
SOVIET PHYSICS JETP VOLUME 22, NUMBER 5 MAY, 1966 

INHOMOGENEOUS RESONANCE IN ANTIFERROMAGNETS 

V. G. BAR'YAKHTAR, M.A. SAVCHENKO, and V. V. TARASENKO 

Physico-technical Institute, Academy of Sciences, Ukrainian S.S.R. 

Submitted to JETP editor June 19, 1965 

J. Exptl. Theoret. Phys. (U.S.S.R.) 49, 1631-1636 (November, 1965) 

Oscillations of the magnetic moments of an antiferromagnetic plate are considered, for the 
case in which the magnetic moments of the sublattices lie in the plane of the plate. The 
characteristic frequencies of inhomogeneous antiferromagnetic resonance are calculated, in 
the magnetostatic approximation, in antiferromagnets with two types of anisotropy: an axis 
and a plane of easy magnetization. 

1. INTRODUCTION 

RESONANCE in ferromagnetic specimens in an 
inhomogeneous magnetic field was studied experi­
mentally by White and Solt [t]. It was discovered 
that, in contrast to the case of a homogeneous 
magnetic field, there are not one, but a whole 
series of characteristic frequencies. In the gen­
eral case of an arbitrary three-axis ellipsoid, the 
problem of calculating the characteristic frequen­
cies was solved by Walker [2]; he in fact estab­
lished the connection between the frequencies of 
inhomogeneous resonance and the spin-wave spec­
trum. 

The present paper considers the characteristic 
frequencies of an antiferromagnetic plate when the 
field and the deviations of the magnetic moments 
from their equilibrium values are inhomogeneous. 
It is shown that the characteristic frequencies of 
oscillation of the magnetic moments in an anti­
ferromagnetic plate (the frequencies of inhomo­
geneous resonance) lie within a strictly defined 
interval. The relative size of this interval is of 
order 1/o in comparison with the frequency of 
homogeneous resonance ( o is the constant of 
homogeneous exchange interaction between the 
sublattices). 

From the point of view of spin-wave theory, the 
frequencies of inhomogeneous resonance in anti­
ferromagnets are determined by the magnetic 
dipole interaction. In this paper, the dependence 
of the limiting frequencies of inhomogeneous 
resonance on the external magnetic field is found 
over a wide interval of magnetic fields; that is, it 
is shown how the frequency interval within which 
the frequencies of inhomogeneous resonance lie 
changes with change of the external magnetic 
field. 

2. DISPERSION EQUATIONS 

In order to find the spectrum of inhomogeneous 
oscillations of the magnetic moments in an anti­
ferromagnetic plate, we shall start from the equa­
tions of magnetostatics, 

roth= 0, div (h + 4nxh) = 0, (1)* 

where X ( k, w) is the high -frequency magnetic 
susceptibility tensor and h is the alternating 
magnetic field. Outside the body the tensor x is, 
of course, equal to zero. By introducing, instead 
of the magnetic field h, the scalar potential cp, 

h = V<p, 

we can put Eqs. (1) into the form 

L\<p(i) + 4ttX,ik V ;V k(jl(i) = 0, L\<p(e) = 0, (2) 

where cp(i) is the magnetic potential inside the 
body and cp (e) is the magnetic potential outside 
the body. We shall suppose that the origin of co­
ordinates is located at the center of the plate, of 
thickness 2d, with the z axis perpendicular to the 
plate surface (Fig. 1). 
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FIG. 1 

*rot= curl. 
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Besides Eqs. (2), determining the magnetic 
potential inside and outside the body, it is neces­
sary to take account of the boundary conditions: 
continuity of the tangential components of the 
magnetic field h and of the normal component of 
the magnetic induction b = h + 47Tm at a surface 
of the plate ( z =±d); in addition, the magnetic 
field h(e) must vanish when z- ± 00 • This leads 
to the following boundary conditions for the mag­
netic potentials cpCil and cpCel: 

<p(i) I z=±d = cp(e) I z=±d, cp(e) I z->-±oo = 0, 

fJcp(i) I ( fJcp(i) 
( 1 + 4JtJ(zz) -{)- + 4n Xzx -{)~ 

Z z=±d X 

fJcp(i)) I fJcp(e) I 
+Xzy-- =-- · 

fJy I z=±d f}z z=±d 
(3) 

We shall seek solutions of Eqs. (2) in the form 
of plane waves inside the specimen and waves at­
tenuated along the z axis outside the specimen: 

where 
{ 1, X> 0 

B(x)= 0, x<O" 

On substitution of (4) in (2), it is easily found that 

and that the components kx, ky, and kz of the 
wave vector are connected with the frequency w 
by the relation 

k2 + 4n[xxx(k, w)kx2 + J(yy(k, w)ki 

+ Xzz(k, w)k,2] = 0. 

(5) 

(6) 

We remark that if we take account of spatial dis­
persion of the tensor £, then Eq. (6) determines 
the spin-wave spectrum with allowance for mag­
netic dipole interaction. 

On eliminating the arbitrary constants A, B, 
C, and D in the expressions for the magnetic po­
tentials cpCil and cp(e) by means of the boundary 
conditions (3), we get one additional equation re­
lating to each other the frequencies and the wave 
vectors of inhomogeneous magnetic oscillations 
in the plate: 

eta- 2k d = klllzz2 - ( ky!lzy + kxllzx) 2 - ( kx2 + ky2) * 
0 z 2kz(kx2 +ky2)'1'1lzz ' (7 ) 

where ~ = 1 + 47Tx. Equations (6) and (7) determine 
the frequencies of the characteristic oscillations 
of an antiferromagnetic plate. 

*ctg"' cot. 

In a consideration of long-wavelength oscilla­
tions of the magnetic moments, it is possible to 
neglect spatial dispersion of the high-frequency 
magnetic susceptibility tensor x ( k, w ); then Eqs. 
(6) and (7) will determine the frequencies of in­
homogeneous antiferromagnetic resonance. Since 
the spatial dispersion of the tensor X. ( k, w) is 
determined by inhomogeneous exchange interac­
tion in antiferromagnets, it may be neglected only 
if 

where ®c is a quantity of the order of the Neel 
temperature, a is the lattice constant, f3 is the 
magnetic anisotropy constant ({3 ~ 1 ), J1. is the 
Bohr magneton, and M0 is the magnetic moment 
of a sublattice. 

3. FREQUENCIES OF CHARACTERISTIC IN­
HOMOGENEOUS OSCILLATIONS IN ANTI­
FERROMAGNETS WITH MAGNETIC ANISO­
TROPY OF THE "EASY AXIS" TYPE 

In order to find explicit expressions for the 
frequencies of inhomogeneous resonance from 
Eqs. (6) and (7), it is necessary to know the high­
frequency magnetic susceptibility tensor of the 
antiferromagnet. If the external magnetic field is 
parallel to the plane of the plate and is less than 
the turning-over field HAE, then the high-fre­
quency magnetic susceptibility tensor of an anti­
ferromagnet with magnetic anisotropy of the 
"easy axis" type has the form [3] 

X = ( ~ X~Y X~z ) , 
0 J(zy Xzz 

Q2- (j)2- (JJH)2 
'"/.yy = Xzz = Q12 [Q2 -(w -llH)2)[Q2 -(w + llH)2] 

2iQt2WilH 
Xzy =- J(yz =- [QZ _ (w _ !lfl)2)[Q2 _ (w + llH)2]' 

Q2 = 26 (~ - W) (11Mo)2. (8) 

(We recall that the z axis is perpendicular to the 
plane of the plate and that the x axis is chosen 
along the magnetic field (Fig. 1).) 

By using formulas (8), we get from (6) the 
following expressions for the frequencies of in­
homogeneous oscillations: 

w1~ 2 = Q 2 + 112H2 + 2n ( 1 - kl· I k2) Qt2 

+ { (2n)2{1- kx2 I k2) 2Qt4 

+ 4!l2fl2[2n(1- kx2 I k2)Qt2 + Q2]}'"· (9) 

From (9) it is clear that the values of the reso­
nance frequencies depend on the ratio k~/k2 • The 
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frequencies w1 2 ( k) attain their largest values 
when kx = 0: ' 

2 
Wt, 2max = Q2 + JL2H2 + 2nf.lt2 

+ {4n2f.lt' + 4JL2.H2(Q2 + 2nf.!t2)} 'I•. 

They attain their smallest values when kx = k: 

Wt, 2min = Q ± pJi. 

(10) 

(11) 

The frequencies of homogeneous resonance w 01 2, 
coincide in this case with the frequencies w 1,~ax· 

To convince ourselves that formulas (10) and 
(11) determine an interval of inhomogeneous 
resonance frequencies, it is necessary to verify 
that Eq. (7) has solutions when 

k,2 ~ ky2 + k.2, ki ~ ky2 + k.2. 

On substituting the expressions (9) for the fre­
quencies w 1, 2 (k) in Eq. (7), we find that when 
k2 <<. k2 + k2 

X y Z' 

1 ( k. 1 ky 1 1 + JLzy2 ) , 
ctg 2k.d ~ 2 fkul !Lzz - k. IJ.zz 

and that when kk » k} + ki, 

lkxl 1 
·ctg 2k.d = - ~2k -. 

z JLzz 

If the external magnetic field is larger than the 
turning-over field, the tensor X. ( w ) has the follow­
ing nonvanishing components [3] : 

Xzz = )Cyy = Xo8t2 I (8t2 - ·002), 

where Xo = 1/o is the static magnetic suscepti­
bility, and where the frequency Et = 2o~Mo cos e, 
e being the angle between the magnetic moments 
M1 and M2 of the sublattices and the external 
magnetic field H: 

cos {} = HI HE. 

By use of formula (12), it is easy to find from 
(6) expressions for the frequencies of inhomogen­
eous resonance: 

(13) 

Hence it is clear that the resonance frequencies 
lie in the interval 

8t2 ~ w2 ~ 8N1 + 4nxo). 

The frequencies of inhomogeneous resonance at­
tain their smallest values when k} + k~ « ki, and 
their largest when k} + k~ » k~. It is easy to 
verify that each of these cases is compatible with 
Eq. (7). Figure 2 represents schematically the 

FIG. 2 

frequency bands for inhomogeneous resonance as 
they depend on the external magnetic field. The 
frequency of homogeneous resonance, in fields 
larger than the turning-over field, is 

roo= 8t(1 + 4nxo)''•. 

4. FREQUENCIES OF CHARACTERISTIC IN­
HOMOGENEOUS OSCILLATIONS IN ANTI­
FERROMAGNETS WITH MAGNETIC ANISO­
TROPY OF THE "EASY PLANE" TYPE 

The frequencies of inhomogeneous resonance in 
an antiferromagnetic plate with magnetic aniso­
tropy of the "easy plane" type, when the external 
magnetic field is perpendicular to the plane of the 
plate and the symmetry axis of the crystal is 
parallel to that plane, were calculated in [4] .o We 
consider the case in which the external magnetic 
field lies in the plane of the plate and the axis of 
anisotropy is perpendicular to that plane. The 
high-frequency magnetic susceptibility tensor of 
an antiferromagnet with magnetic anisotropy of 
the "easy plane" type has the form [5] 

(
X= 0 0 ) 

X= 0 'XuY Xuz ; 
0 'Xzy 'Xzz 

822 
Xxx=Xo. 2 , 

82~~w 

JL2_H2 
X1111=Xo 2 2 , 8t -(!) 

Bt2 
Xzz=Xo 2 2 , 

8t - W 

. JLWH 
'X11z = - Xzy = ZXo 2 2 • 8t - W 

Xo = 1 I 6, 8t = JAH, 822 = JL2HAHE(1- H2 I H~}, 

HA = (~- W)Mo, HE= 26Mo, (14) 

*Note: Figure 3 in [•] is drawn incorrectly. 
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where {3 and {3' are the magnetic anisotropy con­
stants. 

By using formulas (14), we get the equation for 
the frequencies of inhomogeneous magnetic reso­
nance: 

(ro2 - e12) (ro2- ez2) - 4n:xo{[e12 

In the region of weak magnetic fields, 

0 < H < llk1 = Hk(1- 2n:xo), 

Hk = 1HAHE I (1 + HA I HE) 

the frequencies w1, 2 (k) have the form (Fig. 3) 

ro12 ~ ez2 [ 1 + 4nxokx2 I k2], 

(15) 

roz2 ~ e12 [1 + 4n:xo(1- kx2 I k2) ]. (16) 

In magnetic fields H = Hk, the frequencies wi, 2 
are equal to 

(17) 

In the case of strong magnetic fields, 

HE> H > Hhz = Hk(1 + 2n:xo) 

we have the following expressions for the frequen­
cies: 

roz2 ~. 822 ( 1 + 4nxokx2 I k2) , 

{i)12 ~ 812 [ 1 + 4n:xo ( 1 - kx2 / k2)]. 

FIG. 3 

From formulas (16) to (18) it is clear that the 
relative width of the interval is of order 2rrx0 

(18) 

~ 1/o for both branches w1, 2 (k). This interval, 
as a function of the magnetic field, is shown 
schematically in Fig. 3. The frequencies of 
homogeneous resonance are here 

roo1 = 8!{1 + 4n:xo)''', rooz = 82. 

In a whole series of antiferromagnets with 
magnetic anisotropy of the "easy plane" type 

( MnC03, CoC03, a-Fe20 3, NiF2 ), the magnetic 
moments of the sublattices in the absence of an 
external magnetic field are not strictly anti­
parallel (antiferromagnets with weak ferromag­
netism). The high-frequency magnetic suscepti­
bility tensor of such antiferromagnets is deter­
mined by formulas (14) with 

812 = ~2H(H + Hd), 8z2 = ~2 [HAHE+ Ha(H +Hd)], 

(19) 

and with H- H + Hd, where Hd =dM0 is the 
Dzyaloshinskil field [5,6]. By use of relations (6), 

(7), (14), and (19), the frequencies of inhomogen­
eous resonance can be determined in this case. 
Just as for ordinary antiferromagnets with mag­
netic anisotropy of the "easy plane" type, two 
branches of the resonance frequencies are possi­
ble: 

ro22 = 8z2 ( 1 + 4n:xokx2 I k2), 

ro12 = 812 + 4n:xo[812kz2 I k3 + ~2 (H + Hd) 2ky2 / k2]. ( 20 ) 

From this it is clear that the frequencies w1, 2 lie 
in the intervals (Fig. 4). 

8z2 ~ ro22 ~ 8z2 (1 + 4n:xo), 

812 ~ ro12 ~ 812 + 4n:xo~t2 (H + Hd)2. 

H 

FIG. 4 

The frequencies w1 reach their smallest values 
when k~ » k~ + k~; the wave vector kz is then 
determined by the equation 

ctg 2kzd =- lkxl - 1-. 
2kz ~zz 

To the largest values of the frequencies w1 cor­
respond wave vectors k~ » k~ + k~; the wave 
vector kz then satisfies the equation 

lkyj Hd 
ctg2kzd = ---- --

2kz H+Hd 
It can easily be verified that wave vectors for 
which the largest and smallest values of the fre­
quency w2 are attained are also compatible with 
equation (7). We note, finally, that the frequencies 
of homogeneous resonance for spin waves in a 
plate, in the case of an antiferromagnet with weak 
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ferromagnetism, are determined by the formulas 

root = e1 ( 1 + 4:nxo) '", 

The authors thank A. S. Borovik-Romanov, who 
directed their attention to this problem. 
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