
SOVIET PHYSICS JETP VOLUME 22, NUMBER 4 APRIL, 1966 

MAGNITUDE OF THE CRITICAL JOSEPHSON TUNNEL CURRENT 

I. 0. KULIK 

Physico-technical Institute of Low Temperatures, Academy of Sciences, Ukrainian S.S.R. 

Submitted to JETP editor April 26, 1965 

J. Exptl. Theoret. Phys. (U.S.S.R.) 49, 1211-1214 (October, 1965) 

It is shown that the maximal magnitude of the superconducting tunnel current for zero poten
tial difference is always less than the current in the normal state for a bias equal to rr!:l./2 
(without taking into account effects associated with limitation of the Josephson current by its 
own magnetic field). 

RECENT investigations have confirmed Joseph
son's prediction [i] about the existence of an un
damped current at zero potential difference between 
two superconductors separated by a thin dielectric 
barrier. From the simple theory of this phenom
enon developed in, besides in the article of 
Josephson, also in the articles by Anderson [2] and 
by Ambegaokar and Baratoff, [a] it follows that the 
magnitude of the critical Josephson current is 
given by (at T = 0) 

ll 1 
ls = 2~ RNN' (1) 

where RNN is the resistance of the tunnel junction 
in the normal state and !:l. is the gap. This formula 
pertains to the case of superconductors with iden
tical gaps: !:l.1 = !:l.2 = !:l.. A similar dependence also 
exists for !:l.1 r< !:l.2 (see[2•3J). 

In all cases experiments on superconducting 
tunneling[4-7] give for the maximal Josephson cur
rent a value J max which is smaller than J s. The 
present note is devoted to an analysis of some of 
the reasons why this may occur. As will be shown 
below, a more exact theory leads to the inequality 
Jmax < Js· Here we assume that the transverse 
dimensions of the tunnel junction are small enough 
that one can neglect the effects of finite "depth of 
penetration" of the superconductinfs tunnel current, 
considered by Ferrel and Prange. B] 

The authors of[2•3J start from a tunneling tran
sition Hamiltonian of the form 

HT = ~Thqa11a.+aqa. + h.c., 
hq 

(2) 

where ak_a and aka are creation and annihilation 
operators for an electron with momentum k and 
spin projection a (a= ± 1/2) in the left metal; aq a 
and aq a are the corresponding operators in the 
right metal (we shall use the same symbols for 

the operators which create electrons in the left 
and right metals, distinguishing them only by the 
indices k and q for the momentum, which obviously 
cannot lead to any misunderstanding). 

The Hamiltonian (2) describes tunneling transi
tions through the barrier with conservation of spin. 
In the present article, we shall start from a Hamil
tonian of more general form: 

Vn = ~Tkqnakc/aq" + h.c., 
kq 

V. = h Tkq 5 ak<Z +a_qc;: + h.c. 
kq 

(3) 

(4) 

(5) 

where Vn describes transitions without change of 
spin, V s describes transitions accompanied by a 
change of the electron's spin projection; Tkq and 
T~q are the corresponding matrix elements of the 
transition. 

Processes described by the Hamiltonian V s may 
occur with appreciable probability in the presence 
of, for example, paramagnetic inclusions (impuri
ties) in the dielectric layer of the tunnel junction. 
In actual tunneling experiments, in which a thin 
(~ 10 A) layer of the oxide of one of the metals 
plays the role of the dielectric, atoms (molecules) 
of oxygen, not entering into the reaction, may play 
the role of such paramagnetic impurities, or mole
cules of the oxide themselves if they are paramag
netic. In addition, even if such magnetic centers 
are not present, spin reversal during the transition 
may be realized as a result of spin-orbit coupling. 

Since the detailed structure of the tunneling 
barrier is unknown, and HT is only a phenom
enological Hamiltonian, it is of interest to consider 
a similar Hamiltonian of the more general form (3). 

It is easy to verify that the relations 

T n• Tn r•• T" 
l<q = -1<.-q. kq = -1<,-q• (6) 
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follow from the requirement of invariance of the 
tunneling Hamiltonian (3) under time reversal (see, 
for example, [ 9]). 

Using expressions (6), Vn and V ~may be re
written in the form (compare with [2 ) 

Vn = ~Tkqn (attaqt + a~q~a-k~) + h.c. , (7) 
kq 

V. = ~Tkq8 (atta-q~ + aqt+a_k~) +h.c. (8) 
kq 

Going on to the calculation of the Josephson ef
fect, we find the correction ~E to the energy of 
two superconductors caused by the interaction 
HT = Vn + Vs. Repeating the calculation of 
Anderson, [2] we obtain the following expressions 
in second-order perturbation theory (for T = 0): 

!)E = Mn + Ms; (9) 

!)En= -2 ~ ITii.qnlzluli.Vq + UqV11.12' (10) 
li.q 811. + 8q 

!)E.= -2 ~ jTkq"lzluli.Vq- Uqvli.l2' (11) 
hq 811. + 8q 

where uk, vk and uq, vq are the parameters of 
Bogolyubov's canonical transformation for the left 
and right superconductors, and Ek and Eq are the 
corresponding energies of the quasi-particles: 

811.= 0~12+6~~.2)'''• 8q= (j!)qlz+sq2)'''· 

Here one should regard uk, vk, uq, vq and the gaps 
~k• ~q as complex quantities, proportional to cer
tain phase factors ei«Pi and ei«P2 (for the left and 
right metals, respectively). 

On the basis of Eqs. (10) and (11), the term in 
the total energy depending on the relative phase 
difference 'Pi - cp 2 has the form 

M! = -2 4<1Tii.qni2-1Tii.q•I2)2Re u~~.·v~~.·uqvq• (12) 
li.q 811. + 8q 

Using the relations 

(13) 

and regarding I ~kl , I ~ql and Tkq' T~q as weakly 
energy dependent in the interval ~E ~ ~ in which 
the integral (12) diverges, we obtain 

MJ = -Nt(O)N2(0) {<1Tnl 2>- <1Tsl 2>} 

where Ni (0) and N2(0) are the densities of electron 
states in the left and right metals, and (I Tl 2) is the 
average of I Tkql 2 with respect to the angles be
tween the vectors k and q on the Fermi surface. 

The term in the energy depending on the rela
tive phase difference 'Pi - cp 2 corresponds to a 
current given by[2J 

l= ~e Nt(O)Nz(O){<ITni 2>-<ITsl 2>} 

(15) 

We note that exactly the same result is obtained 
in the technique of Ambegaokar and Baratoff, [a] in 
which the tunnel current (but not ~E) is calculated 
directly. 

In order to obtain a formula analogous to (1), it 
is necessary to compare (15) with the current JNN 
in the normal state. In the present case the mag
nitude of this current is given by the expression 

lww= 4~e Nt(O)N2(0){<1Tni 2>+<1Tsl 2>} V, (16) 

where V is the applied bias. The factor associated 
with V in this formula represents the reciprocal 
of the junction's resistance RNN in the normal 
state. 

Comparing (15) with (16), we obtain the following 
expression il for the superconducting tunnel current 

The maximal current occurs in the case when 
I sin ('Pi - cp 2)1 = 1. Comparing expression (17) with 
formula (1), we obtain 

lmax =I <1Tnl 2)- <1Tsl 2> I,;:::: 1 (18) 
ls I <1Tni 2>+<1Tsl 2> -...:::: . 

The formula obtained proves the assertion 
stated at the beginning of this article, according to 
which the maximal value J max of the critical 
Josephson current is always smaller than the 
value of J s given by formula (1). 

In conclusion, we note that relation (1) may also 
be broken in connection with the use of a Hamil
tonian of the form (2) in which, however, no assump
tion is made that Tkq = T -k' -q· In this case, as 

one can easily show, the magnitude of the critical 
Josephson current also turns out to always be less 
than Js. Such a Hamiltonian may possibly be ap
plied to the description of tunnel transitions in the 
absence of reflection symmetry of the barrier or 
in the presence in it of trapping-type inclusions, so 

1>For simplicity, we confine our attention to the case of 
identical superconductors: /)1 = /)2 = /); however, all of the re
sults in fact remain unchanged for /) 1 =f=/\2 • In particular, the 
final formula (18) is valid in the general case. 
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that the acts of absorption and emission of elec
trons by the tunnel barrier are uncorrelated, and 
consequently there is no symmetry with respect to 
the replacement of t by -t (if, in general, similar 
transitions may be described by the perturbation 
Hamiltonian HT). 
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