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The surface impedance of a ferromagnetic metal is calculated in the case of anomalous skin 
effect at frequencies near ferromagnetic resonance when spatial dispersion of the magnetic 
susceptibility must be taken into account in principle. The field distribution within the metal is 
investigated. It is shown that at resonance the field is a standing wave. 

1. INTRODUCTION. FORMULATION OF PROB-
LEM 

INTEREST in effects due to allowance for spatial 
dispersion has increased recently. This is con­
nected with more concerted studies of wave propa­
gation in a plasma,m and especially plasma ef­
fects in solids [2]. A natural measure of the role 
of spatial dispersion in the analysis of electro­
magnetic properties of a medium is the ratio a/A., 
where A. is the electromagnetic wavelength, and 
the "characteristic length" a is essentially con­
nected with the nature of the excitations interacting 
with the electromagnetic field. 

A ferromagnetic metal contains, besides free 
carriers, also a spin branch of the energy spec­
trum. Therefore, two different parameters arise 
in general when spatial dispersion is taken into 
account. In the case of a free carrier a is equal 
to the mean free path l. We note immediately that 
in a strong magnetic field the effective length is 
the cyclotron radius R = lj v - iw I /we ( v 
= collision frequency, w = frequency of alternating 
field, We = cyclotron frequency). When allowance 
is made for spatial dispersion of the magnetic 
moment, a must be taken to be the lattice con­
stant. In this respect we note the following. The 
ratio a/A. is ~ 10- 4 even in the optical band. 
Since we encounter most frequently the square of 
this quantity, it is clear that the spatial disper­
sion connected with spin waves can become sig­
nificant only at frequencies close to resonance, 
when the parameter (a/A. )2 must be compared 
not with unity, but with the relative deviation from 
resonance ~w/wr, the minimum value of which is 
determined by the line width. 

In the radio frequency region (A. - 1-10 em ) 
the condition (a/A. )2 3:. ~w/wr cannot of course 

be satisfied even in the most perfect dielectric 
samples. In metals, however, this relation is 
satisfied relatively readily, since the wavelength 
in the metal is several orders of magnitude 
smaller than the wavelength in vacuum. 

In a ferromagnetic metal there is a particu­
larly favorable possibility for the study of 
spatial-dispersion effects. Resonance is ensured 
in a ferromagnetic metal by excitation of a spin 
wave, and is manifest in a corresponding singu­
larity of the magnetic susceptibility. The conduc­
tion electrons not only produce in this case 
(owing to the skin effect) the magnetic-moment 
inhomogeneity required to obs,erve the volume ef­
fects, but can by themselves be put relatively 
easily in conditions of strong spatial dispersion. 
In other words, the wavelength dependence is 
significant not only in the magnetic permeability 
/J., but also in the conductivity a (anomalous skin 
effect [3] ) • 

This paper is devoted essentially to the calcu­
lation of the surface impedance of a metal at fre­
quencies close to ferromagnetic resonance, when 
the spatial dispersion of the magnetic permeability 
must be taken into account. The impedance is de­
termined by the wave properties of the medium, 
and the latter are in turn determined by the dis­
persion equation, which includes both the mag­
netic permeability and the dielectric constant 
(for a metal E = 47ria I w ) : 

(1) 

Here k is the wave vector. Naturally, a change in 
the form of the function E ( w, k) changes the wave 
properties of the medium, and consequently also 
the surface impedance. We shall trace this 
change by analyzing several cases. The influence 
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of the magnetic permeability on the dispersion 
properties of the medium is manifest, in particu­
lar, in the possible existence of electromagnetic 
waves at frequencies for which there are no 
waves in a nonmagnetic medium. For example, in 
the region of frequencies where E = -w~/w2 ( w0-

plasma frequency), it becomes possible for a 
weakly damped wave to propagate if 

Re fl < 0, I Re Ill?> lm fl. 

The formulation of the problem is as follows. 
We consider the reflection of an electromagnetic 
wave from a metallic ferromagnetic half-space 
situated in a magnetic field parallel to the surface 
of the metal. The alternating field propagates 
normally to the surface. In the resonance region 
of interest to us, the magnetic permeability can 
be written in the form 

fl(w, k) = (6 + ~k2)-1 , s = (wr- w) I Q, (2) 

where we have for a field parallel to the surface 

Wr = y(BH)'f,, ~=a/ 4:rt, Q = 2:rtyM(B / H)'i'. 

Here H is the constant field, B = H + 47TM the 
magnetic induction, M the saturation magnetic 
moment, y = ge/2mc ( g = spectroscopic factor, 
m =free-electron mass), and a = ®ca%.tBM is 
the exchange constant ( ®c coincides in order of 
magnitude with the Curie temperature and J.tB is 
the Bohr magneton.) 

Being interested only in the influence of ex­
change effects on the shape of the resonance line, 
we do not take into account the dissipation in ex­
plicit form, bearing in mind that in the case of 
necessity (for example, when choosing solutions 
of the dispersion equation (1) or in the presence 
of singularities along the integration contour in 
the corresponding integrals) we can add an in­
finitesimally small imaginary part to the fre­
quency w, which enters in the expressions for 
fJ. ( w, k ) and a ( w, k ) . 

The dependence of the magnetic permeability 
on the wave vector leads to the appearance of 
additional solutions of Eq. (1). To determine the 
additional (resonating) amplitude we use the 
boundary condition for the magnetic moment, 
which we write in the form 1) 

om/ 8z + sm = 0 

1 )It can be easily shown that, in the chosen approxima­
tion defined by Eq. (2), the use of a more general boundary 
condition, for example 

am, I az + z;,.m. = y,.h., 
is inconsistent. 

(3) 

on the boundary. The role of the parameter !; , 
which characterizes the state of the boundary of 
the magnetic material, is discussed in a paper by 
Pincus [4]. 

In two limiting cases (!; = 0 and !; = oo ), the 
analysis becomes much simpler, for when calcu­
lating the impedance by the Fourier method we 
can use in these cases the values of E ( w, k) and 
fJ. ( w, k) for unbounded space [5]. This possibility 
is based on the "indifference" of the electrons to 
the boundary conditions when l/f.. » 1. According 
to [5], the surface impedance in the limiting cases 
is 

_ 1 ( _ 0 _ 2 w ""~ E(w, k)dk z, s- )---
ni c 0 k2 - w2c-2e ( w, k) ll ( w, k) 

The role of spatial dispersion of the permea­
bility in a weak field under conditions of normal 
skin effect 

(4) 

(5) 

(6) 

was investigated by several authors [G-S]. None­
theless, we present in Sec. 2 several exact 
formulas which describe the shape of the reso­
nance curve in this case. In Sec., 3 we consider 
the reflection of an electromagnetic wave from a 
ferromagnetic dielectric. The expression ob­
tained for the impedance can naturally be applied 
to a ferromagnetic metal in which helicon waves 
propagate [9]. 

In Sec. 4 we investigate the magnetic metal 
under conditions of anomalous skin effect. Analy­
sis of the resonance curves with the aid of formu­
las (4)-(5) discloses a sharp dependence on the 
boundary condition for the magnetic moment. The 
impedance in the direct vicinity of resonance is 
therefore calculated with the aid of the general 
condition (3). A more complete characteristic is 
the distribution of the electromagnetic field deep 
in the metal. This question is dealt with at the end 
of Sec. 4. 

In the Appendix we discuss the distribution of 
the field in a dielectric near the edge of the exci­
ton absorption band. This question, as shown be­
low, is close to that considered in Sec. 4. 

2. NORMAL SKIN EFFECT 

The phenomenon of ferromagnetic resonance, 
as is well known, consists in excitation of homo­
geneous precession of magnetic moments, which 
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leads (if dissipation is neglected) to infinite 
energy absorption at the resonant frequency. This 
is manifest, in particular, in the surface imped­
ance becoming infinite ( Z ~ ( wr - w)- 112 ). When 
exchange interaction is taken into account, in­
homogeneous oscillations of the magnetic mo­
ment-spin waves-are excited in the conductor. 
Spin-wave excitation is connected with a finite 
energy loss. An account of the exchange interac­
tion therefore leads naturally to a finite value of 
the impedance even in the absence of dissipation. 

When inequalities (6) are satisfied we have 
E: ( w, k) = E: ( w) = 4nia/w, where a0 is the static 
conductivity in the absence of a magnetic field. 
For the surface impedance in the case when 
m = 0 on the boundary we obtain with the aid of 
formula (4) 

c ktk2 
Zp = i 4:n:cro kt + kz (7) 

The values of k1, 2 are determined from the dis­
persion equation 

pk4 + £k2 - iko2 l e I = 0 (ko = w I c) 

by the condition Im k 1 ,2 > 0. 

(8) 

Formula (7) coincides with the results of Yu Lu 
and one of the authors [8] at 6 = ""· Of course, the 
result of Ament and Rado [s], obtained under the 
assumption that am/azlz=o = 0, differs formally 
from expression (7). The dependence of the im­
pedance on the boundary conditions will be dis­
cussed later. We wish to emphasize here that 
allowance for the exchange effects makes the 
surface impedance finite at all frequencies. 

Being interested in exact formulas for the de­
scription of the resonance curve at arbitrarily 
small deviations from resonance, we write (7) in 
the form 

1-i 
Zp= 2~[2b(a2 +bi)]'f, {[a+ (aZ 

+ bi)'fz]'lz + i[-a + (a2 + bi)~'J'iz}, 

where we introduce the notation 2a = l;/{3 and 
b = k~ I E: I I {3, with the sign of the square root de­
termined from the condition Re Zp > 0. 

(9) 

Putting Zp = Rp + iXp and separating the real 

Xp 

FIG. 1 

and imaginary parts, we obtain for the real part 
of the impedance 

a) W < Wr 

ch-It { [ t ( t t )'lz 
Rp = Z-l'2 ~ l:ib e-t/2 ch'/, 4 ch 4 + ch'f, 2 

- sh'iz t (- sh !_ + ch'h t)'''l 
4 4 2 -

+ e112 rch'/,t_ (- ch!._ + ch'/, tt 
4 ~ 2. 

+ sh'/, {- ( sh: + ch'/,;) '/']} ; (lOa)* 

b) CO> Wr 

ch -1 t { [ t ( t t ) 'I• 
Rp = 2}'2 ~ l'ab et/2 ch'h -4 ch -4 + ch'/,2 

t ( t t )'/'1 + sh'i•- - sh -- + ch'i•-
4 4 2 . -

[ t ( t t )'I• - e-t/2 ch'iz 4 - ch :{ + ch'f, i 

t ( t t \ '!.l} - sh'/,_ sh- + ch'i•--J _ . 
4 4 2/ -

(lOb) 

Here sinh t = b/a2• An analogous expression can 
be written for Xp· 

The frequency dependence of the real and 
imaginary parts of the impedance is shown 
schematically in Fig. 1. The resonant frequency, 
i.e., the frequency of which Rp has a maximum, 
turns out to be 

( a M )''• W ~ Wr-0,57Q --. 
6o2 H . 

( 6o2 = _c2_)' 
2:n:crow 1 

and differs little from the results of Ament and 
Rado [s] (where it is assumed that Om./ Bz I z=o = 0). In 
addition, as shown by comparison of the resonance 
curves in cases (4) and (5), the entire shape of the 
resonance curve is not very sensitive to the 
boundary conditions for the magnetic moment. 
The impedance under the general boundary condi­
tion (3) was investigated earlier [7 •8]. The pres­
ence of the additional parameter 6 makes it pos­
sible to obtain numerical agreement with experi­
ment [to], although it leads to no qualitative 
changes in the line shape. 

3. DIELECTRIC 

Allowance for the exchange interaction in a 
dielectric also makes the impedance finite in the 
resonance region, regardless of the boundary 
condition for the magnetic moment. When 

*sh = sinh, ch = cosh. 
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FIG. 2 

€( w, k) = E ( w) > 0 it follows from (4) that 

( ~ko2) -'1• e-'1• y2 
J;lp = (x2 + 4)'1•[(x2 +4)'"- x1'1• ' 

( ~ko2 ) -'1• e-'1• y2 
Xp = (x2 + 4)'"[(x2 + 4)'" + xJ'I·, (11) 

where X = ~I ( fjiqE )112• In this case the resonance 
curve is shown in Fig. 2. The resonance shift is 

Wr- w ~ 0 3 Q (~ko2e) 'I•. 

As in the normal skin effect, the resonance curve 
is little sensitive to the boundary conditions. 

It is natural to apply formulas (11) to a ferro­
magnetic conductor placed in a strong magnetic 
field (weT» 1), under the condition kR « 1. It 
is well known [1 1•12 •9] that when the foregoing in­
equalities are satisfied helicon waves can propa­
gate in the conductor if the angle ~ between the 
wave vector and the magnetic field is not too 
close to rr /2 (cot ~ > R/l). In this case two waves 
are excited in the conductor, one of which is 
weakly damped, and the other is totally reflected. 
The existence of the weakly damped wave makes 
the effective dielectric constant real. In the 
simplest case of parallel k and H it is conven­
ient to go over to circularly polarized waves 
e± = ex ± iey. As a result, the impedance element 
Z+ corresponding to the resonating wave turns 
out to be connected in simple fashion with the im­
pedance Zp defined by expression (11): 

(12 

In this case it is necessary to put in (11) 
~ = (wr- w )/4ryM and wr = '}'H (H II Oz in this 
case), and the role of the effective dielectric con­
stant is assumed by the quantity E = 4rrNec/wH, 
where N is the difference of the carrier densities. 

We note that in an ordinary metal the element 
Z+ is a real quantity (if the·number of electrons 
exceeds the number of holes) [11], whereas in a 
ferromagnet Z + is complex because of the strong 
coupling between the helicon wave and the damped 
spin wave. The widths of the Rp ( w) and Xp ( w ) 
curves are of the order of (/3k~E )1/ 2 , and naturally 
vanish as 13- 0. The values of Rp and Xp tend 
in this case to infinity as w - wr. 

4. ANOMALOUS SKIN EFFECT 

1. Let us discuss ferromagnetic resonance in 
a metal under conditions of anomalous skin ef­
fect in a strong magnetic field. We shall assume 
the following inequalities to be satisfied 

kR~1, Wc't'~1. (13) 

In the preceding paper [5] we investigated the 
surface impedance of a ferromagnetic metal under 
anomalous skin effect without taking account of the 
spatial dispersion of the magnetic permeability, 
which, as already mentioned, is significant only in 
the direct vicinity of the resonance. As shown 
earlier, [13• 5] in the case of the anomalous skin 
effect the singularity of the impedance is of the 
order of Z ,.., ( wr - w ) -2/3• We are interested 
here in the qualitative changes in the frequency 
dependence of the surface impedance which result 
from an account of the exchange interaction. 

Let us consider first the dispersion equation 
(1). The electric conductivity tensor of the metal 
O"ik ( w, k) was calculated by Kaner and Skobov [14] 

under the assumption that the carrier energy has 
an isotropic dependence on the momentum. Under 
conditions (13), the tensor O'ik• as shown in [14], 

can be regarded as diagonal (accurate to terms 
of order (kR)- 1 ). The element Exx(w, k), which 
determines the dispersion properties, is of the 
form 

wo2 w 
s(w, k) = -n-ctgn-, (14)* 

wkv We 

where w~ = 3rrNe2/m is of the order of the square 
of the plasma frequency and v is the carrier 
velocity on the Fermi boundary. 

As seen from (14), the sign of € ( w, k) is de­
termined. by the ratio of w to w0 . The case 
cot ( rrw/wc) < 0 will be discussed in part 4 of the 
present section. Of greater physical interest is 
the region cot(rrw/w0 ) > 0. For simplicity we. 
assume that the ferromagnetic-resonance fre­
quency is small compared with the cyclotron 
frequency ( w « w0 ). Accordingly, E ( w, k) takes 
the form 

Using (15) and (2), we write the dispersion 
equation (1) in the form 

(15) 

p(TJ, x) = x5 + T)Xa + 1 = 0. (16) 

We have gone over to the dimensionless variable 
x = k/q, q5 = w~/13c2R. The parameter 71 = ~//3q2 
characterizes the closeness to resonance. 

*ctg =cot. 
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FIG. 3 

Equation (16) corresponds to the dispersion 
curve shown in Fig. 3. We can readily see that 
Eq. (16) can have real positive solutions. This 
means the possibility of existence in the metal 
of weakly damped electromagnetic waves. At 
large negative values of TJ, we obtain from (16) 

for the ''tail'' of the right branch of the curve of 
Fig. 3 the dispersion equation of the spin wave 

(17) 

and for the "tail" of the left branch the wave with 
anomalous dispersion-the equation 

FIG. 4 

We put TJ = TJo + 6 and x 1, 2 = x0 ± A, where o and 
A are small compared with TJo and x0• From (16) 

we obtain, taking account of the smallness of o 
and A, 

~2 = -6xo2 (3Y]o + 10xo2)-1• 

When o < 0 both roots x1, 2 are close to the 
real axis. We represent p ( TJ, x) in the form 

p(YJ, x) = Ps(1]o, x) (x- x1) (x- x2), 

P3(l']o, x) = x 3 + 2xox2 + "/3xo2X + 2/3Xo3• 

(21) 

(18) Integrating in (20) with the aid of the formula 

A ferromagnetic metal in a strong magnetic field 
is a natural example of a medium in which a wave 
with negative group velocity can propagate. 

As seen from Fig. 3, the dispersion curve 
w (k) has an extremum at w = w~, which is the 
end point of the spectrum. At frequencies larger 
than w~, weakly damped waves (17) and (18) are 
excited in the metal, and the energy does not 
penetrate into the metal at lower frequencies. 
The frequency w~ must be identified with the 
shifted resonant frequency. The shift of the reso­
nance can be readily obtained from the conditions 
p ( TJo, x0 ) = 0 and p;_ (TJ0, x0 ) = 0. Hence xg = %. 
TJo = - ( %) (% )2 / 5 R:J -2, and the shifted frequency 
turns out to be equal to 

w,.' = w,- Y]oQ~q2 ::::; Wr + 2Q~q2 • (19) 

When H ~ 104 Oe, ®0 ,..., 10-13 erg, and 60 

~ 10- 5 em, the shift of the resonance has the 
following order of magnitude: 

(J) I _ (J) Q ( e )'is ( a3 )'is r r ~ -~q2 ~ _c_ __ :=:::; 10-2. 
Wr Wr f.tBM 6o2R _. 

2. The foregoing dispersion properties should 
become manifest in observations of surface im­
pedance. Let us investigate first the surface im­
pedance when m ( 0) = 0. We write expression (4) 
for Zp, using (2) and (15), in the form 

2 (J) 

Zp =--,-~lp(YJ), 
JU c1Jq 

~ xdx 
lp(YJ)=~ 5_j_ 3+1. (20) 

0 X I Y]X 

1 
[x- Xi+ ie]-1 = P--- + ni6(x- xi), 

x-xi 
we obtain 

lp(YJ) = nixo/p3(Y]o, xo)~, 

or, putting x0 R:J 1 and TJo R:J -2, 

I p ( YJ) ::::; 2ni I 51 6 I '(,. 

The roots of the polynomial p3 ( TJ 0, x) lie in the 
complex plane. Their contribution can be readily 
verified to be negligibly small. When o > 0, the 
roots x1, 2 move away from x0 in the complex 
plane, and there are no singularities on the inte­
gration contour. Jp ( TJ) is then equal to 27T/5o 112 

Far from resonance, at I TJ I » I TJo I, the re­
sults of the preceding paper [5] apply. The im­
pedance in this region is equal to 

Zp = ~~ £1-'h~ ( cz!!_ )'i, exp{ in[~ 8(w- w,)- 1 ]} , 
3~ c ~/ 3 . 2 

{ 0, W < Wr 
8(ro- ffir) = 1 . , w> Wr 

(22) 

Thus, an account of the spatial dispersion of the 
magnetic permeability leads to a root singularity 
of the impedance, in contrast with the singularity 
Z ~ ( wr - w) - 2 / 3 without account of the exchange 
interaction. The resonance curve for the case 
m ( 0) = 0 is shown in Fig. 42). When the exchange 

2 )The dashed line here and in Fig. 5 denotes the behavior 
of the impedance without account of the exchange effects. 
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constant tends to zero, the maximum value of .Xp 
at w > w~ increases, the shift of the resonance 
tends to zero, and the curve approaches its limit­
ing form. 

We investigate in similar fashion the surface 
impedance in the opposite limiting case 
om/azl z=o = 0. Going over to a new variable, we 
rewrite (5) in the form 

(23) 

Let us consider the integral in (23) when Tj > 'llo· 
In this case the integral contains no singularities 
on the integration path. We can readily see that 
dJn/dT/ is positive in this region. For large values 
of 71 

Near the end point of the spectrum Tj = Tlo + 6, 
o > 0, and the integral is equal to 

ln (TJo + 1\) ::::: - (2n /5) 6'1• < 0. 

Thus, there exists a value Tj > Tlo at which Jn ( Tj) 

vanishes. Estimates show that this value of Tl lies 
between zero and minus unity. The existence of a 
zero in the function Jn ( Tj) leads to an infinite 
imaginary part of the impedance Xn. 

When 11 < 170, the denominator in (22) has real 
roots. Carrying out calculations similar to those 
made above, we obtain near Tlo 

ln::::: -(2ni/5)l61'1•. 

When 171 I » l11o I , as shown earlier [5], Zn dif­
fers from Zp only by a real factor of the order 
of unity. 

Finally, the resonance curve for m' ( 0) = 0 is 
shown in Fig. 5. We note that in this case the 
real part of the impedance vanishes at resonance 

3. In view of such an appreciable dependence 
of the resonance curve on the boundary condition 
for the magnetic moment, it is of interest to cal­
culate the impedance under the general condition 
(3). It is necessary for this purpose to consider 
the complete system of equations consisting of 
Maxwell's equations and the Landau-Lifshitz 
equation for the magnetic moment: 

aex ioo 
-8 -=- (hy + 4nmy); 

z c 

ffia = ffir + 4nyM. (24) 

In the derivation of the linearized equation for the 
magnetic moment we made use of the fact that the 
resonant behavior is displayed only by the y-com­
ponent of the magnetic moment. In the equation 
for mz we can neglect the exchange term, after 
which mz can be readily eliminated. 

It is necessary to go over in (24) to Fourier 
components. It is convenient to continue the field 
e to the half-space z < 0 in even fashion, and 
continue h and m in odd fashion. This leaves in 
the equations that relate the Fourier components 
the values hy ( 0 ) and my ( 0 ) of the field and of 
the magnetic moment on the boundary. To elimi­
nate my ( 0 ) with the aid of the boundary condition 
(3), it is necessary to determine my ( 0 ). This is 
done by differentiating the last equation of (24) 
and then taking the Fourier components. The final 
expression for the impedance, under the general 
boundary condition, is 

where 

2 oo { ""~ ft~< n A 2 } Z~= --:-' -dk+ ~-- , 
m c 0 D,. 2 'gB- ~ 

A = ~ r ft~tk2dk 
no D,. ' 

D,. = k2 - oo2e~tft~tfc2, 

B = ~ I ftkgkd~ 
no D,. ' 

gh = k2 - oo2enfto/c2, 

(25) 

f-lo is the permeability without account of the ex­
change interaction. When the parameter t has 
values infinity or zero, this expression goes over 
into (4) and (5), respectively. In particular, when 
t = 0, the impedance Z~; at the point ~ = 0 re­
mains finite, because gk contains ~ -t. 

We are interested in the behavior of Zt; near 
the shifted resonance frequency wr. By calcula­
tions similar to those carried out above we find 
that Z~; is equal to ( Tl = Tlo - o, o > 0) 

z~ = Ci~ I (ic2 + ~6''•)' (26) 

where the constants c 1 and c2 are respectively 
equal to 4wr/5cjlq3 and 4q/5. We see from (26) 

I lln 

~\ 
I \ 
I \ 
I ' I ' 

FIG. 5 
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that the impedance in the resonance region re­
mains finite when the mixed condition (3) is 
satisfied on the boundary. Formula (26) allows us 
to determine the parameter t from experiment. 

We note that the derivative dRt;/d7] has a singu­
larity at resonance. Expanding in (26), for finite 
t but small 6, we obtain 

dRc_ = ~ Wr~2 f!-'1• 
d1J 8 c~q5 

At frequencies below resonance, i.e., for 11 = 7Jo 
+ 6 and 6 > 0, we get from (25) 

(27) 

(28) 

The derivative dXt;/d7J becomes infinite when 
resonance is approached from the low-frequency 
side. 

The region of applicability of the formulas ob­
tained above is determined by the inequalities 
(13). Putting k = qx0 (x0 "' 1 ), we obtain 

kR ~ [(-~-=-y 4n~ JlB ]''·. 
boa E>c 

which amounts to 102 in fields H "' 104 Oe. If the 
condition kR » 1 is regarded as a condition im­
posed on the magnetic field, then we can see that 
it is satisfied for all real values of the field. 

We note that in ordinary metals the condition 
kR » 1 is valid only in very strong fields. It is 
readily realized in our case because the effective 
magnetic permeability, determined by the magni­
tude of the exchange effects, becomes anomal­
ously large in the direct vicinity of resonance. 
The condition under which the skin effect becomes 
anomalous, kl > 1, is satisfied automatically by 
virtue of the second inequality in (13). The re­
quirement that the parameter ka, which is con­
nected with the spatial dispersion of the magnetic 
permeability, be small likewise does not impose 
any limitations on the magnitude of the field. 
When H "' 104 Oe we have 

[ a3 4nMJ..lB ]''' ka ~: ------ ~ 10-3• 
6o2R E>c 

The most difficult to attain in ferromagnetic 
metals is apparently the second condition of (13), 
R « l, because of the large residual resistance. 
In recent experiments of Reed and Fawcett [15] 

however, in which the purest samples of iron 
were used, the ratio of the mean free path at 
helium temperatures to the mean free path at 
room temperature amounted to lHellr "'200-300. 
In a field H "' 105 Oe (the field used in [15] ), this 
apparently makes the inequality R « l realizable. 
In addition, to observe the investigated effects it 

is necessary, of course, that the proper line 
width of the ferromagnetic resonance be consid­
erably smaller than the exchange shift (19). We 
note in this connection that Rado and Weertman[tO] 
observed exchange broadening under the conditions 
of normal skin effect. 

4. The existence of the weakly damped waves 
(17) and (18) near the resonant frequency causes 
the metal to become transparent in the corre­
sponding frequency region. Let us consider in 
this connection the field distribution inside the 
metal. For simplicity we confine ourselves to the 
case m ( 0 ),= 0. The electric field in the metal is 
described by the expression 

e(z)=-~-~h(O) r Jl(w,k)·coskz __ dk (29) 
ni c ~ k2 -w2c-2e(w,k)J..t(w,k) · 

We transform this expression into 

e z = _h(O)__ ~ r x(eiqzx + e-iqzx) dx 
( ) :rti c~qa ~ xs + TJXa + 1' · 

(30) 

When 1J < 7Jo the denominator of the integrand 
in (13), as already mentioned, has two roots lo­
cated respectively in the upper and lower half­
planes near the real axis. Closing the contour of 
integration of the first integral in the upper half­
plane, and of the second integral in the lower 
half-plane, we obtain for the field at infinity, 
z > 0, in the frequency region 171 I » I7Jo I (( Re 7J 
< 0 ), 

e (z) = 2h(O) ~ r exp( -il TJ 1-'/sqz) + exp(ij TJ l:'·qz) J. 
c~q3 L 31'111'1• 21111 1' 

(31) 

The first term in (31) characterizes the propaga­
tion of a wave with anomalous dispersion (18). In 
this wave the phase grows towards the boundary, 
whereas the energy decreases in the direction of 
positive z. The second term in (31) describes a 
deeply damped spin wave (17). 

Near the end point of the spectrum, the real 
positive roots of the dispersion equation coalesce. 
There are no damped waves at frequencies lower 
than w~. Let us consider the field distribution in 
this case 3'. Let us transform (29) by expressing 
the field in terms of the amplitude E 0 of the inci­
dent wave: 

4 w E0 f J..t(w,k)·coskzdk 
e(z)= nic1+-Zp-~ k2 -w2c-2e(w,k)f..t(w,kf' <32) 

3 )The authors are grateful to S. I. Pekar who called their 
attention to this question, which is in close analogy with the 
distribution of the field near the edge of the exciton absorp­
tion band in the dielectrid••] (see the appendix). 
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As shown above, the impedance Zp has a root 
singularity near the shifted resonance frequency 
wJ:.. The same singularity is possessed by the 
integral in (32). As a result, the field is equal to 

e(z) = 2Eo cos qzxo, (33) 

i.e., it has the form of a standing wave. The inci­
dent wave experiences total reflection and, as 
mentioned above, no energy penetrates into the 
metal. 

Under the more general boundary condition (3), 
the field inside the metal forms, as before, a 
standing wave at resonance, and the parameter 
!; determines the phase of the field. This is the 
cause of the essential dependence of the imped­
ance at resonance on the boundary condition for 
the magnetic moment. It can be shown that an 
analogous situation takes place also at frequencies 
below resonance. In this case the field has a more 
complicated structure, but there is no energy flux 
deep inside the metal. 

In conclusion we note again the circumstance, 
referred to at the beginning of the section. The 
effective dielectric constant of the metal depends 
essentially on the ratio of w to we (see formula 
(14)). If cot ( rrw/wc) < 0, then the dispersion 
relation near the resonance has the following 
form: 

(34) 

and is shown in Fig. 6. We see from this that in 
this case there is no end point of the spectrum, 
and the field inside the metal should constitute a 
traveling wave. Of course, in this case the im­
pedance has no singularities. 

APPENDIX 

DISTRIBUTION OF FIELD IN A DIELECTRIC 
NEAR THE EXCITON-ABSORPTION BAND EDGE 

The complete system is made up of the equa­
tions 

iw fJh 
- (e+4:rtP)=-0 , 

c z 
iw h ~ ~~ 

c - f}z' 

(A.l) 

where P is the polarization, w0 is the exciton 
absorption frequency, 'Y is proportional to the 
oscillator strength, and A is the damping con­
stant (A > 0 ). The term that takes damping into 
account is essential for a correct choice of the 
solution. 

w 

/( 

FIG. 6 

In fact, the case of reflection of electromag­
netic waves from the boundary of a dielectric 
near the exciton-absorption line differs from the 
reflection considered above from a ferromagnetic 
dielectric (Sec. 2) only in the sign of the effective 
mass of the excitation. In a ferromagnet the ef­
fective mass of the spin wave always is larger 
than zero, and the additional waves can exist only 
as a result of spatial dispersion of the conductiv­
ity. In a dielectric the exciton effective mass can 
be either positive or negative. Its sign coincides 
with the sign of the parameter a. We are, 
naturally, interested only in the case of negative 
effective mass, when additional waves can propa­
gate in the medium. 

The dispersion equation of the system (A.l) 
has for a < 0 the form 

p=4ny/jaj, s= (ro02-ro2-iA.ro)/lal. (A.2) 

It is easy to see (F~. 7) that Eq. (A.2) has at the 
point s = s0 = 2w0p1 2/c multiple roots with re­
spect to k2 when A = 0. 

We put s = So + 0, 0 = 01 + io", where o' > 0. 
From the definition of s it follows that o" < 0. 
We assume that o" is small compared with o'. 
The solution of (A.2) is 

kt, 2, a, 4 = + l'so I 2[1 ± 1'6' I 2so(1 + i6" I 6') ]. (A.3) 

It is convenient to introduce the notation 

Solutions satisfying the condition at infinity 
( Im k > 0) are 

kt = 'iG-~ -iT, 

FIG. 7 

(A.4J) 
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The field e is written in the form 

e(z) = Aeik,z + Beik,z, (A.5) 

after which we obtain A and B from the boundary 
conditions 

Eo+Erec=e(O), Ho+Hrec=h(O), 

dP I dz + sP I o = 0. (A.6) 

At resonance 

AQ __ .ko ~ - ix \; + ix 
· Bo= ---.-Ao, 
X ~ - iko ' ~ - lX 

where k0 = w0/c, and expression (A.5) for the field 
takes the form 

ko Eo { . . . · } (A 7) e(z)=----.- (~-zx)e"<z-(~+zx)e-'"z. · 
x ~- zko 

We finally write (A.7) in the form 

e(z) = 2iE0 ko / ~- .ikx I ei1J> sin(xz- <p), 
X ~-l o 

\jJ =tan- 1(ko/~), <p =tan- 1(x/~). (A.8) 

Thus, at resonance the field forms a standing 
wave and there is no energy flux into the dielec­
tric. The boundary parameter !; is connected 
with the phase of both the standing wave in the 
dielectric and the reflected wave in the vacuum. 
The surface impedance is then imaginary: 

Z = e(O) I h(O} = -iko I~. (A.9) 

corresponding to a unity reflection coefficient. 
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