the 
phonons and rotons, in the general case of an arbi­
trary value of the parameter w T, can be shown to 
be comparable with and even exceed the sound 
wavelength. Therefore, it is impossible to apply 
the hydrodynamic equations in the normal part of 
the fluid and one must see the kinetic equation for 
the phonon distribution function n(p, r, t) and roton 
distribution function N(P, r, t): 

(2.1) 

(2.2) 

Here J(n) and J(N) are collision integrals, which 
are due to processes of elastic and inelastic scat­
tering of phonons and rotons. The Hamiltonians 
Hp and Hr are equal to 

Hp = e(p) + pv8 , H.= Et (P) + Pv., 

where E(p) and f8 (P) are the energies of the 
phonons and rotons in a reference system moving 
with a velocity v s and depending on the liquid den­
sity p. The quantities p and Vs play the role of ex­
ternal conditions for the excitation gas. 

In order to get a complete set of equations, it is 
necessary to add to Eqs. (2.1) and (2.2) the equation 
of mass continuity 

ap + d" • o (2.3) at IV]= 

and also the equation of superfluid motion [25 ] 

av. ( v.2 ) 0 (2 4) at+ v 11+-2- = ' . 

where j is the momentum density of the liquid and 
J.t = BE/ 8p, where E is the energy density in a set 
of coordinates in which Vs = 0. The derivative of 
the energy with respect to density is taken for a 
constant distribution of the excitations, i.e., for 
constant n(p) and N(P). 

To find j, we note that the momentum in a sys­
tem of coordinates where the superfluid portion is 
at rest is equal to 

~ pn d-rp + ~ FN d'Tp. 



1342 I. M. KHALATNIKOV and D. M. CHERNIKOVA 

Using the well known transformation formula of 
Halliday, we get 

j=pv,+ ~pnd-rp+~PNd-rp. (2.5) 

For the energy E, we have 

E = E 0 + ~en d-rp + ~ iSN d't'p, 

where E 0 is the energy at absolute zero. 
Carrying out differentiation of E with respect to 

the density p, and using (2.3), (2.4), and (2.5), we 
get the desired equation [26] 

~~ + div ( pv, + ~pnd-rp + ~PN d-rp) = 0, (2.6) 

8v. ( (' 8e \ 86 ) 0 at'+ V !to+ J8P nd-rp+ J8P Nd-rp = , (2.7) 

where Jlo is the chemical potential at T = 0. 
In a plane sound wave, all the thermodynamic 

quantities are composed of constant equilibrium 
components and small additions which change ac­
cording to the law exp [i(k · r - wt)l (k is the wave 
vector). The velocities v S' Vnp and Vnr in the sound 
wave are also small quantities 5> which vary ac­
cording to the same law. Therefore, one can set 

n = no+ n', N = 1\'o + N', p = Po + p', 

in Eqs. (2.1), (2.2), (2.6), and (2.7). Here n0, N0, 

Po are the constant equilibrium values and n', N', 
p' and also Vs are small additions proportional to 
exp [i(k · r - wt)]. After linearization these equa­
tions take the form 

( 1 _ ~kv)) n' + (kv) 8n0 (8e p' + (pv,)) '·' __ J__ 1 (n), 
uJ w 8e Clp zw 

(2.8) 

( 1 ·- (kV)). N' + (kV) 8N.o ( ~!§_ p' + (Pv,)) = _ ~ J (N), 
w w 81!5 Vir uu 

(2.9) 

-cup' + kpv, + ~ (kp) n' d-rp + ~ (kP) N' d't'p = 0, (2.10) 

•86 
+ k ~ 8p N' d-rp ·= 0, (2.11) 

where v = OE/ ap and v = ars I BP. We drop the zero 
subscript on the density and temperature 6> and use 
the fact that d Jlo = c 2dpj p. 

5 lone must keep in mind the smallness of the velocities 

Vs, Vnp• and Vnr in comparison with the velocities of first 
and second sound. 

6lin what follows, we shall drop the zero subscript every­
where for equilibrium thermodynamic quantities. 

We introduce a spherical set of coordinates 
with the polar axis along the vector k. The angle 
between k and p will be denoted by 8 and between 
k and P by J. In this set of coordinates n' and N', 
in accord with (1.15), (1.17), are equal to 

8no ( 8e ) n' = - 8- -p' + ev(cos 8) , 
e 8p 

(2.12) 

., 8No ( 8[£ , Tr' ) 
lV = arg 8p p - rg T- Pwr cos fj (2.13) 

(wr = lvnr- vsl). We shall seek the unknown func­
tion v (cos 8) in the form 

00 

v (cos 8) = ~ v ip i (cos 8) 
i=O 

(Pi (cos 8) are spherical harmonics). 
We substitute (2.12) and (2.13) in Eqs. (2.10) 

and (2.11) and integrate over all p and P space: 

-~p'+(v.+~wr) _ _P_np (v1 +wr)=0, (2.14) 
p p 

~ p (aft ) T ( a11 ) 
-- uWs +- - p' +- - Tr' 

c2 Bp • 1' c2 aT, P 

Pnp T' 0 - 3u- ( Vo + r ) = · (2.15) 
p 

Here Pnp is the phonon part of the normal density, 
Jl is the chemical potential and v0 and v1 are coef­
ficients for the zero and first harmonics in the ex­
pansion of v (cos G) in spherical harmonics. In 
Eqs. (2.14) and (2.15), we have introduced the nota­
tion w = wjkc and transformed to nondimensional 
quantities. 71 

The collision integral J(n) on the right side of 
Eq. (2.8) consists of four components: Jpr(n), due 
to scattering of phonons by rotons, Jpp(n) due to 
phonon-phonon scattering, J~p(n) due to the specific 
phonon-phonon scattering at small angles, and 
finally J 3_ 2(n) which characterizes the change in 
the number of phonons which occurs by way of the 
five-phonon process. 

The total energy of the phonons moving in a 
given direction, for a five-phonon process and for 
scattering of phonons by phonons at small angles 
is conserved. We integrate the left and right sides 
of Eq. (2.8) [with account of (2.12)] over all pos-
sible energies and divide by 

r 8no ,_e2p2dp. 
" Be 

7 )Here we shall everywhere denote by p' and T r' the ra­
tios of the deviations of the liquid density and the tempera­
ture of the rotan gas, respectively, from Po and T 0 , and by 
Vs and Wr the ratios of the velocity of the superfluid part of 
the liquid and the relative velocity of the raton gas to c. 
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In accord with the above, the integrals 

J J pp' (n) ep2dp, J la-2 (n) ep2dp 

are equal to zero, and we have 

(ro- cos 0) v (cos 8) +roup'+ cos2 8v. 

=- i: (~J pr (n) 8p2 dp I~ ~:0 e2p2 dp 

+ ~ J PP (n) ep2 dp j ~ 0;: e2p2 dp) . (2.16) 

The collision integral J(N) on the right side of 
Eq. (2.9) consists of two parts: Jrp(N) which is 
due to scattering of rotons by phonons, and J rr(N) 
due to roton-roton scattering. We multiply the left 
and right sides of Eq. (2.9) first by ~and then by P, 
and integrate in both cases with account of (2.13) 
over all P space. 

Inasmuch as 

~J rp (N)(£ d,;p =- ~J pr (n) 8 d,;p, 

~Jrp (N} P d,;p =- ~ lpr (n) p d-rp, 

in accordance with the laws of conservation of 
energy and momentum, and 

~ J rr (N} (£ d,;p = 0, ~ J rr (N} P d't"p = 9, 

we have 81 

_ (asr) _ (asr) 
-roT 7fT P T/ -rop Tp T p' + Sr(wr + Vs) 

(2.17) 

--ropnw +T~rTr'=-. 00 'ilpr(n)pcos8d-rp, (2.18) 
r r C l(jJC .) 

where Pnr is the roton part of the normal density 
and Sr is the entropy density of the roton gas. 

We now calculate the collision integrals Jpr(n) 
and Jpp(n) entering in Eqs. (2.16)-(2.18): 

J pr (n) =- ~ cdr:;P, {nN (n* + 1)-n*N* (n + 1)} d-rp. (2.19) 

Here the quantities with the asterisks refer to 
scattered phonons and rotons, and dapr is the dif­
ferential effective scattering cross section of a 
phonon by a roton, determined by Eq. (1.9). 

Substituting n, n*, N, and N* into (2.19) ex­
pressed in the form of sums of the constant equili­
brium values and the additions (2.12) and (2.13), 

S)The values of the integrals encountered in (2.14), 
(2.15), (2.17), and (2.18) are given in the Appendix. 

and keeping only terms that are linear in v, p', T~, 
and wr, we get 

J pr (n) =- ~ c dr:;prNo ~:0 {8 [v (cos8) -v (cos8') 

+ wr (cos 8- cos 8*)1 + (e- 8*) [v (cos 8*) + T /]} d,;p. 

(2. 20) 

The quantity E - E* is small in comparison with 
the energy E. However, the calculation of this dif­
ference in the collision integral (2.20) is seen to be 
important for establishing the energy equilibrium 
between the phonon and roton gases. As we shall 
see below, the relative slowness of this latter 
process leads to an appreciable dissipation and 
dispersion of sound and plays a fundamental role 
in all subsequent considerations. It is natural in 
this case that we shall consider the difference 
E - E* only in those terms in the collision integral 
(2.20) which correspond to the establishment of the 
energy equilibrium mentioned. 

Calculation of the collision integral (2.20) with 
dapr from (1.9) leads to a very cumbersome ex­
pression which contains the first six harmonics of 
the function v(cos B* ). However, there is hardly 
any need for such a calculation, since all the har­
monics involved except the first make a trivial 
contribution to the final result. Therefore, without 
great error in accuracy, one can substitute in 
(2.20) the roton-roton scattering cross section 
(1.9) averaged over the angles of the scattering 
particles. 91 The collision integral (2.20) after sub­
stitution of dapr [which is determined by (1.10)] 
and E- E* from (1. 7) and integration over all P 
space and over all the scattering angles of the 
phonon, is equal to 

1 ano { lpr (n) = -----0- e[v(cos 8)- Vo +cos 8wr] 
't pr (p) 8 

+ 3:c2 (vo + Tr')}' 

__ 1_ =4ncN ( Pop2 )2lr ~ + ~( Po )2 
't" pr (p) r 4n1i2pc 9 25 , !!C 

2A Pe J +--+A2. 
9 !!C 

(2.21) 

9 >We also note that a more exact calculation would not 
have any meaning, for even in the derivation of the formula for 
the matrix element of the transition HAF ' in the second or­
der perturbation theory [Eq. (18)] a number of terms compar­
able with this effect, which can make a contribution to the 
higher harmonics, were neglected. Thus, for example, in the 
derivation of (1.8) terms were omitted which contain P- P 0 • 

Moreover, the previously mentioned inequality E- E* < 3p.c2 

is satisfied with small margin, and this also limits the ac­
curacy of the calculations. 



1344 RELAXATION PHENOMENA IN SUPERFLUID HELIUM 

With account of (2.21) the integrals containing 
Jpr(n) on the right sides of Eqs. (2.16)-(2.18) are 
easily computed and are equal to 

S I 5 ano 1 
J ( n) ep2 dp -- e2p2 dp = - -- [ v (cos 8) - Vo 

pr ae 't" pr 

+cos 8wr + ~(vo + T/)], 
(2.22) 

1 ~ 1 1 -T Jpr(n)ed't"p=-~Cp(vo+Tr ), 
't" pr 

1 0 1 
-\ Jpr (n) pcos8d'tp = -Pnp(vl + Wp), 

C J 't pr 

where {3 = 3kT/J.tc2 and Tpr is the characteristic 
time for the process of scattering of phonons by 
rotons: 

_1_= 4:n:3 Nr[P0(kT/c)2]2[~+_i_( Po )2 
't" pr C pli2 9 25 f!C 

(2.23) 

Finally, we calculate J Jpp(n)Ep2dp, which turns 
out to be convergent without account of dispersion 
·of the phonons: 

.\ JPP (n.) ep2 dp = - 5cdO'pp {nn1 (n* + 1) (n1* + 1) 

. (2.24) 

- n*n1* (n + 1) (n1 + 1)} ep2 dp d-rp,. 

Here the quantities with asterisks refer to scat­
tered phonons and dapp is the differential effective 
scattering cross section of a phonon with momen­
tum p1 by a phonon with momentum p, Eq. (1.6). 

Substituting in (2.24) the distribution functions 
of the incident and scattered phonons, expressed 
in the form of sums of the constant equilibrium 
values and the additions of (2.12), and keeping only 
terms linear in v and p', we get 

~ Jp~ (n)ep2 dp = ~ cdO'ppnonot(no* + 1) (n01• + 1) 

(2.25) 

As a consequence of the laws of conservation of 
momentum and energy, the terms with v0 and v1 in 
the curly brackets of (2.25) are cancelled, as are­
sult of which the spherical harmonics remain, be­
ginning with the second. As we shall see below, the 
considered process of phonon-phonon scattering 
plays a role only at low temperatures (below 0.9°K) 
and in order not to complicate the calculations, we 
alter the integral (2.28) somewhat, writing it in the 
form 

where the time T PP is computed accurate to the 

second harmonic [12 ] 

(2 .27) 

The inappreciable error which we have introduced 
here does not change the picture qualitatively. 

It is seen from drawing (a) that at comparatively 
high temperatures (above 0.9°K) the phonon-phonon 
scattering does not have to be considered in com­
parison with the scattering of phonons by rotons, 
inasmuch as T pp » T pr· In the temperature range 
from 0.6 to 0.9°K, Tpp"" Tpr and both scattering 
processes are important. Finally, at very low tem­
peratures (below 0.6°K) Tpp « Tpr and in this case, 
only the effect of phonon-phonon scattering is 
important. 

We shall first consider the most interesting 
temperature region from 0.9 to 1.2°K. In this re­
gion of temperatures the second term on the right 
side of Eq. (2.16) is much smaller in magnitude 
than the first and it can be neglected. Equation~ 
(2.14)-(2.18), after some transformations and 
substitution in them of the integrals (2.22), can be 
represented in the form 

(2.28) 

~ TSr 1 Pnp ~ ~ 
-wwr+--2 Tr +-(W-Zpr)(vl+wr)=O, 

Pnrc Pnp 
(2.29) 

~ 1 + . Pnp ( + ) O -wp J -- V1 wr = , 
r p 

(2.30) 

~ 1 (affo) Pnp - ~ 
-wj + 2 -a P1 + -{(w-Zpr)(vl+wr) 

r c p T p 

- 3u (v0 + T /)- (1 + ll) T r'} = 0, (2.31) 

~ ~ ( p ) -(Zpr-cos8)v(cos8)=wUp1 +cos2 8 jr- pnwr 

+ (ro--Zpr)[v0 -cos8wr+~(vo+Tr 1 )]. (2.32) 

We have introduced the notation 10 ' .Gfo =pressure, 

. P• + P nr ( as r ) 
Jr=-pv· -p-Vnro Cr=T ar p' 

zpr = w ( 1 - -. -1- ) , 
\ lW't"pr . 

6 = ~ ( :~ t / ( p ;P) = - 3u- 1 

5Jpp(n)ep2dp = --1-[v(cos8) 
't pp 

5 ano 
- Vo- v1 cos 8] fie e2p2dp, 

10>1n accord with the latest neutronographic data.[15 ] 

(2.26) (p/p.)i)p./ap,is approximately equal to -2.1. 
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_ Sr f 1 _ z_!l_ aPo -~_£_all+~£_ a~ MT + 1/ 2 } 

~sP\ Po ap 2 ll ap T !1 ap MT + 3/2 · 

We multiply the left and right sides of Eq. (2.32) 
first by unity and then by (Zfr - cos er1 and aver­
age in each case over cos e. The resulting equa­
tions 

- - P, - - -3roup' -3roT/ + ir + -Wr + 3 [ro- ~(ro- Z.pr)] 
p 

X (vo+Tr')-(vl+wr)=O, 

[2 + (1- ~) (00'- Zpr) In a] (vo + T r') +wu lnap' 

-[2+(w- Zpr) In a.] T r' 

(2.33) 

+ [ z J?~i r - (; - ~ z pr ) ] (- 2 + z pr In a) = 0, 

(2.34) 

together with (2.28)-(2.31) represent the complete 
set of six linear homogeneous equations. Equations 
(2.28)-(2.31) contain the very small quantity 
Pnp/ p = 1.28 x 10-4T'4• We keep terms of small 
order not higher than p np / p. In this approximation, 
Eqs. (2.30) and (2.31) describe the propagation of 
first sound, while Eqs. (2.28)-(2.29) describe 
second sound. The last pair [(2.33) and (2.34)] 
give us a•dispersion equation (in zero approxima­
tion) 

2 + (1- ~) (ro- Zpr) In a= 0, 

which for T > 0. 6°K does not have undamped 
acoustic solutions. At temperatures below 0.6°K, 
Eqs. (2.28), (2.29) are invalid (the rotons are prac­
tically absent, while Eqs. (2.33) and (2-.34), made 
up from terms containing Jpp(n) [see Eqs. (2 .16)], 
as we shall see below, describe undamped temper­
ature waves in a phonon gas (second sound). 

We note that in the derivation of Eqs. (2.28)­
(2.31), (2.33) and (2.34), we have everywhere as­
sumed the energy of phonon to be equal to € = cp. 
As simple calculations show, the term containing 
y p2 in the expression for E (1.2) can be neglected if 
the following condition is satisfied: 

1 ( "t"pr ) ( kT ) 2 B3 -- 1+-- >3v 2:n:- -B, 
ill"t" pr "t pp C 2 

(2.35) 

where B2 and B3 are Bernouilli numbers: B2 = 1/30, 
B3 = 1/42. For the frequency region under consid­
eration (wtrr• w~P « 1) the condition (2.35) is vir­
tually always satisfied for temperatures above 0.6°K. 
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