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We consider the additional bremsstrahlung from a charged particle, due to interaction of the 
particle with the long wave electromagnetic field in matter and with the electron ensemble of 
the outer shells. The latter effect is taken into account via the transverse and longitudinal 
permeabilities and permittivities of the medium. General expressions are derived for the 
probability of emission of a hard photon accompanied by emission or absorption of a soft pho­
ton. Two-quantum Cerenkov radiation is considered in detail for the case when one of the 
emitted photons is hard and the other is soft. This radiation is a new mechanism of hard­
photon production. It is much weaker than bremsstrahlung but should nevertheless be observ­
able. The correction to bremsstrahlung of electrons on electrons, obtained by taking into ac­
count electron coupling in matter, is calculated for a certain model of the electron plasma. 
The correction may be as large as 50%. 

1. INTRODUCTION 

IN the usual Cerenkov effect, no hard quanta can 
be emitted, since the refractive index of the me­
dium is n ~ 1 for such quanta. However, hard 
quanta with energy approaching that of a radiating 
ultrarelativistic particle can occur in the two­
quantum Cerenkov effect, accompanied by soft 
quanta whose refractive index is n > 1. [1J Such 
hard radiation is essentially similar to brems­
strahlung. The difference is that the excess mo­
mentum is taken up not by an individual nucleus 
or electron, as in the ordinary bremsstrahlung, 
and not by an aggregate of nuclei, as in the case 
of bremsstrahlung at ultrahigh energies, [2 - 41 but 
by the ensemble of electrons of the medium and by 
the long-wave field in the substance. The energy 
and momentum of the charged particle passing 
through the substance is transferred in this case 
to two photons-a hard vacuum photon, and a soft 
one that interacts essentially with the charges of 
the medium. The emission probability of these 
photons can be expressed in terms of the retarded 
Green's function of the long-wave radiation in the 
medium[ 51 (Sec. 2). The latter is connected with 
the permittivities and permeabilities of the me­
dium.[61 

If the medium is transparent, the soft trans­
verse photon leaves the medium together with a 
hard one. We are then faced with a clear cut mani­
festation of a new, Cerenkov mechanism of produc-

tion of hard photons when fast charged particles 
pass through a medium. This effect is observable 
under certain conditions (Sec. 3). If the medium is 
an absorbing one for the soft quantum, then the en­
ergy is transferred from the particle to the hard 
photon and to the medium as a whole. 

Notice should be taken of the important role 
played by spatial dispersion of the dielectric con­
stant when hard photons are emitted in conjunction 
with longitudinal soft quanta. If the momentum 
transferred to the medium is small and its order 
of magnitude is that of the characteristic momenta 
of the electrons of the medium, then the dynamic 
properties of the electron ensemble play an essen­
tial role. The excitations of the medium that re­
ceives such a momentum will have a collective 
character. On the other hand, if the momentum 
transferred to this medium is large compared with 
the aforementioned characteristic momenta, then 
the excitation of the medium will have a single­
particle character, constituting simply the excita­
tion of an individual electrc n. In the first of these 
cases we deal with two-quantum Cerenkov emis­
sion (hard quantum plus soft longitudinal quantum), 
in the second with bremsstrahlung on the valence 
electrons of the medium. Both effects are de­
scribed by a single theory with a dielectric con­
stant that takes spatial dispersion into account. 

The hard radiation produced when a charged 
particle passes through a medium containing a 
large number of soft photons was considered in 
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several papers. [ 7, 8• 11 We are considering here 
the produced two-quantum emission, both spon­
taneous and induced, which therefore always ac­
companies the ordinary bremsstrahlung-unlike 
the radiation considered in [ 7 • 8• 11 • 

2. PROBABILITY OF EMISSION OF A HARD 
QUANTUM IN A MEDIUM 

We shall separate Ah(x) and AS(x) of the elec­
tromagnetic field, the hard and soft parts 

(1) 

where X = ex, it) and ,_,_ = 1, 2, 3, 4. The hard part 
is the sum over the photon states with momentum 
k larger in order of magnitude than the reciprocal 
of the lattice constant ko· For such values of k, 
the photon states that enter in Ah(x) can be re­
garded as vacuum states with energy 
k = I k I (h = c = 1). The soft part includes long­
wave states of the electromagnetic field with wave 
vectors I q 1.::; ko· These states are strongly in­
fluenced by interactions with the medium whose 
energies are wq * I q I in the transparency re­
gions, where the photon concept is meaningful; on 
the other hand, in the absorption regions, the pho­
ton concept becomes generally meaningless. 

We shall regard the long-wave field together 
with the medium as a single system with Hamil­
tonian Ifo, so that 

A~(x) = eiHot A~(x)e-iHot. 

The long-wave electromagnetic wave satisfies 
Maxwell's macroscopic equations and the quantum 
commutation relations. [ 91 We shall assume 
the transverse and longitudinal dielectric con­
stants f:t(q,w) and £z(q,w) which enter in these 
equations, or the equivalent constants £(q,w) and 
!J.(q,£), to be known phenomenological functions of 
q and of the frequency w. The field of the atomic 
nuclei and of the internal electron shells is as­
sumed, as usual, to be non-quantized and is not 
included in Afl(x). By medium we mean here the 
aggregate of outer-shell electrons situated in the 
averaged field of the nuclei, and of the inner­
electron shells. We shall not consider here effects 
connected with the influence of fields of individual 
atomic remnants. 

The interaction between a fast fermion 1/J(x) 
passing through the medium and the field A,_,_ (x) is 
described by a scattering matrix 

where yf.l are Dirac matrices and e is the ferm-

ion charge. We are interested in the second-order 
matrix element, describing the transition of the 
''medium + long-wave field'' system from an ini­
tial state i to a final state f, with emission of a 
hard photon having a momentum k and polariza­
tion e~ (:\ = 1, 2), and scattering of the particle 
from the state with momentum Po and spin r 0 to 
the state p, r: 

Sfpk, ip.o = 2-1e2 ~ d4xl ~ d4x2T (p I NiP (xl) r ~ '¢ (xl) 

- h h 
X N '¢ (x2) Yv'¢ (x2) I Po) T (fk I AI'- (x1) Av (x2) 

+ A~ (x1) A~ (x2) + A~(x1)A~ (x2) +A~ (x1) A~ (x2) J iO). 

(2) 

The first term in (2) describes the emission of 
two hard quanta by a free particle, and is forbid­
den by the conservation laws. The second term 
describes the Cerenkov effect with emission of 
two soft photons, in which we are not interested. 
The contribution of the hard photon to the Ceren­
kov radiation is due to the last two terms. 

Equation (2) contains matrix elements of the 
long-wave field in a homogeneous medium, which 
can be written in the form (see [ 101 ) 

(A~ (x) )ti =(A~ (0) )tie-i(qx-oot), (3) 

where q = Pf- Pi and w = Ef- Ei are the momen­
tum and energy transferred from the particle to 
the "medium + long-wave field" system; Pi, Pf 
and Ei, Ef are the initial and final momentum and 
energy of this system. The momentum and energy 
are carried away by the soft photons in the trans­
parency region, and by the medium as a whole in 
the absorption region. 

Using (3), we obtain the matrix element 

(2Jl )'(., - h c " 
Sfp,k,ip,o = k (2rt)4 e2 {Uprei.S (Po-q)yfloup,r,(AI'-(O))ti 

+ (A~ (O))ti UprYvSc (Po- k)e ~.up,r,} b4 (Po-p- k- q) 

(4) 

and the probability of emission of a single photon 
per unit path 

dwkq= 2~ ~ 1Mtpk,ip,oi2 Pit:~~ b4 (Po-p-k-q), (5) 

rr0A. 

averaged over the initial velocities of the medium 
with density matrix p(H0), whose diagonal matrix 
element is Pi= exp [(F- Ei)/T], where Tis the 
temperature of the medium; the particle is polar­
ized and its velocity is v. 

Formula ( 5) includes, besides I M 12, a bilinear 
combination of matrix elements of the long-wave 
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field, which can be expressed (see [ 5• 61 ) in terms 
of the retarded Green's function nR of the long­
wave field: 

00 

DJ.tvR(q, w)=-i~ dx) dtexp[-iqx+i(w+iil)t] 
0 

X Sp {p(Ho)[A~t(x)Av(O)-Av(O)AJ.t(x)]}, 

where o- + 0. Going over in this expression to 
expansion in terms of the eigenfunctions and taking 
the imaginary part, we obtain 

~ Pi(Avs(O) )ii*(AJ.ts(O) )ti64 (Po- P- k- q) 
'i 

q=po-p-k, w=Eo-E-k, (6) 

where gv = + 1 when v = 1, 2, 3 and gv = -1 when 
v = 4, Nw = (ew/T - 1)-1. 

As is well known, [ 61 by using a transverse 
gauge for which div A = 0 we get 

D:V (q,0) = (1-<'1!'4)(1-6v4)(<'1J.Iv-qJ.tqvlq2)Dt(q,ro) 

(7) 

The transverse and longitudinal parts Dt and Dz 
of the Green's function are expressed in terms of 
the constants Et, Ez or E,p., viz., 

4n 
Dt(q,.ro)=----­

w2e, ( q, w) - q2 
4n~J.(q, w) 

(8) 

In accordance with (6) and (7), the probability 
(5) of emission of a hard vacuum photon with mo­
mentum k and transfer to the medium of a mo­
mentum q and an energy w, summed over the 
final polarization states of the radiating charged 
particle and the photons and averaged over the ini­
tial states of the medium and over the initial po­
larization state, takes the form 

dwkq = dwiq + dwf.q. (9) 

Here dw~q and dwb are the probabilities of 
spontaneous and stimulated emission of a hard 
photon by the ;>article, due to the interaction with 
the medium via the transverse and longitudinal 
long-wave fields. In the case of a transparent me­
dium, these will be the probabilities of emission of 
a hard photon accompanied by a transversely or 
longitudinally polarized soft photon. 

We present the final expressions: 

1 e4 (N.,+1)dkdq 
dwkq = 2 (2n)"kEEo 2t(-lmD1(q, ro)], (lOa) 

1 e'(N.,+1)dkdq . 
dwkq = (2n)" kEEo 2z [- Im D1 (q, ro)], (lOb) 

2t = - 1-{4(Xt + X2) 2 - 4XtX2(Xt + X2)- XtX2(Xt2 + X22) 
X12X22 

+ 2 (TJ2- 'V2) [XtX2(Xt + X2)- (Xt2 + X22)] 

TJ2- v2 [ 4 
- 2(TJ2- v2) 2XtX2 + --- - -[Xt(1- ~) + X2]2 

TJ2 a2 

'V 'V 'V 
+ 2- (1- ~)XtX22 + 4- (Xt + Xa) 2- 4-~Xt{Xt + X2) 

a a a 

'V 1 
- 2 ~ Xt2x2- 2'V2XtX22 + 2 XtX2 ( Xt2 + X22) 

2 
- -[1 + (1- ~)2]{T}2 - v2) XtX2 

a2 

2 
+- (2- ~)'V(TJ2 - v2)XtX2 + (TJ2- v2) (Xt + X2) 

a 

X (Xt + X2- XtX2) + (TJ2- v2)2 XtX2 ]} j (11) 

+ 2(Xt + X2) 2 - 2XtX2(Xt + X2) J + 2(TJ2- v2)2 XtX2} j 

(12) 

a = m I Eo, 1) =· q I m, v = w I m, ~ = k I Eo; 

(Po- q)2 + m2 2 (Eow- Poq) + q2 - w2 

Xt = m2 = . m2 ' 

2(Eok- Pok) 
m2 (13) 

A contribution to (10)-(13) is made by the ab­
sorption regions, in which 

Et,l = E~,,(q, w)+ ie~~!(q, w), 

as well as by the transparency regions, in which 
E" - + 0 and the imaginary parts of the Green's 
functions are «5-like. The probability dwkq in (9) 
represents an addition to the ordinary bremsstrah­
lung dw~li· Uol due to the interaction of the parti­
cle with the field of the atomic nuclei and the in­
ternal shells. 

There is a certain connection between the quan­
tities 17 and v in formulas (10)-(13); this connec­
tion follows from the energy and momentum con­
servation laws. Namely, the energy transferred to 
the medium is 
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w Eo-E-k 1-s 
v=-= =---

m m a 

where 1JII = 11 cos (), 111 = 11 sin () are the compo­
nents of 71 parallel and perpendicular to p0, () is 
the angle between Po and 71 , J. is the angle between 
Po and k, and cp is the angle between the planes 
(p0, k) and (p0, 71). In the derivation of (14) we have 
assumed that the particle is ultrarelativistic 
( 01 « 1, J. « 1) and that 11 ~ 1. 

The derivation presented here, together with 
formulas (9)-(14), is applicable also when the hard 
radiation is the result of extracting a momentum q 
and an energy w from the medium. The only dif­
ference lies in the substitution 

q-+-q, q-+-q, w--w 

(1)-+-1), v-+-v, 8-+n-e). 

The factor Nw + 1 then becomes -Nw; 

e'(-q, -w) = e'(q, w), e"(-q, -w) = -e"(q, w). 

In the transparency region such a process can be 
regarded as scattering by the electromagnetic ex­
citations present in the medium and transforma­
tion of these excitations into transverse hard pho­
tons.r7•8• 1l Our formulas (10) and (11) overlap 
the formulas of Tsytovich,r 1tl which describe two­
quantum Cerenkov radiation in the case when the 
medium is transparent, one of the quanta is a hard 
vacuum quantum, and the other is soft and trans­
verse. Our formulas are valid also in the case of 
a medium that absorbs soft quanta. 

Expressions (lOb) and (12) generalize the cor­
responding formulas of the paper by Gailitis and 
Tsytovich[SJ to include the case of an absorbing 
medium and an energy transfer v * 0. 

3. HARD SPONTANEOUS CERENKOV 
RADIATION (TRANSVERSE SOFT PHOTON) 

The probability of hard Cerenkov radiation is 
proportional to Nw + 1, while the probability of 
hard radiation following absorption of soft quanta 
is proportional to Nw· When T « w the occupa­
tion number is Nw « 1 and the principal role in 
the equilibrium medium is played by spontaneous 
radiation, which we shall now consider. Induced 
Cerenkov radiation, stimulated by a flux of soft 
transverse photons passing through the medium, 
was considered in r 1 l • 

In the case of a transparent medium, the imagi-

nary part of nR in (lOa) is c5-like: 

1 
- Im D 1 ( q, w) = -4n Im 2 2 • · 

2n2 
=--{l(v-vo), 

nvm2 

W Et-q + ~/) 
(15) 

where n( v) = .../ Et( v) is the refractive index of the 
medium, v0(1J) the solution of the dispersion equa­
tion 11 = vn(v), and V =dv/d1] is the group veloc­
ity. The quantity (15) is proportional to 
c5(E0 - E- k- w) and expresses the energy conser­
vation law. We assume that the particle is ultra­
relativistic. 11 ~ lo-5-lo-4 in the case of an opti­
cal soft photon v, and formula (14) relating v and 
11 becomes simpler, for the two terms with 1J 1 
can be discarded. For such values of 11 we can 
disregard spatial dispersion, too. 

Expressing cos () = 71 11 /11 in terms of v, 1J, ~, 
and J. with the aid of (14) we rewrite (15) in the 
form 

2n2V 
-ImDt(q, w) = m1]2 {)(cos e -,cos So), (16) 

where 

1 6 az + 'fr2 
cos8o=~+--- . (17) 

n ( v) 1 - 6 2avn ( v) 

It is seen from (16) that in the case of double 
Cerenkov radiation the soft photon is emitted in­
side the Cerenkov cone, the apex angle of which is 

( 1 a2 + va) 
ec =arocos --n+ 2n . 

Since cos Oo ~ 1, the necessary condition for the 
emission of a hard photon accompanied by a soft 
transverse photon is n( v) > 1, as in the case of 
single-quantum Cerenkov radiation. Formulas (15) 
and (16) are applicable also to a relatively soft 
absorbing medium, when E" « E'3 12, in which case 
the width- ImDt relative to cos () is small com­
pared with unity, which is the interval of apprecia­
ble variation of aCt as a function of cos e. 

The energy k = E0~ of the hard photon can be 
obtained from (17). It depends uniquely on v, J., 
and 00: 

6 = 2a(neos eo -1) 
a2 + 'fr2 + 2a ( n cos eo - 1) 

(18) 

and increases with decreasing J. and (). The larg­
est value of ~ is attained for fixed v when J. = () 
= 0: 

Smax (v) = [1 + a2 / /(v) ]-1, 
/(v) = 2av(n -1). (19) 

The upper limit of the hard spectrum corre-
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sponds to the maximum of the function f( v). This 
maximum is usually attained in the ultraviolet 
part of the spectrum near the upper limit of the 
region n > 1 (at v ~ 10-5-10-4). It is seen from 
(19) that when a.$ lo-5-lo-4 (Eo ~ (104-105)m), 
the hard quantum can carry away a larger part of 
the charged-particle energy. The minimum of k 
at which the hard photon is vacuum and our calcu­
lation is applicable is attained at kmin ~ 108 em -l 

(~min~ lo-2 a). 
To find the spectrum and the angular distribu­

tion of the hard photons it is necessary to inte­
grate (lOa) with respect to 

dq = 2:n:m3Tj2d'Y]d·COS 8 = 2:n:m3V-1n2.v2dvd,cos 8. 

Integration with respect to d cos e is immediately 
carried out with the aid of ( 16). The remaining in­
tegration with respect to v cannot be carried out 
in general form. It is carried out over the range 
of values of v defined by the condition 

f(v)=2av[n(v)-1];_;;,; 1 ~ ~ (a2 +'fr2), (20) 

which follows from the requirement cos e0 ~ 1. We 
denote this region by ~(L e). Its dimensions in­
crease with increasing energy E0 (decreasing a) 
and with decreasing ~, and also J. When ~~~min 
and J .$ a, and for arbitrary E0 » m, the region 
~(~, J) is defined in practice by the condition 
n(v) > 1, With increasing ~ and J the region 
~(~, J) decreases and tends to zero. 

Retaining in (11) only the terms of lowest order 
in a 2, J 2, and va « 1, we obtain for the spectrum 
and the angular distribution of the hard quanta, 
after integrating with respect to cos e and v, the 
expression 

(21) 

where dn = 2rrJ dJ is the element of solid angle 
for the directions k. The angular distribution (21) 
has the same width ~J ~ a as in the case of 
bremsstrahlung. The principal role in (21) with 
E10 » 103 m-ff is played by the second term. The 
emission probability will in this case be 

me~ 1 + ( 1 - 6)2 a2 
dw-stt = 2:n:2 6 ( a2 + -fr2) 2 

x[ ~ (nZ-~ 1)\2av]d6dQ. 
t.(6, tt) n 

(22) 

When ~ ,..., ~min• this formula is valid for arbitrary 
E0 » m. For larger~ ~~max it is necessary, gen­
erally speaking, to take into account all the terms 
in (21). When E0 ~104m formula (22) is suitable for 
arbitrary ~ . 

We obtain the spectrum of the hard Cerenkov 
radiation by integrating (21) with respect to J 
from zero to 

[ 1-6 ]''• 'fr =-&max= /{v) --6-- a2 (23) 

under the sign of integration with respect to v. 
The remaining integration with respect to v is 
over the region~(;)= max ~(LJ) = ~(~, 0). We 
shall not write out here the relatively cumbersome 
expression for the spectrum which is obtained 
upon integration. We present the result only for 
E0 » 103m /f: 

dwst me~ 1 + (1- 6) 2 r (n2 - 1)2 
----;It= -2- t J 2 vz dv. 

b :n: b t.ro n 
(24) 

The probability (24) vanishes at the upper limit 
~ = ~max• since ~(~m) = 0. The dependence on 
the mass (l/m2, since v,..., 1/m) is the same as in 
the case of bremsstrahlung. Consequently, a no­
ticeable role can be played only by the radiation of 
the electron; the heavy particles radiate a negli­
gible amount of hard photons by the Cerenkov 
mechanism. 

Let us compare (24) with the probability of 
bremsstrahlung from an ultrarelativistic particle 
at Eo » m/e2z1/3:[1oJ 

_dwL_ ~ m3Liaoz- 1)2 
dw£br 10Z2e2Na 

(25) 

where Na is the number of nuclei per unit volume, 
Z the atomic number of the nuclei, ii the average 
value of the refractive index in the upper ultravio­
let part of the region ~(~), the significant widths 
of which we shall denote by ~,..., ~(~m>· Formulas 
(22), (24), and (25), are suitable also in the case 
when the absorption in the region ~ is not too 
large. 

In condensed media, for K ~ 10-4, Na ~ 1022 -
1023 cm-3, (ii- 1)2 ,..., 10 and ~ not too close to ~m• 
we get dw~/dw~r ~ (lo-2-lo-1)/Z2:. This fraction 
increases with increasing ~ and n. In light ele­
ments with Z2 ,5 10, under favorable cases, it can 
reach 10%, but a more probable value is "'0.1%-
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1%. In gases there is very little Cerenkov radia­
tion since (n- 1)2/Na "" Na and decreases with 
decreasing Na· 

The angular distribution of the bremsstrahlung 
and hard Cerenkov radiation is essentially the 
same. Therefore the ratio of the probability of 

d . t' . l d t I br ra 1a10nmazeroange w~,J.=O dw~,J.=O is 
of the same order of magnitude, (1o-2-10-1)/Z2, 

as the ratio (25) of the probabilities integrated 
over the angle. However, if both the hard quantum 
and the momentum transfer (soft quantum) are 
directed forward, then the probability of single­
quantum bremsstrahlung vanishes in the first Born 
approximation, unlike the probability of hard Cer­
enkov radiation. The latter can play in this case 
the principal role, along with the double brems­
strahlung. [ 12 1 

The loss to hard Cerenkov radiation has at 
E0 ~ 104m an order of magnitude 

am ax 

-dEo/dx =Eo ~ £dw; ~ w1'SmEo ~ m2e4K3a-l(ii -1)2 
Gmin 

Eo Eo 
~10-5m-~ 10- eV /em. 

m m 

The ratio of this loss to the bremsstrahlung loss 
is small, of the same order as the probability 
r.atio dw~/dw~r. However, .hard Cerenkov loss 
hke bremsstrahlung loss, mcreases in proportion 
to E0• Consequently, at sufficiently high electron 
energies the two losses become comparable, and 
then the hard Cerenkov loss exceeds the single­
quantum Cerenkov radiation loss 

and the ionization loss, which depends little on the 
energy, 

(-dEo/dx)ion ~ 10NaZe~m-lln (108 /a3Z2). 

This occurs when E0 "" 104m and Eo"" 106mz, re­
spectively. 

We note that hard Cerenkov radiation can be 
separated from bremsstrahlung by recording the 
coincidences of the hard and soft photons. The 
latter should lie in the transparency region in or­
der to be registered. The principal role will be 
played by the ultraviolet edge of this region, 
~"" 10-5 (in place of ~"" 10-4, as in the consider­
ation of the total intensity above). Here, according 
to (25), the number of hard Cerenkov quanta and 
the accompanying soft quanta decreases by approx­
imately three orders and amounts to 

N twoqu "'me~X3 (ii -1)2 ~ 10-8 qu/cm. 

This number must be compared with the number 
of hard bremsstrahlung quanta, which amounts to 

Nbr ~ 10e6Z2m-2Na ~ (10~- 105)Z2N twoqu qu/cm, 

and with the number of soft quanta from the single­
quantum Cerenkov effect 

N onequ,..,. me2A,..., 103 qu/cm. 

The background of hard bremsstrahlung quanta 
has an acceptable value. On the other hand, the 
number of unnecessary soft quanta is larger than 
the number of the quanta of interest to us by ap­
proximately 11 orders of magnitude. However, all 
the unnecessary quanta propagate along the corre­
sponding Cerenkov cones, whose apex angle 
amounts to several times 10 o in the ultraviolet re­
gion which is essential for the two-quantum Ceren­
kov effect. 

There are also soft bremsstrahlung quanta, the 
number of which has the same order of magnitude 
as the number given above for the hard brems­
strahlung quanta. These soft quanta propagate es­
sentially at small angles J."" a. On the other 
hand, the soft quanta which accompany the hard 
Cerenkov quanta are distributed more or less 
uniformly inside the Cerenkov cones. Conse­
quently, there exists a wide angle interval in which 
the unfavorable soft background is practically 
nonexistent. Direct observation of the coinci­
dences considered here would yield a direct con­
firmation of the correctness of the quantum theory 
of the Cerenkov effect (we are dealing essentially 
with the manifestation of the recoil effect, which 
plays only a very small role in the single-quantum 
Cerenkov effect. 

4. HARD CERENKOV RADIATION (LONGITUDI­
NAL SOFT PHOTON) AND BREMSSTRAH­
LUNG m A DEGENERATE ELECTRON 
PLASMA 

In the case of a transparent medium, the hard 
radiation due to the interaction with the medium 
via the longitudinal field is proportional to 

-ImDz(q, ro) = 4<t (-Im 1 ) 
q2 e(q, ro)+ i6 , 

4<t 
= - 2 6[e(q, ro)]. (26) 

q 

According to (26), the radiating particle gives up 
to the medium a momentum q and an energy w 
corresponding to the zeroes of the dielectric con­
stant, and consequently to elementary excitations 
of the medium. As noted by Silin, [t3] when allow-
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allowance is made for the spatial dispersion and 
the theory of losses in a medium is used it is un­
necessary to distinguish between short-range and 
long-range losses. Similar considerations can be 
applied to the question of the radiation of hard 
photons by a particle. Small values of transferred 
q correspond in this case to collective excitations 
(plasmons), while large q correspond to excitation 
of individual electrons of the medium. The radia­
tion of a plasmon together with a hard quantum is 
a double Cerenkov effect, while the radiation of 
hard quanta upon collision with individual elec­
trons of the medium is bremsstrahlung from the 
valence electrons of the medium. Both processes 
are thus limiting cases of the same phenomenon, 
namely the radiation of hard quanta as a result of 
interaction between a fast particle and a medium. 

Let us illustrate these considerations by calcu­
lating with the aid of (lOb) and (12) the probability 
dw~ of emission of a hard photon when an elec­
tronq interacts with a degenerate electron plasma 
described by a more or less realistic dielectric 
constant: 

where w = (47rNee2/m) 112 is a plasma frequency, 
Ne the dfnsity of the valence electrons, and v0 = 
(37r2)112 NU3/m the electron velocity at the Fermi 
level. (27) is an interpolation formula and includes 
as limiting cases the expressions 

ez=1-ffip2lffi2 (for q~mvo), 

ez = 1- illp2 I [ill2- (q2 I 2m)2] (for q ~ mvo) 

and corresponds to elementary excitations: [ 141 

ffio = mvo, Vo = [vp2 + pVpl']2 + l']~ I 4]"•. (28) 

Here vp= wp/m...., 10-5 (3.59 x 10-5 for Be, 
2.12 x 10-5 for Mg, and 4.83 x 10-5 for C), and 
p = 3vV5vp...., 1 (0.93 for Be, 0.77 for Mg, and 
0.87 for C). Substituting (27) in (26}, we obtain 

2nvp2 
-ImDz(q, ffi) = - 2-ll(v- vo). (29) 

m Vo 

When T/2 » vp. the elementary excitations (28) 
take the form w0 = mT/2/2 = q2/2m, corresponding 
to energy transfer to an individual electron of this 
medium, which remains in this case nonrelativis­
tic, Tl 2 « 1. As can be readily verified, in a wide 
range of values vp « T/ 2 « 1, formulas (lOb} and 
(12) overlap the corresponding formulas for 
bremsstrahlung from free electrons, written out 
in accordance with the usual rules of vacuum quan­
tum electrodynamics ([ 101, p. 327) and pertaining 

to the case when one of the electrons is at rest 
prior to the collision and acquires a nonrelativis­
tic velocity after the collision. In this case only 
two of the eight diagrams are significant; these 
are the non-exchange diagrams which describe the 
radiation of an incoming fast electron, and not of 
the recoil electron. When T/ 2 ~ 1, formula (27) no 
longer is valid, but the electron of the medium is 
free and the theory given in [101 can be used. When 
17 2 ...., vp, the electron of the medium cannot be re­
garded as free, and the theory of uo 1 is not valid. 
We note that it is just the region of small T/2 which 
makes the main contribution to the radiation prob­
ability. 

A correct expression for the bremsstrahlung 
from the electrons of the medium can be obtained 
by calculating the correction dw~ to the brems­
strahlung from the free electrons; this correction 
takes into account the disparity between the ele­
mentary excitations and the single-particle exci­
tations for small momentum transfers 172 ...., vp; we 
define it as 

dw'Fo' = dw1'Fo1 - dw1'Foe!, (30) 

where ctw{~ and dwfl are the contributions to the 
spectrum in accordance with (lOb) and in accord­
ance with the theory of bremsstrahlung from free 
electrons respectively. These contributions come 
from that part of the region of integration with re­
spect to T/ 2 in which T/ 2 « 1-this is the only part 
that contributes to the correction. The brems­
strahlung spectrum, with allowance for the elec­
tron coupling, will then be 

dw6 el = dw-r.Z + dw{. (31) 

The determination of the spectrum of the hard 
quanta reduces to an integration of (lOb) with re­
spect to 

dq = m3rJ.LdrJ.LdrJrrdiP = 1l2m3dr]2drJud1P 

and with respect to dQ = 1rd.J2• We consider only 
the ultrarelativistic case a « 1. In formula (12) 
we should leave here only the terms with l/a2• In 
formula (29) it is necessary to substitute the ex­
pression for v from (14), and to retain in it all the 
terms (unlike the procedure in Sec. 3), since now 
172 is not so small. We shall take the angle .J to be 
the argument of the 6- function in (29); then 

( _ }-2a(1-6)[ _ s J 2_'fr 2) 
II v v0 - 6 1 ( 82 + 1'to2)'7, II ( tt 1 , 

[ 1-6 rJu-a vo _ 1], s = lll'JJ.. cos ip, 'fro2 = a2 2 --6-
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The integration with respect to 11 11 and TJ2, which 
remains after integration with respect to J 2 and 
with respect to cos qJ should be carried out over 
the region defined by the inequalities 

(32) 

the first of which follows from the condition J~ ~ 0, 
and the second from the condition 11i ~ 0. 

If we confine ourselves to not too soft a part of 
the spectrum ~ ~ 0.1, then 

Xt ~ - (2 I a) (TJII- vo), 

X2 = 2(1- s) (TJII- vo) I a- 2(!; I a2 )s(s2 + 'fto2)'"· 

and after calculating the double integral with re­
spect to 77 11 and 77 2 we obtain 

_d_w_{ = 2 _e6_N_e { 1 + ( 1 - !;)2 - 2/ s ( 1 - 6) (In --:-1:--:---:-
dS m2 s Vp(1+p) 

- 2ln ~ 1 - s ) + 2 1 + ( 1 - !;)2 - 2 44 1 - s } 
a s 6 · s ' 

!;~0.1. (33) 

This correction must be added, in accordance with 
(31), to the expression for the probability dw~l, 
of the bremsstrahlung from the free electrons, ob­
tained by Garibyan. [15 • 101 As a result we obtain an 
expression for the probability of bremsstrahlung 
from a degenerate electron plasma, caused by the 
valence electrons of the medium; this expression 
takes into account the difference between the ag­
gregate of valence electrons from the free-electron 
gas: 

dw~ = 2 e6Ne{ 1+(1-!;)2 - 2/ 3 (1-!;) ln--,-1:---:-----:-
dS m2 s vp(1 + p) 

+t+(~-!;) 2 -1.706-3.91 1 6!;} (34) 

The main difference between (34) and the Garib­
yan formula is the change in the form of the log­
arithmic term. The coefficient preceding the log­
arithm, which depends on ~, is the same in both 
formulas. Equation (34) contains ln[1/(vp + pvp)l 
in place of 2 ln[2(1- ~)/a~]. As ~- 0, expres­
sion (34) does not acquire in the loss spectrum 
~ dw~ the logarithmic divergence characteristic of 
free unscreened charges. In this sense, the effect 
of coupling is analogous to the screening effect. 
The term with "P reflects the transfer of energy 
to the plasmon, while the term P"p = 3v~/5 takes 
into account the binding energy of the plasma elec­
tron in the initial state. The sign of the correction 
(33) can differ, but is most frequently negative. In 
the case of Be (Eo = 5.11 x 109 eV), the ratio 
dwUdwll amounts to -65% for~ = 0.05, -48% 
for ~ = tl.3, -33% for~= 0.5, -20% for~ = 0. 7, 

and +9% for ~ = 0.9. We see that this correction 
is quite appreciable, especially in the soft part of 
the spectrum. The contribution made to the total 
bremsstrahlung spectrum (from the nuclei and 
from the electrons) will not be so large, since the 
calculated correction pertains only to radiation 
from the valence electrons. When E0 = 5 x 109 eV 
and ~ ..... 0.1-0.5, the decrease in the bremsstrah­
lung probability amounts to approximately 
[n/(Z2 + Z- n)] x 50%, where n is the number of 
valence electrons. For Be, Li, and C this amounts 
to ..... 5%. 

The author is sincerely grateful to I. N. Topty­
gin for very useful discussions and valuable advice, 
to I. M. Shmushkevich for discussions, and to Vit. 
V. Batygin for help in performing certain calcula­
tions. 
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