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Decay interaction involving three longitudinal natural oscillations is studied by means of the 
nonlinear equation for the evolution of field fluctuations in a homogeneous magnetoactive 
plasma. In concrete particular cases of longitudinal spectra, expressions are obtained for 
the kernels of equations that describe such a decay in an almost isothermal plasma. 

WE investigate in this paper induced Raman 
scattering of longitudinal waves in a homogeneous 
unbounded plasma situated in a constant homo­
geneous magnetic field. It is known that waves in 
such a plasma can in the general case not be sep­
arated into longitudinal and transverse. However, 
for waves whose refractive index is large ( n2 

» 1 ), the ratio of the longitudinal component of 
the electric field to the transverse component be­
comes very large [1•2] and such waves can be re­
garded as longitudinal. These are precisely the 
waves considered here. 

Having a large refractive index (small phase 
velocity), longitudinal waves interact effectively 
with the plasma particles, and this leads to many 
specific effects, viz. an increase in the damping 
of the waves and an increase in the fluctuation 
level. At the same time, an analysis of the decay 
interaction of the longitudinal waves is much 
simpler' than in the general case of arbitrary 
polarization, and makes it possible to obtain 
easily understood concrete equations describing 
the interaction of waves belonging to different 
branches of the longitudinal-wave spectrum. 

Decay interaction of longitudinal waves in a 
magnetoactive homogeneous plasma is analogous 
to the interaction of phonons in a uniaxial crystal, 
which is investigated in detail in solid-state 
physics (see [S] ). The equations obtained below 
are identical in form to the equations of phonon 
interaction in a solid 1l. We note that general ex­
pression describing the nonlinear interaction of 
electromagnetic waves in a magnetoactive plasma 
are obtained by a method used for an isotropic 
plasma in [7] (see also [8] ). In this paper we ob­
tain from these general equations more particular 

1 )A detailed comparison of such equations in general form 
was made in[•,•], so that we do not discuss it here. 

equations corresponding only to decay processes 
(induced Raman scattering of waves). 

Unlike the numerous investigations by 
others [S,~-20], we consider in detail all possible 
concrete processes of induced Raman scattering 
of longitudinal waves with fully defined spectra, 
excited and weakly damped in a quasi -isothermal 
magnetoactive plasma. 

The need for investigating nonlinear interactions 
in a magnetoactive plasma is demonstrated by the 
experiments devoted to nonlinear effects in such 
a plasma (see, for example, [21] ). 

1. EQUATION OF DECAY INTERACTION OF 
WAVES 

An interaction of the decay type for waves in a 
homogeneous unbounded magnetoactive plasma is 
described by the equation (see C7 •8]) 

= Im ~ dw' dk' (E,E0 ).,,, k'Siis(w, k; w', k') 

X {A;a • ( w, k) s:bc( w, k; w', k') (EiEb) .,_.,,, k-k' 

+ 2Ajb(w-w', k-k') 

X Sbca(w-w', k-k'; W, k)(EaE;).,, k}. (1.1) 

We have used here the following notation: 
( EjEi )w,k is the correlator of the Fourier com­
ponents of the electric field of the wave with fre­
quency w and wave vector k; E ij ( w, k) is the 
dielectric tensor of a plasma situated in a con­
stant homogeneous magnetic field B0 (see [22] ); 

E ~ ( w, k) is the Hermitian part of this tensor; 
lJ 

[ c2k2 ( k-k- )J-1 
A;3(w,k)= B;j(w,k)- .wz b;j- ~/ , 

Aij is the singular part of the tensor Aij ( w, k), 
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proportional to o ( det Ai/) (see definition (1.4) 
below); 

S;js ( w, k; w', k') = e;i, ( w, k; w', k') 

+ e;sj(W, k; w- w', k- k'), 

where 

4 0 0 0 

Eijs ( w, k; w', k') = i ~. lte" \ dpv; ~ d'to ~ d1:1 
(!) J ~oo -oo 

xexp[-iw'to+ikOR('to,v)] ani(w-w',k-k'; 1:0 ) 

In the last expression the summation is over the 
species of plasma particles, e is the charge of 
the particle of the given species, f0 ( p ) the 
equilibrium distribution function of such particles, 
and p ( T, V) = mV ( T, V) where m iS the particle 
mass and* 

v ( 1:, v) = h (vh) + [ vh] sin QT- [h [hv]] cos Q-r, 

v(O, v)- v, h = B0/B0, Q = eB0/mc, 

1\R('t, v) = ~ v(-r', v)d1:', 
0 

If three longitudinal waves participate in the 
interaction, a case which we shall consider below, 
the tensors in (1.1) have the simple form 

(EjE;) "'· k = (Ez2) w, kk;kj /k2, (1.2) 

where ( El )w ,k is the spectral density of the 
square of the electric field; 

A;;(w k)=[kaEa~(w,}{_)kbJ-!~'2= __ _i ___ ~i~j_( 1 3) 
- ' Jc2 k 2 E ( W, k) k 2 • 

- . J fJe ~-1 k;kj .4;j(w, k) = -m -- - ----
fJw I W=W(k) Ji;Z 

xsign e"(w, k)o(w- w(k)), (1.4) 

where w ( k) is the spectrum of the given longitud­
inal wave, and E " ( w, k ) = Im E ( w, k ) . 

It follows from relations (1.1)-(1.3) that to 
describe the investigated processes it is sufficient 
to know only the longitudinal contraction of the 

*[vh]=vxh. 

tensors ~js: 

X ~ J (kj_1Vj_)J(kj_"Vj_ lJ (kj_Vj_\. 
LJ n Q l Q / l+n Q } 

n, l=-oo 

X exp[il8" + in8'- i(l + n)8] 

+ _i_ (k' [kll_ll_ [ k;r is ( wo) ks' _ k;r ii ( wo) k/' J 
Q Wo W~ W1 

+ 1 [ (k;a.;ks') kT··(w +Q)k·" 
2Q(wo+Q) w1+Q ''l 0 J 

( k;a;jk/') '] 1 + k;r;.(wo+Q)ks ------
wz+Q 2Q(wo-Q) 

X [ (k;as;k_Q{_~k;r;j(wo-Q)k/' 
W!-

+ (k;aj;k/') k·r· ( -Q)k' l\ 
Wz _ Q , ts Wo s _J]· (1.5) 

Here and below w" = w- w', k" = k- k', WL 
= ( 47rNe 2/m )1/ 2 is the Langmuir frequency of the 
particles of a definite species with charge e and 
mass m, and N is the number of particles per 
unit volume. In deriving this formula, we as­
sumed a Maxwellian distribution for the particles 
in the ground state of the plasma, the thermal 
velocity of the plasma particles being VT 
= (KT/m )1/ 2, where T is the temperature of the 
given species of particle and K is Boltzmann's 
constant. The symbols kz, k~, k~, and Vz and 
k1, kj_, kJ., and v 1 are connected with the choice 
of the coordinate frame and determine the pro­
jections of the corresponding vectors on the z 
axis, which is directed along the external mag­
netic field B0 = hB 0 and on the plane perpendicu­
lar to it. The angles e, 6', and 6" are those be­
tween the components kJ., k~, and kJ. (of the vec­
tors k, k', and k" ), which lie in this plane, and 
the x axis, and Jn ( x) is a Bessel function of 
order n. The tensors rij ( w), which enter the 
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right side of (1.5), are defined by the formulas 

rij(w)= h;h; + !-~+_!__~, 
w 2 w+Q 2 w-Q 

r ··'( ) = or;;(w) 
•J w - 8w ' (1.6) 

(1.7) 

where eisj is a completely antisymmetrical ten­
sor of third rank. Finally, 

Wo == w - kzVz - ( l + n) Q + iO, 

Wt =: w'- kz'vz- nQ + iO, 

Wz == w" - kz'' Vz - ZQ + iO, 

where +iO must be regarded an infinitesimally 
small positive imaginary part of the frequencies 
w, w' and w". Relations (1.1)-(1.7) describe 
completely the decay interactions of the longitud­
inal waves in a magnetoactive plasma. 

Let us present expressions for (1.5) in three 
particular cases. If we neglect the external mag­
netic field ( Q = 0 ), then the right side of (1.5), 
with suitable substitution of the arguments of the 
tensor, goes over (accurate to a factor which re­
sults from the difference in the notation) into 
formula (1.2) of the paper of Gorbunov and 
Silin [23], in which the Coulomb interaction of the 
longitudinal waves in an isotropic plasma was in­
vestigated. In the approximation of a cold 
(vT = 0) magnetoactive plasma U2 ;>< 0) Eq. (1.5) 
takes the form 

kk "k' 2 S ( k r k' i j s • ~ e WL .. w ·w -
•J• • • , > kk'k" - ~ -m kk'k" 

X { _ k,r ii ( w) k/' [ k,kz' + _k,kz' _ k/T i• ( w') ks' J 
w ww' w'2 w' 

_ k;r is( W) ks' [ kzkz'' + k,k, = _ ks'J' sj ~w") ~[_l 
w ww" w"2 w" _. 

k,kz'. , ( ) k k , + k,kz'' r , , + --, r ij (I) i j -, is ( (!)) k;k. 
(!)(!) (!)(!) 

(1.8) 

This expression can be obtained directlr from the 
tensor ~js ( w, k; w', k') (see (1.4) in [B ), calcu-

lated in the approximation of a cold plasma, by 
contraction with kikj'k~ )/( kk'k"). Neglecting 
thermal motion ( vT = 0) and the external mag­
netic field ( w = 0 ), we obtain from (1.5) 

s ' ' k;k/'ks' 
ijs ( W, k; W , k ) kk' k" 

i 
---

kk'k" 

2 k2 k'2 k"2 J 
" e_ ~ [ _ k'k" + ----, kk" + ---, kk' , 

X .L.i m ww'w" w w w 
(1.9) 

which coincides with the "longitudinal" contrac­
tion of the tensor ~js ( w, k; w', k') calculated 
for an isotropic cold plasma in [7] (formula (2.8)). 
We present another rather useful form of (1.1) for 
the particular case of coalescence of longitudinal 
waves. Going over from the correlators 
( Ej Ei )w ,k to the longitudinal-wave energy densi­
ties Wz ( k) in the volume dk of the space of the 
wave vectors k, in accordance with the definition 

f (EiE;)ro k 8 
W1(k)=(2n)3Jdw 4Jt • 'aw[we;iH(w,k)], (1.10) 

0 

we obtain from (1.1) and (1.2) 

+oo +oo 
dWz (k) = w (k) I dk' dk" ~ dw' ~ dw" 0 ( w - w'- w") 

dt · 2n J _00 _ 00 

X b(k- k'- k") Q(w, k; co', k'; w", k"; Bo) 

X {Wz (k') W1 (k") w (k) sign e" ( w, k) 

- 2Wz(k) W1(k') w" sign a" (w", k")} 

X { o ( w' - w' (k')) b ( w" - w" (k")) 

+ o(co' + w'(-k'))b((t)" +w"(-k")) 

+ b(w'- (t)'(k') )b(w"+w"(-k")) 

+ o(w' + w'(-k'))o(w"- w"(k"))}, 

where 

Q(w, k; W 1 , k 1 ; w", k"; B0 ) = Q 

I I I k;k/'ks' 12 
= Siis(w,k; w,k) kk 1k" 1 

( 8e \-1 ( 8e )-1( 8e \-1 
X w~) w'~ w"--) 

8w , w=w(k) 8w 1 8w" . 

(1.11) 

(1.12) 

and w(k), w'(k), and w"(k") are the dispersion 
laws of the interacting longitudinal waves in the 
corresponding transparency regions, defined by 
the equation 

(1 .13) 

We have used here the symmetry property of the 
contraction (1.15), a property following directly 
from its construction 

k k "k' k;·"k.'k,· s ( k ' k') i j • s· ( " k" k 1 14) ijs W, ·;(I), · kk¥= jsi W , • ; W, ) kklk'l ( • 
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in the case of pure decay processes, when all the 
integrals with respect to Vz in the right side of 
(1.5) are taken in the sense of principal value (see, 
for example, the article by Silin [5] ) • 

From now on, when considering concrete in­
teractions of longitudinal waves, we shall specif­
ically write out the kernel Q for w' = w' ( k') and 
w" = w" (k" ), that is, with account of the first 
term in the second curly bracket of the right side 
of (1.11). 

2. INTERACTION OF LONGITUDINAL WAVES IN 
ISOTHERMAL PLASMA 

Some of the longitudinal waves in a magneto­
active plasma exist only if the temperatures of 
the electrons and ions differ greatly. In this 
paper we consider the interaction of longitudinal 
waves, for the existence of which no such non­
isothermal behavior is required. The spectra of 
the longitudinal waves, both in an isothermal and 
in a non-isothermal magnetoactive plasma have 
been obtained in several papers [2, 24]. We use here 
the dispersion laws and the transparency condi­
tions in the form derived by A. A. Rukhadze [24]. 

We confine ourselves throughout to a plasma con­
sisting of electrons and a single species of ions. 

In an almost-isothermal plasma ( Te ~ Ti) 
there are possible long-wave longitudinal oscilla­
tions, obtainable in the cold -plasma approximation, 
as well as cyclotron (ion and electron) and high­
frequency Langmuir oscillations ( w i'::! wLe > ~e). 

The subscripts e and i pertain throughout to 
quantities characterizing electrons and ions, re­
spectively. 

Long-wave oscillations are possible under the 
conditions 

k 2 ( kj_2 WL 2 )]',', 
-4Q·2_z_WL•2 1 + ----. e_ 

' k2 e \ k2 Qe2 
(2.5) 

If the angle qJ between the wave vector and the 
direction of the magnetic field is not too close to 
rr/2, (k1/kz < (I e l/ei) ( M/m )112 ), then the 
spectra take the form 

(2.6) 

(2.7) 

On the other hand, if qJ = rr/2, then 

(2.8) 

c) w- Qe ~ Qe (more accurately, w ~ (M I m) 'hQ;): 

w 2 = 1/2 (wLi + Qe2) 

+ 1/z -y ( WLe2 + Qe2)2- 4WLe2Qe2kz2 / k2. (2 .9) 

When ( M/m ) 112 ~i « w « ~e. this spectrum 
coincides with (2.6), and when w » fle under the 
condition WLe » ~e it goes over into the spec­
trum of the Langmuir oscillations in a cold iso­
tropic plasma: 

(2 .10) 

Weakly interacting ion cyclotron oscillations 
are possible under the following conditions: 

(2 .11) 

(kj_VTe, i I Qe, i)Z~ 1, I (w- nQe, i) I kzVTe, i I ~ 1, The spectrum of such oscillations is given by 
n = 0, +1, +2, ... , (2.1) the formula 

which allow us to neglect the thermal motion of 
the particles and to use the oscillation spectra of 
the cold plasma. These spectra are solutions of 
the dispersion equation 

c(w k) = 1 + ~ (~- kj_2- WL2 kz2) = 0 (2.2) 
' gz _ wz kZ wz k2 

and are of the following form: 

a) w~Q;: 

(2.3) 

(2 .4) 

w = nQ;{ 1+An ( k~:;c) 

[ k2vy·z leJT· l-1\ 

X 1+ ulLi; + e;T:(l-Ao(k1_2vTl/Qe2)). J• 
(2 .12) 

where An (x) = e-xin (x ), and In (x) is a modified 
Bessel function of order n. 

The conditions for the existence of weakly 
damped electron cyclotron oscillations are ex­
pressed by the inequality 

W ~ nQe, 

lw- nQel~lkziVTe, 

(2.13) 
(2 .14) 

and the spectrum of such oscillations is given by 
the formula 
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(2 .15) 

Finally, the Langmuir oscillations with fre­
quency w ::::: wLe » ne can exist, of course, not 
only in the long-wave limit (formula (2.10)), but 
also in the short-wave region, where the spatial 
dispersion should also be taken into account, and 
the spectrum takes the form 

(2 .16) 

We shall start our analysis of the decay inter­
actions between waves in an almost-isothermal 
plasma with a case in which all three interacting 
waves have identical spectra. The presence of 
interaction between waves with identical spectra 
is a specific feature of decay interaction of waves 
in a magnetoactive plasma, for in an isotropic 
plasma such processes are made impossible by 
the non -decay character of the spectra of the 
Langmuir and ion-sound waves. 

1. Interaction of low-frequency long-wave os­
cillations with the spectrum (2.3) is described by 
Eq. (1.11), in which the contraction 

s- sijs(W, k; w', k')k;k/'ks' I kk'k" 

can be obtained from (1.8), by assuming 
w « ni, w' « ni, and w" « S]i: 

(2 .17) 

S = _.!__~ kzkz'kz''[!!!__+kz' + kz''J (2.18) 
£ m ww' w" kk' k" w w' w" · 

We have retained here only the electronic part of 
the contraction, which exceeds the ionic part by 
approximately ( eM/eim )2 times ( M-mass of 
the ion, m -mass of the electron, ei -charge of 
the ion). 

Substituting in (2.18) the spectra (2.3) for all 
three interacting waves, and using the expression 
for E ( w, k) in the cold -plasma approximation as 
well as formula (1.12), we obtain the following 
expression for the kernel Q of the integra-differ­
ential equation (1.11): 

Q = (32nNemc2)-1 ( .!!!!._ r{(1 + kj_:WL2i
2 )'/, 

, WLe. k Q, 

2. Expression (2.18) remains valid also in the 
regions w - n ~ ni or rli « w « ne, when the 
frequencies of all three long-wave interacting 
oscillations lie in these regions. Substituting in 
(1.12) the expression (2.18) and the spectra (2.6) 
for all three waves, we obtain an expression for 
the kernel Q in the case of interaction of three 

long-wave oscillations belonging to the first 
branch of the spectrum when w, w', w" ~ ni: 

Q = (32rrNemc2)-d ckzr{~ [1 + ( kj_WLe YJ'h 
\ Qi k \ kQe ' 

k'[ (k' '2l'/, k"[ (k" '2]'/,)2 + ____:_ 1 + J_
1 

Wr"e ) + _z _ 1 + j_
11 

WLe ) 1 • 
k \ k Qe · _ k k Qe ' J 

(2 .20) 

3. In perfect analogy, we can obtain for the 
second branch of oscillations with w - rli ~ ni, 
described by the spectrum (2.7) and going over into 
the region ni « w « Qe' the following formula 
for the kernel Q: 

Q = (32JtNemc2)-1 ( _5I!_ r{[1 + ( kj_WL!_)2J'i• 
\ LULe I kQe 

+ ~ [ 1 + ( kj_:WLe YJ'/, 
k \ k Qe · 

+ (k'' /k)[1 + ( kj_" WLe/k"Qe) 2]'/,r (2 .21) 

4. A decay interaction is possible also between 
waves with spectra (2.9) having frequencies 
w, w'' w" ~ ne. It is described by (1.11), in which 
it is necessary to substitute the expression for S 
in the form (1.8) as well as the spectra (2.9). 

5. When considering the interaction of ion­
cyclotron waves described by the spectrum (2 .12) 
and having frequencies w ::::: ( l + n )Qi and w' 
::::: nni, w" ::::: zni, it is necessary to use the follow­
ing expression for S, obtained with allowance for 
the inequalities w, w', w" « 5"le, w » kzVTe• 
w' » k~vTe• and w" » k~vTe: 

S . e WLe. 2 kzkz' kz'' ( kz kz' kz'' ) 
=-£--- -+-+-

m ww' w" kk' k" w w' w" 

(2 .22) 

The kernel of (1.11) then takes the form 

Q 
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{ r V J... dv J... X ( - V J... 2 ~ 
X J 2 ep\ 2 z· 

0 Vre · Vre ' 

Xlo( kJ...VJ... )!o( kJ...'VJ... )lo( kJ..."VJ...)}z. 
\ Qe , \ Qe Qe 

(2.23) 

We note that we have retained only the electronic 
terms in (2.22). In the case of the spectra (2.12) · 
this is always justified, since the ionic part of 
the contraction is always smaller than the elec-
tronic one: 

S; ~ M-2 [w- (l + n) Q;]-4 < M-2 (kzvr;)-4 

~ M-2 (kJ...vr;)-4 ;::.;;;M-2Q;-•<m-2Q;-4 ~ Se. (2.24) 

6. Three electron -cyclotron harmonics with 
frequencies w ""' ( l + n) Qe, w' ""' nQe and w" 
""' l Qe interact with one another. 

To describe such a process it is necessary to 
use the contraction S obtained from (1.5) by 
separating the terms containing in the denomina­
tor small differences w - ( l + n )Qe, w' - nQe, 
and w" - ZQe. In Sec. 3 we shall estimate the 
kernel Q of the integra-differential equation 
(1.11) that describes this process and indicate the 
characteristic time of the decay or coalescence. 

Having considered all possible decay interac­
tions between the waves with identical spectra, 
let us explain now when waves with different 
spectra can interact, and let us determine the 
forms of (1.11) in these cases. 

7. We start with the interaction between Lang­
muir waves with spectrum (2.16) and waves of 
other types. A Langmuir wave with a wave vector 
k, is transformed by interaction with one of the 
oscillations described above (of frequency w" 
and wave vector k") into another Langmuir wave. 
Let w" « Qi and let its spectrum be given by 
(2.2). Then, for 

we obtain 

w = ulLe ( 1 + 3k2vr,2 I 2wLe2), 

. e WLe2 (kk') kz''Z s ~ s. = - ~------,,...,..,.:-;-;-­
m w2w"2 kk' k" 

(2 .25) 

Taking (2.25) into account, the kernel Q, ac­
cording to the definition (1.12), becomes equal to 

( kk')2(ck .. '\ 2 r ·k "w ·' 2] 
Q = (32nN.mc2)-1 -- ~ I I 1 +( __!:_~ \ . 

kk' \ WLe/ L k"Q; I 

(2 .26) 

8. If a wave with frequency w" and wave 
vector k" is defined by spectra (2.6) and (2.7), 
and two other waves are of the Langmuir type and 
are described by the spectrum (2.16), then 

2 kk' k"f ( ")k" S·=+ie;wL; __ i jsW s ... 
1 M w2 kk' k" w" · 

Assuming w" - Qi - w" we obtain Si 
« Se, so that 

Q = (32nN.mc2)-1 (kk'/kk') 2 (ckz'' I Q;)2 

X [1 + (kJ...11WLe I k"Qe)2] 

(2 .27) 

(2.28) 

for the spectrum w" ( k" ) given by formula (2 .6), 
and 

Q = (32nN.mc2)-1 (kk' / kk') 2 (ck" I WLe)2· 

(2 .29) 

for the spectrum (2.7). 
9. The last interaction between a long-wave 

oscillation with spectrum (2 .9) (frequency w" and 
wave vector k") and Langmuir waves (2 .16) is 
characterized by the contraction 

S = i !_ WLe2 kk' { k/'2 
1 [k"h]2 \_ i e; wLi2 _( kk') k" 

m w2 kk' k" w"2 1 w"2 - Q.2 J M w"2 kk' ww' ' 

(2.30) 

in which the electronic term exceeds the ionic 
term. 

Since it is essential for the existence of Lang­
muir waves that the condition wLe » Qe be 
satisfied, the spectra w" ( k") given by formula 
(2 .9) simplify in this case to 

w" (k") = kz''Qe I k" or w" (k") = WLe· (2 .31) 

Taking the same condition into account, we get 

w" (ih I ow") = 2wr.e2k"2 I Qe2k.1."2 or w" (os I ow") = 2. 

We see from (2 .31) that the oscillations of the 
second branch cannot participate in the decay 
process with Langmuir waves wand w', since 
they themselves are of the Langmuir type. For 
oscillations of the first branch, the kernel 
Q = 0 if we take into account only the higher­
order electronic term (2 .30). Account of the 
second, ionic term yields 

10. Let us consider now the interaction between 
shorter longitudinal waves with Langmuir oscilla­
tions (2.16). Let a wave with frequency w" ~ nQi 
and wave vector k" have a spectrum (2.12). Then 
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(1.5) takes the form 

Using w" » k~vT and assuming that 

Ao(k_t_''2VTe2 / Qe2) ~ An (k_t_"2VT;2 / Q;2) 

(2 .33) 

we find, in accord with (2.24), that Se » Si, so 
that we can write for the kernel Q the relation 

(2.34) 

11. Finally, for an electron-cyclotron wave 
frequency w" :::::: nQe and spectrum (2.15) interact­
ing with a Langmuir wave, the contraction (1.5) 

is equal to 

S=-i e; ~ kk' k" _ i!!_WLe2 (kk')k/'2 

M ww' w"2 kk' m w2 kk' k" 

(2 .35) 

from which we see that when An ( k_1 2vTe 2jQ~) ~ 1 
the electronic term is always larger than the 
ionic term. Taking into account only the second, 
electronic term in the right side of (2.35), we 
obtain the kernel of (1.11) in the form 

Q = 1 ( kk' ) 2 ( "YcvTekz'' ) 4 

16:n:Nemc2 kk' nQe 

XAn-3 ..L Te 1 + ___!!_ ( k "2v 2)[ (k"v )212 
Qe2 \ WLe J . 

(2 .36) 

The cases considered (see items 7-11) exhaust 
the possible variants of the interaction between 
Langmuir waves and longitudinal waves in an 
almost-isothermal magnetoactive plasma. 

12. We proceed to study interactions of long­
wave oscillations, having frequencies w' - Qe 
~ Qe of the order of the electronic cyclotron 
oscillation and spectra (2.9), with long wave oscil­
lations whose frequencies w" are considerably 
lower than the electronic gyroscopic frequency 
Qe, and whose spectra are given by (2 .3), (2 .6), 
and (2. 7). The interaction produces in this case a 
wave with frequency w - Qe ~ Qe and spectrum 

(2.9). From the general relation (1.8) for a cold 
magnetoactive plasma we obtain for all three 
processes the same contraction 

S .e WLe2 kz''2 k;f;8 (w)ks' 
= -L----------

m kk'k" w"2 w ' 
(2 .37) 

but the kernel Q of the equation depends on the 
type of spectrum, namely 

(2 .38) 

if w" « Qi and w" ( k") is determined from (2 .3), 
and 

(2.39) 

if w" - Qi ~ Qi and w" (k") is determined from 
(2.6) or (2.7). The frequencies w and w' in the 
right sides of (2.38) and (2.39) must be taken 
throughout to mean the corresponding functions of 
the wave vectors k and k', in accordance with 
(2 .9). In the right side of (2 .39), the last factor, 
which depends on w", is determined by formulas 
(2 .6) and (2. 7). In addition, 

-Zjk·f· ( )k'jZ-[kzkz' +[kh][k'h]1~ w ,,.w s -------
w2 w2 - Ql 

+( Q.)2(k'[kh])2. 
(2 .40) 

\ w (w2-Qi)2 

The long-wave oscillations (2.9) can also interact 
with a short wave ion -cyclotron and electron­
cyclotron oscillations. The resultant wave pro­
duced will again have a spectrum (2.9). If the 
frequency of one of the interacting waves is w" 
:::::: nQi and its dispersion law is determined by 
(2.12), then the contraction corresponding to the 
process takes the form 

2 k 112 
S - .e WL.e z kf· ( )k·' - -t----- i 1S W, s 

m kk'k" w 

(2.41) 

and the kernel Q is obtained from (2 .12) and 
(2.41), with account of the fact that w" » k~vTe: 
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Q = 1 M e2 ( WLekz'' fcvTi) "An( k.1.."2vT;2 ) 

16:nN.mc2 m e;2 w . Q;2 

X I k;f;s(w)k; 12[(k.l..)2 w2WLe2 + kz2Wr.e~J-1 
kk'nQ 1 k (w2- Q.2)2 7c2 wz 

X [( k.L' )2 __ w~~_!:_•z_ -+.{ kz' \2 WLe2 ]-' 
k' (w'Z- Qi)2 . \ k' J w'z 

We have neglected the small ionic term in the 
contraction (2.41). The notation is the same as in 
(2 .38). The interaction with the electron -cyclo­
tron wave of frequency w" ~ e [ and spectrum 
(2 .15) 1 is determined by the general formula 
(1.5), in the right side of which it is necessary to 
retain terms with small denominators w" - Qe· 
In Sec. 3 we present an estimate of the resultant 
kernel Q [formula (3. 7)]. 

13. In the vicinity of the gyrofrequency Ue, a 
short wave oscillation with spectrum (2 .15) can 
also be produced by interaction of the same oscil­
lation with long-wave oscillations having spectra 
(2.3), (2.6), and (2.7). Let the frequencies of the 
electron-cyclotron waves be w ~ nne and 
w' ~ nQe and let the spectrum w" ( k") be given 
by (2.3). Then 

S = _ i__!! WLe2 k/'2 k;f;s(w- nQ.)ks' 
m w"2 kk'k" u)- nQe 

X 1 +( ----[ . k' VTe )"1 2 

\ WLe ' j 

X [ 1 +( k~:~:!_ r r ik;f;.(w- nQ.)ks' 12 

X exp [- ~:: (k.1..2 + k.1.'2) J Jnz( k.1..k.1..' ~;::). (2.44) 

If w" - Qi ~ Qi (spectrum (2.6) and (2.7)), then S 
is given by the same formula (2.43), and 

x[ 1+(k::: rr ik;f;.(w-nQ.)ks'i 2• (2 .45) 

The electron -cyclotron oscillations can inter­
act also with the ion-cyclotron oscillations. Let 
w" ~ l Qi and let the spectrum w" ( k") be deter­
mined by (2.12); then 

s = - i e__ (i)~=-.r kz'' )' 2 k;f is ((f) - nQ.) ks' 
m kk' k"\ w" w -- nQ. 

f V.J...dV.J... 
X .l -v--2 exp (- u .l 2/2rTe") 

u Te 

J ( k.J...V.J... ). j ( kj_1VJ..) ( /,;.J..."VJ.. ') X n ,. n ,. lo ,. . 
i::l~e :.'B ' i:l"e 

With the aid of (2.46) we easily obtain the 
kernel of the equation 

(2 .46) 

{ ( k"vT;\ 2 lei T;[ (k.J..."2v.T•z)]}-2 X 1 + -- I + -- 1- Ao . 
WLi ' e; Te Qe2 

(2 .47) 

14. In perfect analogy with item 13, we can 
also consider the formation of an ion-cyclotron 
harmonic w ~ nQi (spectrum (2.12)), resulting 
from the interaction of a similar harmonic 
w' ~ nUi and a long-wave oscillation with spectrum 
(2.3) ( w" « Qi ). Such a process is described by 
the contraction 

S . e WLe z z z - . _ VTe (k 2 + k '2) 2kk'k"? [ 1 2 J 
= -~----- exp --- .1.. .1.. 

m ww' w"2 kk' k" 2 Qc2 

(2.48) 

(2 .49) 

15. If the frequency of the long-wave oscilla­
tion w' - Ui ~ Qi is of the order of the ion gyro­
frequency, then this oscillation coalesces with the 
low-frequency long-wave oscillation ( w" « Qi) 
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with spectrum (2.3) and is transformed into an 
oscillation with the same spectrum as before 
w- Qi ~ Qi [see (2.6) and (2.7)]. Such a process 
is determined by a contraction 

2 k k 'k " 2 S= -i!_~. z z z 

m ww' w"2 kk' k" 

and by a kernel 

(2.50) 

Q = (32:rrNemc2) - 1 ( ck" / WLe)2 [1 + ( k_1_ 11 WL;/k"Q;)2], (2. 51) 

where w and w' are functions of the wave vectors 
k and k', in accordance with (2.6) and (2.7). 

16. The long-wave oscillations (2.7) with inter­
mediate frequency ( Qi « w « Qe) can result 
also from an interaction of the same oscillations 
with long-wave oscillations having frequencies 
w" « Qi (spectrum (2.3)) and w" - Qi ~ Qi 
(spectrum (2.6) and (2.7)), as well as with short 
wave ion -cyclotron oscillations w" R; nQi (spec­
trum (2.12)). These interactions correspond to 
the contraction (2.50) and a kernel 

Q = (32nNemc2)-1 (ck" / WLe)2[1 + (k.L11WLi / k"Q;) 2], 

(2. 52) 

if w" « wi, or 

(2.53) 

if w" - Qi ~ Qi, and the spectrum w" ( k") is 
given by (2.6) and (2.7), or 

(2.54) 

if w" R! nQi (spectrum (2.12)). 
17. In addition to the decay processes con­

sidered in items 6-16 of the present section, 
processes in which three longitudinal waves with 
three different spectra participate are also possi­
ble. Let one of the interacting waves be an elec­
tron-cyclotron wave with frequency w' R; Qe 
(spectrum (2.15)). Interaction between this wave 
and a wave of frequency w" < Qe can result in a 
long-wave oscillation with frequency of the order 
of Qe ( w - Qe ~ Qe, spectrum (2.9)). We list 
below different variants of such interactions. 

Let w" « Qi and let the spectrum w" ( k") be 
defined by (2.3). Then 

s = _ !_1/ '}:_ !_( WLe ) 2 kzkz'kz''2 ~~~1 __ ( k_1_ 1VTe) 
2 2m w" kk'k" w(w'- Qe) 4Qc2 

[ 1 ( k_1_1VTe ) 2] Xexp --\--
4 Qe I 

(2.55) 

X Ai-1 ( kj_'2vTe21 exp r- ~( kj_'2vTe l2 J ( kj_'VTe )2 
' Qe2 ,. L 2 ~le ! \ ~~e 

X [I { k_1_'2vTe2 ) -] (-k_1_'2vTe2 \ ] 2 [t + ( k_1_ 11WLi \ 2
]. 

0 \ 4~~ez '/, 4QeZ } k"Qi ) 

(2 .56) 
If w"- Qi;::, Qi (spectra (2.6) and (2.7)), then the 
contraction retains as before the form (2.55), and 
the kernel Q takes the form 

(2.57) 

The oscillation with frequency w" can also be 
short-wave, for example, an ion-cyclotron har­
monic of (2.12), w" R; nQi· Then 

2 k k 'k "2 00 d S = _ i _!__ WLe z z z \ V j_ V j_ 

m w' - Qe kk' k" ww"2 ~ uTi 

(2. 58) 

{ r v j_ dv j_ ( v j_ 2 ) ( k j_l v j_ ) ( k j_l/ v j_ ) }2 X j~-~exp --- J1 --~ lo 
0 VTe2 2vTe2 Qe Qe 

(2 .59) 

On the other hand, if one of the interacting 
waves is an ion -cyclotron wave with spectrum 
(2.12), the interaction results in a long-wave os­
cillation with frequency w - Qi (spectra (2.6) and 
(2.7)), and the role of the third interacting wave 
is played by the long-wave oscillation (2.3), then 

2 kk'k"2 S . e WLe z z z 
=- ~- ----,-,2 k' 'k" + S;. 

m ww w '" 
(2.60) 

The ionic term in (2.60) can be neglected, and 
we obtain the kernel of the equation in the form of 

(2 .61) 
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3. ILLUSTRATIONS AND DEDUCTIONS 

Just as in an isotropic plasma, the non-linear 
interaction of electromagnetic waves in a magneto­
active plasma can be characterized, generally 
speaking, by some characteristic time T. Owing 
to the strong angular dependence of the kernels Q 
and to the presence of two terms in the right side 
of the Eq. (1.11) that describes the coalescence of 
the longitudinal waves, only a very approximate 
estimate of the characteristic time can be ob­
tained in this case. In some cases r does not 
exist. An example of such a process is decay 
under the condition 

d dt W1(k) = const, 

which does not depend on the time t. It is there­
fore necessary to specify clearly the conditions 
under which such an estimate is made. Actually, 
the distinctions between such conditions corre­
spond to different formulations of problems in the 
integration of (1.11). In view of the complexity of 
the latter procedure, we confine ourselves to 
qualitative deductions that follow from the in­
equalities between the energies of the interacting 
waves. If Wz ( k' ) and Wz ( k 11 ) are small in mag­
nitude compared with Wz ( k ), then the character­
istic time of the process is determined by the 
second term in the right curly bracket of (1.11). 
We can therefore write the following approximate 
relation 

Wz(k,t) "'exp [+t/'t(k,k', h)], (3.1) 

where 

-r (k, k', h)= -r = n: [ ~ dk'QW1 (k') 6 (k'- k0') w (k) w" (k") 

X l::l-1r1 ~[ w(k)w"(k") I :~,1-QWz(ko') r1
• 

It= ~t(k, k') = w(k} + w'(+k') + w"(±k + k'), (3.2) 

and r does not depend on t during the time inter­
val in which wz (k) » Wz (k' ), Wz (k11 ). If Wz (k) 
and Wz ( k') are large compared with Wz (k11 ), 

then we can again neglect the first term of (1.11) 
in the estimate of T, but we can no longer state 
that the "characteristic time" is a constant, since 
Wz ( k' ) = wz ( k', t) is large and 

d 
-In Wz (k) =F const. 
dt 

At any rate, the estimates (3.1) and (3.2) become 
more approximate in such a formulation of the 
problem. 

Finally, if the energy Wz ( k) of the coalesced 

wave is small compared with Wz (k') and wz (k11 ), 

then it is necessary to retain in (1.11) only the 
first term of the first curly bracket. Eliminating 
in this case the integral with respect to dk' by 
using the mean-value theorem, we can define the 
characteristic time as the time scale of the 
quantity 

{ w2(k) I a11 \-1}-1 
-lt- Wz2 (t) Q 8k' 

The first term plays the dominating role in the 
estimate of the time if the energy of all three in­
teracting waves is of the same order of magnitude: 
Wz (k') ~ wz (k11 ) ~ wz (k ), and the frequency 
W 11 of one wave is small compared with two others: 
w 11 « w, w 11 « w'. This approach is particularly 
convenient for estimates of the characteristic 
times of decays of unequal type. 

In conclusion we present a few estimates of 
the characteristic times, using one of the de­
scribed formulations of the problem in each case. 

The interaction between three long-wave 
electron -cyclotron oscillations with spectrum 
(2.9) (see item 4 of Sec. 2) is described by Eq. 
(1.11) with a kernel 

Q ~ (32nN.mc2)-1 (ckH~.) 2 (3.3) 

and a characteristic time 

-r-3·102Nemc2 ~~ (3.4) 
Wz (ck)2 k3 · 

The decay of three short-wave electron -cyclotron 
oscillations with spectrum (2.16) (item 6 of Sec. 2) 

corresponds to a time 

,; -50 N.mc2 __!_ (nQ.)1 [1 + ( kvTe \2]-" (3.5) 
Wz k3 ( WLeCVTe2k 3) 2 WLe } 

and to a kernel 

Q >::::: (wi,eCVTek3)2 _1 __ [ 1 +( kV'te ) 2]" An_6 ( kj_2VTe2 ) 

4n:(nQ.} 8 N.mc2 WLe \ Q.2 

(3.6) 

The process described at the end of item 12 of the 
Sec. 2 is characterized by an approximate value of 
the kernel 

<! ~ _1_( k2cvTe ) 2 __ 1_Ac2 ( kj_2vTi) (3.7) 
16n Q.2 N.mc2 Q.2 

and by a time 
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't "' 102 __!_ (_E{__ )2 Nemc2 ~A12 ( k.L2VTe2 ) 
Qe k2CVTe W1 k3 Qe2 ' ( 3 ·8 ) 

For greater clarity we present a numerical exam­
ple. In a plasma with electron density Ne 
= 1010 em - 3, situated in an external magnetic field 
Bo = 5 x 104G, the decay interaction of three long­
wave electron-cyclotron oscillations (2.9) has a 
relaxation time 

(3.4a) 

where k is in em - 1 and Wz is in electron volts. 
We are grateful to V. P. Silin for guidance and 

support in the work. 
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