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A formula is obtained in the adiabatic approximation for the cross sections of excitation of 
rotational and vibrational states of diatomic molecules by electron impact, the formula being 
valid for incident electrons with energies appreciably exceeding the energy of the vibrational­
rotational state of the molecule. The inelastic transition cross section is expressed in terms 
of the elastic scattering phases, calculated earlier by Fisk. Specific calculations of the cross 
sections are carried out for the rotational transitions L- L, L- L ± 2, L- L ± 4 of N2, 0 2, 

and H2 molecules in the ground electronic and vibrational states, for incident electrons with 
energies between 0 and 25 eV. The results of the calculations are in agreement with experi­
mental data on measurements of the total scattering cross sections and of the vibrational ex­
citation cross sections, and also with the data on determination of the losses of energy by 
slow electrons. 

1. INTRODUCTION 

A large number of experimental works, carried 
out twenty to thirty years [1-e] ago and very re­
cently, [7- 10] have been devoted to an investigation 
of processes which occur during the passage of a 
beam of electrons through a molecular gas. Num­
erous experiments indicate that the basic losses of 
energy by slow electrons are associated with in­
elastic processes, particularly with the excitation 
of rotational and vibrational states of the mole­
cules. The inelastic losses appreciably exceed the 
losses associated with elastic collisions, even if 
the energy of the electrons is below the threshold 
of vibrational excitation. This has led various in­
vestigators to the idea that the effective cross sec­
tions for the excitation of rotational states of 
molecules by collisions with electrons may have a 
large value, in spite of the enormous difference in 
the masses of the colliding particles. However, 
measurements of the values of these cross sec­
tions have, up to the present time, still not been 
carried out. In connection with this, definite inter­
est has developed in the theoretical investigation of 
the processes of rotational excitation of molecules. 

The first attempt in this direction was proposed 
by Massey in 1932. [H] Subsequent work dates back 
only to the last ten years.C 12- 19] In all of these ar­
ticles except the one by Mjolsness and Sampson, [18] 

the Born approximation is used to calculate the ex-

citation cross section. In those cases when the au­
thors take as the interaction energy of an electron 
with a molecule a potential energy whose form is 
valid over all distances, their calculations are ap­
plicable under the usual conditions of the Born ap­
proximation. L1 3, H] In other cases, [ 15- 19] the poten­
tial selected is one which correctly describes the 
interaction only at large distances (dipole, quad­
rupole, polarization, or Coulomb interaction). As­
suming this potential to be equal to zero at small 
distances and applying the Born approximation, the 
authors deduce a proof to the effect that their ob­
tained values for the cross sections are valid for 
energies of the incident electrons below a few 
tenths of an electron volt (such an upper limit ap­
pears because of various approximations used 
during the calculations). The results of a calcula­
tion according to the method of distorted-waves 
are given in [18], and only insignificantly change the 
results of the article by Gerjuoy and Stein. [15] 

In the present article we use the adiabatic ap­
proximation method, which enables us to calculate 
the cross sections for excitation of vibrational and 
rotational states of diatomic molecules for elec­
tron energies beginning with a few tenths of an 
electron volt and above. On the basis of this 
method, the cross sections for various rotational 
transitions in molecules of nitrogen, oxygen, and 
hydrogen are calculated for incident electrons with 
energies from 0 to 25 eV. It is indicated how one 
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can compare the results of the present calculation 
with known experimental data. 

2. ADIABATIC APPROXIMATION 

The adiabatic approximation, well known in the 
literature under the name Born-Oppenheimer ap­
proximation, is a fundamental method of solving 
the problem of bound molecular states. The possi­
bility of using this approximation in collision theory 
is obvious from the following simple considerations. 
Let us consider the collision of a light structure­
less particle (mass m) with a heavy particle 
(mass M, we shall call it the target). If A = m/M 
« 1, and the energy of the incident particle con­
siderably exceeds the internal energy of the target, 
then during the effective collision time T neither 
the relative distribution of the internal parts of the 
target nor the interaction potential will be able to 
change appreciably. Therefore, to the first approxi­
mation one can consider the collision problem as 
the scattering of a particle by a given potential 
which depends on the internal coordinates of the 
target as a parameter. The cross section for elas­
tic scattering of the particle will furthermore de­
pend on this same parameter. In the next approxi­
mation, one can take the change of the target's 
internal state into account. 

In recent years the adiabatic approximation has 
been successfully used to solve a number of prob­
lems in nuclear scattering theory. [ 20•21 ] An exam­
ination of this approximation from the point of view 
of the general assumptions of the quantum theory of 
scattering was carried out by Chase. [ 22] In 1959 
Massey[23J pointed out the possibility of using the 
adiabatic approximation in connection with the 
scattering of electrons by molecules. However, 
the general expression (independent of the nature 
of the colliding particles) obtained by him for the 
inelastic scattering cross section differs from the 
expression given by Chase and usually used in 
nuclear scattering theory. In addition, Massey did 
not indicate the conditions for applicability of the 
expression obtained by him. The adiabatic approxi­
mation will be formulated below in a manner 
similar to that used by Chase, but for excitation 
of vibrational and rotational levels of diatomic 
molecules upon collision with light particles. 

We shall assume that during the collision the 
electronic state of the molecule does not change, 
and it remains in its ground state. Let us write 
the Schrodinger equation for the wave function of 
the colliding particles in the center of mass sys­
tem of "molecule + particle" in the form 

XlJJ(r, R) = 0, (1) 

where r and R denote, respectively, the radius vec­
tors of particles with reduced masses m and M: 

m = m1(M1 + Mz) I (m1 + M1 + M2); 

.11 = Md•1z ( (M1 + Mz); 

M1 and M2 are the masses of the molecular nuclei; 
m1 is the mass of the incident particle; E is the 
relative kinetic energy of the particle and the 
molecule; E is the internal energy of the molecule; 
U(R) is the effective interaction energy of the nu­
clei with each other; V(r, R) is the effective inter­
action energy of the particle and the molecule, 
whose form depends on the electronic state of the 
molecule. 

As in the Born-Oppenheimer approximation, we 
seek a solution of Eq. (1) in the form 

'¢A (r, R) = F (r, R) cp (H), (2) 

where <P (R) is the wave function of the nuclei, satis­
fying the equation 

Substituting expression (2) into Eq. (1) and using 
Eq. (3), we obtain the following equation for F(r, R): 

[ - .2/iZ 6r+V(r,R)-ElF=}i!_(6R+2 VRcp vR)F 
m _ 2M cp · 

(4) 
We seek a solution of the last equation in the 

form of an expansion in powers of the small param­
eter A = m/M: 

F = F<0l + /.F<1l + ... (5) 

Following Chase, one can show that if the number 
of possible excited states <Pn(R) is bounded, then 
F<P does not depend on A. Therefore, in the zero­
order approximation with respect to A, F = F<ol and 
is determined from the following equation: 

[- 21i:1 6r+V(r,R)-E]F=0 (6) 

with the boundary condition: 

F (r, R) -+ eikr + f (n, R) eikr. 

r 

Then using the exact expression 

(7) 
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for the inelastic transition amplitude, but with the 
wave function (2) of the adiabatic approximation, 
we obtain the following expression for the ampli­
tude of the transition 0 - n between two states of 
the molecule in the adiabatic approximation: 

fonA(n) = ~ fPn* (R)f(n, R)rpo(R)dR. (9) 

The following conditions are used in the deriva­
tion of formula (9): [ 22] 

kr0 ;',.E / E <<"__ 1, if kr0 ;.:;, 1, (10) 

where ilE is the greater of the following two ener­
gies: the energy transferred and the energy of the 
vibrational-rotational state of the molecule; E is 
the smaller of the particle energies before and 
after the collision; r 0 is a characteristic distance 
for the interaction of an electron with a molecule; 
k is the wave number of the incident particle. 

Thus, in the adiabatic approximation the inelas­
tic transition amplitude is determined as the 
matrix element of the elastic scattering amplitude 
f(n, R) for a potential V(r, R) with a given value of 
the parameter R and a definite orientation with 
respect to the direction of the incident particle. It 
is easy to see that the adiabatic approximation 
goes over into the Born approximation, if the elas­
tic scattering amplitude is determined from the 
Born approximation. 

3. ELASTIC SCATTERING AMPLITUDE 

An exact solution of the problem of elastic scat­
tering by a non-spherically symmetric potential is 
possible only for some special choice of this poten­
tial, enabling us to separate the variables in the 
Schrodinger equation. In the case when the scatter­
ing system has cylindrical symmetry, separation 
of variables is possible in spheroidal coordinates, 
provided the potential in these coordinates has the 
form 

where ~ and 1J are prolate spheroidal coordinates 
(see, for example,C24J), a(O and b(1)) are arbitrary 
functions of the corresponding variables. 

The method for solving the problem of elastic 
scattering by a potential of the form (12) with 
b( 1J) = 0 is analogous to the usual method of partial 
waves for scattering by a spherically symmetric 
potential. This method was first applied to the 
scattering of electrons on diatomic molecules by 
Stier[25 J and Fisk, [26] and later to the scatteriGg 

of neutrons by nonspherical nuclei by Inopin. [ 21 ] 

It will be assumed below that one can represent 
the interaction potential of an incident particle with 
a molecule in the form 

(13) 

Since the method of solving the problem does not 
impose any limitations on the function a(~), except 
~ -2a(~) - 0 as ~ - oo, in the vast majority of cases 
one can select the form of a(~) for each specific 
case so that the potential (13) corresponds in the 
best way to the actual potential (see Sec. 5 below). 

In the coordinate system whose z axis coincides 
with the axis of symmetry of the potential, the am­
plitude for elastic scattering by a potential of the 
form (13) has the form [ 21 •26] 

f(vo, v, R) = ;k~ ~ [exp (2ic5zm)- 1] lzm* (c, vo)lzm(c, v); (14) 
L , 

lm 

here v 0 and v are unit vectors characterizing, 
respectively, the directions of the incident and 
scattered particle fluxes; k is the wave vector of 
an incident particle; c = (1/2)kR; ozm(c) is the 
scattering phase which depends on the specific 
form of V(C 1J); 

, 
lzm(c,v)= ~ Snn/(c)Ynm(v) (15) 

n 

are orthonormalized spheroidal angular functions, 
where Ynm(v) are normalized spherical functions: 

snm1 (c)=(-1)m[~' \brm1 \ 2 r'''b,m1, 

r 

b l( ) _ [ 2n + 1 (n-j m I)! l-'1• i-lml ( ) 
nm C- 2 (n+jmj)!~ n-lml C, 

Snm1(0) = b,z. (16) 

In the last equation, 6nz is the Kronecker delta 
function. The quantities d l - 1

1
m 1

1 
are defined in the 

n- m 

article by Flammer. [ 24] The parity of the summa­
tion indices n (or r) coincides with the parity of 
the quantum number Z, and the summation starts 
with the value of n (or r) equal to m or m + 1. The 
number m takes values from -l to + l. We note that 
the vector R, determined by the properties of the 
potential, enters into the expression for the ampli­
tude f(v 0, v, R) as a parameter. 

4. EXCITATION OF ROTATIONAL AND VIBRA­
TIONAL LEVELS 

Formula (9) given above is valid for the excita­
tion of rotational and vibrational states if the effec­
tive collision time T is considerably less than the 
vibrational period w-1: WT « 1. We shall assume 
that high vibrational states are excited with small 
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probability. In this case the wave function for the 
relative motion of the nuclei in a molecule has the 
form 

(17) 

where v, L, and Mare, respectively, vibrational 
and rotational quantum numbers, and w denotes the 
angular coordinates of the molecule. 

Using Eq. (9), we obtain the following expression 
for the amplitude for scattering of a particle in the 
direction v with the molecular transition 
vLM-vtL1Mt: 

f v1L1M,_ 2n ~ \.yvv,AL1M1 R2dR· (18) 
vLM - --;-k LJ J lm LMlm , 

£ lm 

where 

Vz~' (R)= [ex:p(2i6zm)-1]cpv(R)cpv,,*(R), 

L,M, R ~ QL,M,n'( ) l l 
ALMlm(V, ) = LJ LMnm V Snm Sn'rn, 

nn' 

Qf;~~·,~' (v) = S Y LM (w) Y ;,M, (w) Y ;,m(vo) Y nm(v)dw; (19) 

dw is an element of solid angle. 
Changing from a coordinate system attached to 

the molecule to the system of coordinates associa­
ted with the direction of motion of the incident par­
ticle (the z axis is along the direction of motion), 
and carrying out transformations similar to those 
carried out in the article by Inopin, [ 2i] we obtain 

L 1M 1n< ~ 2n' + f 1 

(hMnm(n) = (-1)m .6 2;\ + {n nOI-LJ"-~-t) 
i.;c 

(20) 

where n is a unit vector in the direction of scatter­
ing in the new coordinate system: (n'nOJliA.Jl) and 
(n'nm- miA.O) are Clebsch-Gordan coefficients; 

Bt,~~ = ~ Y{,M, (w) YLM(w) Y~.;c(w)dw 

= [ (2L+1)(2A.+1)l'i• 
4:n(2LI + 1) _ 

X (LAOOJL!O) (LA.M~-tJL 1M!)6M,,M+;c· (21) 

Substituting the expression for BLt Mt into Eq. 
(20), we obtain LMA.Jl 

QZ~v;;;:; (n) = (-1)m[ (2n' + 1) (2L + 1) ]'/, 
4n (ZL1 + 1) 

X Y • . ) " KL,M 1nn' 
n, M 1-M{ll ,LJ LM'-m , 

1. 

KZ~.',~n' = (n'nOM1-MJA.M1 -M) (n'nm- mJA.O) 

X (LAOOJL10) (LA.MM1 - MJL 1M!). (22) 

Using the usual expression for the transition cross 
section in terms of the amplitude, averaging over 

the projections M of the initial orbital momentum 
L, and summing over M1, we obtain the following 
expression for the cross section of the transition 
from the state vL to the state v1 L1 with scattering 
of the particle in the direction n: 

(23) 

It is easy to obtain the total cross section by 
integrating expression (23) over the angles. In the 
form (24) the expression for the cross section ap­
pears to be rather complicated. But, under certain 
simplifying assumptions, one can reduce it to a 
form from which numerical results can be obtained 
fairly simply, and the dependence of the cross sec­
tion on L and L1 is expressed in analytic form. It 
turns out that for comparatively small values of 
c = (1/2)kR, the coefficients s~m (c) do not differ 
appreciably from unity if n = l , but are equal to 
zero for n ,. l. [ 24] Therefore, for c %.. 2 one can 
set S~m(c) = onz (Kronecker delta function) and 
s~'m(c) = on'Z with a large degree of accuracy. 
Using these equalities and integrating expression 
(24) over angles, for the total cross section we 
obtain 

v,L, :n 1 ~ { 1)m+m'(2l + 1) v, v, T'J,.'J,.' 
a,L = /(2 Z£ + 1 Li . - UvzmUvlm' LL 1l, 

lmrn'AA' 
(26) 

(27) 

Tr~~',z = L (llOM1-MJA.M1-M) (LA.MM1 -MJL1M!) 
MM, 

X (llOM1 -MJP.'M1 -M) (LA'MM1-MJL1M!). (28) 

Taking into account the symmetry relations for 
the Clebsch-Gordan coefficients, their connection 
with Racah coefficients, and the orthogonality rela­
tion for Racah coefficients, [ 27 ] for Ttl1 z we ob­
tain 

(29) 

Finally, using the last equation, we obtain the final 
expression for the cross section of the transition 
vL- v1L1: 

a~~L, = ~2 ~· (LP.OOJL10) 2 

/1, 

xi~ (-1)mu~'im(llm-mJAO) , 2
• 

m 

(30) 
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If L = 0 in the initial state, then it is not neces­
sary to assume that the value of c is small. In this 
case, an expression for the differential cross sec­
tion for excitation of rotational levels was obtained 
in the article by Inopin [2t] during an investigation 
of the scattering of neutrons by nonspherical nu­
clei. A completely analogous expression may be 
obtained in our case: 

It is easy to see that if we set L = 0 in formula 
(30) and s~m = On z in formula (31), then these two 
formulas agree. 

One can easily show that if u~1zm = u~~ -m' then 

transitions are allowed only between rotational 
states of the same parity. Since the last equality 
is realized only in the case of invariance of the 
potential with respect to reflection in a plane per­
pendicular to the axis of the molecule and passing 
through its center of mass, then the selection rule 
stated above corresponds to a general classifica­
tion of the rotational states of molecules containing 
identical nuclei. In the spherically symmetric case 

m 

and transitions are possible only between states 
with the same L: 

v,L, :rt ~ (2l + 1 I· v, I? GrL = k 2 .;_j ) u,.l - OLL,· (32) 
l 

Summation of expression (30) with respect to 
the rotational quantum number of the final state, 
using the orthogonality relation for the Clebsch­
Gordan coefficients, gives 

(33) 

i.e., the sum over the rotational quantum number 
L1 of the cross sections for the transitions 
vL- v1L1 does not depend on the initial rotational 
state and is equal to the cross section for the corre­
sponding vibrational excitation without change of 
the ground (L = 0) rotational state. If it is assumed 
that the cross sections of vibrational excitation are 
small, and if a molecule in the ground vibrational 
state v is considered, then 

U~m;:::::: exp [2iOzm(Ro)]- 1, 

where R0 is the equilibrium distance between the 
nuclei. In this case the sum of all cross sections 
for rotational transitions from a given state L is 
equal to the cross section for elastic scattering on 
a given potential with classical averaging over 
orientations of the molecule, and again the sum 

does not depend on the initial state L: 

~ 4:n:~ -
LJ (JLL, = Jii LJSin2 6zm = Gel · 
Lr lm 

(34) 

In the last formula and everywhere below, the cross 
section for the elastic transition L - L is included 
in the sum of the rotational transitions. 

5. EXCITATION OF ROTATIONAL STATES OF 
THE MOLECULES N2, 0 2, AND H2 BY ELEC­
TRON IMPACT 

In this section we shall illustrate the application 
of the method to the specific example of excitation 
of the rotational states of hydrogen, oxygen, and 
nitrogen molecules by collisions with electrons. 
We shall assume that in the collision process the 
molecule remains in its ground electronic and 
ground vibrational states. It is clear from expres­
sion (30) that in this case, in order to calculate the 
rotational transition cross sections, it is sufficient 
to know the phases oz m for the elastic scattering 
of electrons at the equilibrium internuclear dis­
tance R 0• 

The problem of determining the phases ozm for 
the scattering by a potential of the form (13) was 
solved by Fisk, [ZG] who investigated electron scat­
tering by N2, 0 2, and H2 molecules. Fisk assumed 
a model potential for the interaction of the electron 
with a molecule, starting from the conditions for 
best agreement between given statistical calcula­
tions and experimental data: 

(35) 

where R is the experimental value of the equili­
brium internuclear distance, Z is the effective 
charge associated with a certain parameter {3 by 
the relation {3 2 = (1/ 4) ZR~ 0• ~ 0 = 2 for molecules 
of H2, N2, and 0 2, and the value of {3 is equal, 
respectively, to 0.6, 1.32, and 1.35. The atomic 
system of units is used in formula (35). Correct­
ness of the choice for the potential is confirmed by 
the good agreement between the elastic scattering 
cross sections calculated by Fisk and the experi­
mental data in all three cases. Therefore, there is 
no need here to dwell in more detail on a discussion 
of the choice for the potential. 

In connection with the limitation imposed on the 
magnitude of c during the derivation of formula 
(30), the latter is applicable in the interval of 
incident electron energies below ~ 25 eV. For 
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larger energies, one can perform the calculation 
using the Born approximation. From formula (30) 
it is not difficult to obtain numerical values for the 
cross sections of various rotational transitions, if 
the appropriate expression for the scattering phase 
deduced by Fisk[26J is used. It was found that in 
the interval of electron energies indicated above, 
the cross sections for the transitions L ----- L1 de­
crease markedly with deviation of L1 from the 
initial state L. Therefore, the dependence of the 
cross sections on the velocity of the electrons is 
given in Fig. 1 only for the transitions L----- L, 
L---.- L + 2, and L----- L + 4. (E is the kinetic energy 
of an incident electron.) In addition, the total cross 
sections corresponding to formula (34) and coin-

ciding with the elastic scattering cross sections 
calculated by Fisk, and experimental values for 
the total scattering cross sections (the dotted 
curves) [3 ' 4• 26] are shown in Figs. la, lb, and lc. 
On Fig. ld in expanded scale are given only the 
cross sections uL, L + 2 for hydrogen, since the 
values of uL, L + 4 are very small in this case. 
Even values of L correspond to para-hydrogen, 
and odd values correspond to ortho-hydrogen. 
Curves corresponding to even values of the orbital 
quantum number (the ortho modification of N~4) are 
given for the N2 molecule. In the case of the para 
modification, the behavior of the curves is similar 
to that shown in Fig. la. The ground electronic 
state of 0~6 corresponds to only odd values of the 
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orbital angular momentum. [ZB] The vertical col­
umn of numbers to the right of the curves corre­
sponds to different values of L for a given type of 
transition. It is easy to obtain the cross sections 
for the inverse transitions from the relation aLL1 
= (2L + 1)aL1L/(2L + 1) (we neglect the difference 
in energies of the incident and scattered electrons). 
The energy dependence of the cross section a0z, 
calculated in the Born approximation for Hz by 
Carson [i 4], is indicated by the dot-dashed curve 
in Fig. 1d. The large difference between this curve 
and the curves of the adiabatic approximation is 
explained in the first place by the fact that a differ­
ent potential was chosen to describe the interac­
tion, and in the second place by the fact that the 
Born approximation is not valid for such small 
incident electron energies. We note that in the case 
of nitrogen, the value of the cross section a oz at the 
maximum (Fig. 1a) agrees with the corresponding 
value calculated by Kerner [!3] in the Born approxi­
mation using an interaction potential close to that 
calculated by Hund [Z 9] by a statistical method 
(curve K, Fig. 1a). However, the maximum cross 
section obtained by Kerner lies in the region of 
higher energies (23 eV). Such a discrepancy is 
again explained by the nonvalidity of the Born ap­
proximation in the indicated energy region. 

The dot-dashed lines on Fig. 1a represent the 
values of the cross section a0z for Nz (the curve 
labelled GS) obtained by Gerj uoy and Stein, [i5] 

also in the Born approximation. Moreover, upon 
expansion of the interaction potential in inverse 
powers of distance, only one term corresponding 
to the quadrupole interaction was left. In such an 
approximation, only the transitions L- L ± 2 are 
different from zero. The formula obtained by 
Gerjuoy and Stein has the form 

16:n:Q2 k! (2) 
IJL, L+2 = -~.-.~--k CL, L+2, 

El 0 

(2) 3 (L + 1) (L + 2) 
CL, L+2 = 2 (2£ -t--1) (2£ + :3)' (36) 

where k0 and k1 are the wave numbers of the elec­
tron in the initial and final states, respectively, Q 
is the experimentally determined value of the 
molecular quadrupole moment in atomic units. 
aL, L+ 2 is also expressed in atomic units. As the 
authors indicate, formula (36) is valid only for 
electron energies below ~ 0.6 eV. In this energy 
region, from expression (30) one can obtain 

(37) 

Thus, the dependence on L of the cross sections 

ever, becomes apparent in the different velocity 
dependence of the cross sections. This dependence 
is shown in Figs. 1a and 1b for a0z from formula 
(37), but in practice the magnitude of the cross 
section, determined by expression (36), does not 
depend on the velocity (with the exception of the 
region near threshold, where formula (36) is in­
correct). 

For practical purposes, one can indicate two 
more formulas which are applicable to the calcula­
tion of rotational transition cross sections for elec­
tron energies ;S 25 eV, and which are obtained from 
the general formula (30) by using the phases cal­
culated by Fisk: 

(2) (4) 
(JL, L+2 = CL, L+2 1Jo2 + CL, L+2 1Jo4, (38) 

(4) 
IJL, LH = CL, LH 1Jo4, (39) 

where the quantity c~: L + 2 is defined above, 

(4) 5 L(L+i)(£+2)(£+3) 
cL, n 2 = 2~ .(ZL- 1)-(2L +1)(2!,--t~'3Y(2L-.f-7}' 

<•l 35 (L+1)(L+2)(L+3)(L+4) 
CL, L+• = H(2T+ 1) (2£ +3)(2£+ 5) (2£ + 7) 

The values of a oz and a 04 for N z and Hz are given in 
Figs. 1a and 1d. 

6. COMPARISON WITH EXPERIMENT 

Since experimental data with regard to direct 
determination of the cross sections for excitation 
of rotational states are unknown to us, it is neces­
sary to apply various indirect methods. If it is 
assumed that, in the energy interval for which the 
above mentioned results are valid, the probability 
for excitation of vibrational states gives a small 
contribution to the total scattering cross section, 
then the sum of the cross sections ~ aLLt• calcu-

Li 
lated from expression (30) and averaged over the 
rotational states L, must approximately coincide 
with the experimental value of the total scattering 
cross section. The first assumption is confirmed 
by the recent measurements of Schulz for nitro­
gen, C7J which give for the total cross section of 
vibrational excitation a value an order of magni­
tude smaller than the total cross section for rota­
tional transitions. The total cross section for the 
scattering of electrons on molecules was measured 
in many articles, [ 3--s] but since the values of the 
cross sections for the rotational and vibrational 
excitations were not known, then usually they were 
assumed to be small and the total cross section 

for the transitions L- L + 2 is the same in expres- was considered to be elastic. As is evident from 
sions (36) and (37). An essential difference, how- Fig. 1, the cross sections of the rotational transi-
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tions are comparable with the elastic transition 
cross section. Therefore, it is necessary to com­
pare not the elastic scattering cross section crLL 
but the total cross section of rotational transitions 
(including the elastic transition L - L as well) 
with the measured cross section. As is evident 
from Eq. (34), L crLL does not depend on L. 

Lt t 

Therefore, in a comparison with experiment, there 
is no necessity to average this sum over the initial 
distribution of rotational states. A comparison of 
the total scattering cross sections (experiment and 
theory) for N2, 0 2, and H2 molecules is shown 
correspondingly in Figs. 1a-1c. Experimental 
values [3, 4•26 ] are indicated by dotted lines. 

Another possible method of comparison consists 
of an evaluation of the energy losses associated 
with the passage of electrons through a molecular 
gas, when the energy of the electrons is so small 
that the losses are basically associated with the 
excitation of rotational states. We immediately 
find that in our case such a comparison may only 
be qualitative in nature, since the region near the 
threshold for vibrational excitations is just the 
lower limit for applicability of the adiabatic ap­
proximation. The average energy loss per unit 
time of an electron beam, due to the excitation of 
rotational states, can be expressed in the form 

dE 
- dt = V ~ nLCTLL/')ELL., (40) 

LL, 

where v is the velocity of the electrons (assuming 
that mv2/2 » D.ELLt• we shall regard it as con­
stant); D.ELL1 is the energy difference between the 
two rotational levels L1 and L; nL is the relative 
density of molecules existing in the state L at a 
given temperature. Using the expression EL 
= BL(L + 1), where B is the rotational constant, 
and including the transitions L - L ± 2, which are 
most important at low electron energies, we obtain 

-dE/ dt = 6nva02B, (41) 

where n is the total density of molecules. 
The ratio of the total losses to the elastic will be 

(42) 

where m is the electron mass, M is the mass of the 
whole molecule. The dependence of the quantity A.' 
on the electron energy E is given in Fig. 2 for 
nitrogen. Curves 1 and 4 correspond to average 
energy losses, determined by measuring the drift 
velocity of electrons in molecular nitrogen under 
the action of an electric field. Curve 4 is taken 
from the book by Massey and Bur hop, [ 30] and 

.:1 
JO 

::~ 
0 0.2 Oft 0.6 0.8 (0 

[.ev 

FIG. 2 

curve 1 from the data of Crompton and Sutton. [ 31 ] 

Here the average value of the electron's energy is 
plotted along the axis of abscissas. Curve 3 corre­
sponds to the above mentioned calculations by 
Gerjuoy and Stein, [ 15 ] and curve 2 corresponds to 
the results of the present article. As is evident 
from the Figure, the average value of the energy 
losses, calculated on the basis of formula (30), 
does not differ very much from the experimental 
data.C 3oJ 

A tendency towards an increase in the value of 
A.' to the side of very small electron energies is ob­
served in both indicated cases. One can explain the 
discrepancy between the theoretical and experi­
mental curves by the remark cited above with re­
gard to the limit for applicability of the adiabatic 
approximation at low energies. It is easy to ex­
plain the increase of the experimental curve 
towards the side of larger energies by an increas­
ing contribution coming from excitation of vibra­
tional states. The measured values of the energy 
losses in oxygen appreciably exceed the calculated 
values, and therefore are not given. It is easy to 
understand this, if the following fact is taken into 
account: the excited electronic levels nearest to 
the ground state of the 0 2 molecule lie altogether 
at~ 1 eV above the ground level, and among the 
electrons possessing an even lower average en­
ergy, there are many such whose energy is greater 
than 1 eV and which thus introduce a significant 
contribution to the cross section. 

In conclusion, the author expresses his gratitude 
to V. I. Gerasimenko for constant interest and 
valuable advice. 
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