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A general perturbation theory is developed for nonlinear oscillations in a collisionless plasma. 
The theory is not restricted by any assumptions regarding randomness of the phases. Summa­
tion of the secular terms of the perturbation theory yields equations for "slow" processes. In 
the case of sufficiently broad wave packets, the equations go over into the familiar equations 
of the quasilinear theory for a weakly-turbulent plasma. The converse limiting case, the evo­
lution of a periodic wave in the quasilinear approximation, is investigated in detail. 

1. INTRODUCTION 

NoNLINEAR oscillations in a collisionless 
plasma, which are described by the equations 1> 

fJFi +v~~+~E fJFi = 0 (1.1) 
at fJr m j fJv 

VE = 4:rt ~ eiNi ~ Fidv (1.2) 
j 

(j -index indicating the species of the particle), 
were considered in numerous papers (see the re­
views [1•2], where a detailed bibliography is found, 
and also the more recent papers [3- 10]). A charac­
teristic feature of the methods developed in these 
papers is the use, in one form or another, of the 
so-called "random phase" approximation, so that 
the results are applicable only to a turbulent 
plasma, where the wave packet is sufficiently 
broad. Yet in many cases (for example in a 
bounded plasma), it is necessary to investigate 
the dynamics of nonlinear periodic waves charac­
terized by a discrete set of wave numbers k; natu­
rally, the random-phase approximation is no longer 
applicable in this case. 

In the present paper we are considering a gen­
eral perturbation theory for plasma oscillations, 
without being confined to any assumption regard­
ing the randomness of the phases. The formal ex­
pansion is in powers of the oscillation field. In the 
general series of this theory we separate and sum 
sequences of secular terms, in analogy with the 
procedure used by Van Hove [UJ, Prigogine [12], and 

1>For simplicity we consider potential oscillations without 
a magnetic field, although all the results can be extended with­
out fundamental difficulty to include the general case. 

Balescu [ 13] to obtain the kinetic equations for 
weakly-nonideal systems. The summation of the 
"principal" sequences of the secular terms leads 
to quasilinear equations, which describe the reac­
tion of the oscillations on the distribution function 
of the plasma particles. The applicability of these 
equations, however, is not limited by any condi­
tions whatever with respect to the width of the 
wave packet. If this width is sufficiently large, 
then the foregoing equations go over into the known 
equations of the quasilinear theory for a weakly 
turbulent plasma [ 14 •15]. In the opposite limiting 
case we obtain equations for a "monochromatic" 
wave. The solution of these equations, obtained in 
the present paper, describes the evolution of the 
plasma distribution function and the field of the 
''monochromatic'' wave with account of the reac­
tion of the wave on the distribution function. 

2. PERTURBATION THEORY. SUMMATION OF 
DIAGRAMS 

Following Landau [tG], we seek a solution of 
Eqs. (1.1) and (1.2) subject to the initial condition 2> 

F (0, r, v) = ~ FZ (v) eikr = j (v) + ~ g~;. (v) eikr (2.1) 
k k~O 

(the index indicating the species of the particles. 
will henceforth be omitted for brevity). Expand­
ing F(t, r, v) and E(t, r) in Fourier series 

F(t, r, v) = ~F ... (t, v)eikr, E(t, r) = ~ E~;.(t)eikr (2.2) 
k k 

2>The normalization volume is assumed equal to unity 
throughout. 
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and applying the Laplace transformation to the 
time-dependent quantities 3 >: 

00 00 

Fk ( oo, v) = ~ Fk (t, v) eiwt dt, 
0 

Ek(oo) = ~ Ek(t)eiwt dt, 
0 (2.3) 

we obtain in place of (1.1) the following integral 
equation 

,, 1 e ~ ) 1'k.(oo,v)=---:- ..::..~ 
oo-kv 'm k=k'+k" 

(2.4) 

where f~(v) is determined by the initial condi­
tions (2.1). In deriving (2.4) we used the convolu­
tion theorem (see footnote 3 ). 

We expand the solution of (2.4) in powers of the 
field E: 

00 

Fk(oo, v) = ~ Fk<n>(oo, v), (2.5) 
n=O 

where Fkn)(w, v) c-;l En and Ek c-;l gk(v ). As the 
zeroth approximation we choose f(v) [see (2.1)]. 
The first approximation is given by the relation 
(k ¢ 0) 

From (2.4) follows the following recurrence for­
mula for Fkn>(w, v) when n:::: 2: 

Fk<n>(oo, v) = - 1- ~ _;.._ ~ doo' Ek'(oo') 
oo - kv k=k'+k" 'm 2n 

X aFk,<n-tJ(oo- oo', v) 
av 

(2. 7) 

3 )In the Laplace representation, the corresponding quanti­
ties are analytic in the upper half plane of w, with the possible 
exception of some vicinity of the real axis. The inverse trans­
formations are 

i oo+iO 

Ek (t) = 2-; ~ Ek (w) e-irot dw, 6 > 0. 
-ao+iO 

For what follows, it is also useful to bear in mind the con­
volution formula 

1 dw'dw" 
= --~-----F,(w')F2 (w"), 

(2n) 2iJ w' + w"- w 

where the integration is along lines lying in the upper half­
plane and satisfying the condition Imw > Imw' + lmw n. 

,_z .1 n-1 -f 
[w-Kv-r (w.-K1vJ] [w·Kv-.r<wrK;vU .. , ' ,., 

FIG. 1 

With the aid of (2.7) and (2.6) we obtain an ex­
pression for the general term of the series (2.5): 

n-1 
oo- kv- ~ (oo;- k;v) 

i=t 

a I (v) 
X av n 

oo- kv- ~ (oo;- k;v) 
i=l 

a Ek, (oo2) 
X av oo - kv- oo1 + ktv 

Xa n t • 
a gkn (v) l 
v oo- kv-i~ (oo;- k;v) 

(2.8) 

We can visualize the general term in simple 
fashion by introducing its diagram representation 
(Fig. 1). The solid vertical lines on Fig. 1 corre­
spond to Eks ( w s ) , and the horizontal ones corre­
spond to the "propagators" 

[ oo-kv-~ (oo;-k;v) r1 (O~s~n); 
f=t 

the s-th vertex corresponds to the integro-differ­
ential operator 
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the circle in the first term of Fig. 1 represents 
the function f(v ), and the vertical dashed line in 
the second term represents the function igk ( k). 
The order of the diagram is determined by the 
number of vertical lines (including the dashed 
line). It is seen from Fig. 1 that the term distri­
bution-function of each perturbation-theory order 
consists of two separate parts, one dependent on 
f(v) (with a circle on the right end in Fig. 1 ), and 
one dependent on gk(v) (with one dashed line in 
the right end of the diagram). 

We now consider Eq. (1.2) for the wave field. 
Taking (2.2), (2.3), and (2.5) into account, we re­
write (1.2) in the form 

DO 

kEk(w}= -4nieN ~ ~ Fk<nJ(w,v)dv (2.9) 
n=1 

(to abbreviate the notation, we leave out here and 
throughout the symbols denoting summations over 
the particle species; the restoration of the cor­
responding summation in the final formulas en­
tails no difficulty). Substituting F~J(w, v) from 
(2.6) in the first-approximation term in the right 
side of (2.9) and combining the terms that are 
linear in E, we can rewrite (2.9) in the form 

4nieN ~ 1 
-k2kLJ J Fk<nJ(w,v)dv, 

n=2 

where Ek ( w ) is the dielectric constant of the 
plasma: 

(2.10) 

4ne2N 
wo2 = ---. (2.11) 

m 

The second term in the right side of (2.10) de­
scribes nonlinear effects. If we neglect them, we 
obtain the well known equation obtained by Lan­
dau[lG] for the oscillation field in the linear ap­
proximation, 

E (t) ~ rk(w) _. 1 dw E 0 -irokt 
k = --- e zoo - ~ k e . 

Bk ( w) 2n ' 
(2.12) 

(2.13) 

wo2 df I '\'k-= n--,-2 - , (2.14) 
Bk k dv v=ro'/h 

where E~ is the amplitude of the oscillations, 
which, as noted above, has the same order of mag-

nitude as the initial perturbation gk(v ), while wk 
is the complex frequency of the oscillations, which 
is the root of the dispersion equation Ek ( w ) = 0 
having the largest imaginary part. In the right 
side of (2.12) we have left out terms correspond­
ing to other roots of the dispersion equation; these 
terms are exponentially small as t - oo • We shall 
assume henceforth that the following condition is 
satisfied 

(2.15) 

and that without this condition the results given 
below are not valid. 

In the formal expansion of (2.5), not all the non­
linear terms are actually small (in the sense that 
after going through the t-representation they can 
become large for sufficiently large t ). To obtain 
the correct asymptotic expression for large t, 
such terms must be separated and summed. To 
separate the "large" terms we first replace, in 
the-expression for the general term (2.8), the exact 
field components Eks<ws) [which satisfy Eq. (2.10)] 
by their values in the linear approximation (2.12), 
neglecting at the same time the imaginary parts of 
the frequencies Wks· In the Laplace representa­
tion, the corresponding expressions will take the 
form 

iF..~ Ek• ( w.) = ____ • _ , 
w.-w~. 

(2.16) 

where E~s is the oscillation amplitude obtained 
from Eq. (2.13) in the linear approximation. Be­
cause of the simple form of Eks<ws) in (2.16), we 
can readily integrate over all the ws in the general 
term (2.8), as a result of which the Ws are re­
placed by w ~s and Eks ( w s ) by E~s. 

We now note that in some of the different dia­
grams of the sum over ks in Fig. 1 neighboring 
lines will correspond to conjugate components of 
the field (ks = -ks+l• Wk~ = -w~s+ 1 ). Such lines 
will be called paired. Paired lines are closed on 
the diagrams into loops (see Fig. 2 ). The propa­
gators on the two sides of a loop turn out to be 
identical, thus leading to the appearance of mul­
tiple poles with respect to w in F~) ( w, v). In 
the t-representation, the corresponding terms will 
be secular, i.e., proportional to tr, where r+1 

a 

-l-o+ 
b 

~+ 

o O+ 1 a o o+u· ... 

C\ O+ C) 0 
FIG. 2 

0 + ..• 



364 L. M. AL'TSHUL and V. I. KARPMAN 

is the multiplicity of the pole in the Laplace rep­
resentation. 

By way of a typical example, let us consider the 
expression represented by the second-order dia­
gram in Fig. 2b. After substituting the approxima­
tion (2.16) for the field Eks ( w s ) and integrating 
with respect to Ws, we obtain for it 

( _!_)2 ~ Eq0 8 E~q 8 _I {v) 
,im q w-- 8v c.o- c.oqo + qv 8v w (2.17) 

This expression, which is one of the contributions 
to the Fourier component of the distribution func­
tion with k = 0, has a second-order pole at w = 0; 
accordingly, it yields in the t-representation a 
secular term proportional to t. Analogously, for 
the expression shown by the third-order diagram 
in Fig. 2a (which makes a contribution to the 
Fourier k-component of the distribution function), 
we obtain 

8 I {v) x---­av (J)- c.okO • ~2.18) 

Expression (2.18) has a second order pole at w 
= w ~ (it is proportional to t exp ( - iw ~t ) in the 
t-representation ). 

It has been assumed above that expressions 
(2.16) are substituted for Ek( w ). If we substitute 
the exact Ek(W ), or else (2.16) with complex fre­
quency wk = w~ + iyk, then no secular term will 
appear after going over to the t-representation, 
but if I Ek(t) I depends slowly on the time, these 
terms containing paired Ek will be large for suf­
ficiently large t, even if they are not secular 4>. 

Thus, the nonlinear terms in Eq. (2.9) for the 
field will, for sufficiently large times, not merely 
lead to small corrections to the solution of the cor­
responding linearized equation, but may radically 
change this solution. To obtain the correct asym­
ptotic value of the field for large t, the "larg.e" 
terms indicated above must be summed. The n-th 
ordered term in (2.9) contains, generally speak­
ing, several secular terms, which differ in their 
secularity indices (i.e., in the power of t con-

4)We replace Ek (w) by (2.16) with complex Wk then, as can 
be readily verified, we obtain in place of the secular multiplier 
tr the factor (w~/yk)r » 1, so that the corresponding terms must 
again be regarded as large. The main difference between our 
results and those of Montgomery[''] is that these large terms 
are not summed in the perturbation theory developed in["]. 

tained in this term after the transition to the t­
representation ). The terms having the maximum 
secularity index for a specified order n will be 
called principal. In this paper we confine ourselves 
to summation of only the principal secular terms 
(the allowance for terms having a smaller degree 
of secularity is considered in [ 18]). It can be 
shown [18] that the principal secular terms on the 
right side of (2.9) are represented by the diagrams 
of Fig. 2a. We denote the sum of the diagrams in 
Fig. 2a by cl>k ( w, v ) . It is readily seen that this 
quantity is simply expressed in terms of the func­
tion ci>(w, v ), which is the sum of all the diagrams 
shown in Fig. 2b, namely 

ll>k 00 v = ~ S dc.o' Ek(c.o') 81l>(c.o-c.o', v). 
(,) im 2nc.o-kv 8v 

(2.19) 

Equation (2.9) with only the principal secular 
terms takes the form 

kEk ( c.o) = 4neN ~ !k (vL dv- 4nieN S ll>k ( c.o, v) dv 

= 4neNr gk(v) dv 
J c.o-kv 

_ 0002 r dc.o' r dvEk(c.o') 8<l>(c.o- c.o', v). 
J 2n J c.o-kv 8v 

(2.20) 

From this we obtain the fundamental equation for 
the field in the form 

S dc.o' ek{c.o, c.o')Ek (c.o') = 4neN ~ I gk(v) dv, (2.21) 
~ ~Jc.o-b 

( ') _ i + c.oo2 S dv k 811> ( c.o- c.o', v) 
Bk C.0 C.0 ---- -- ---

' c.o - c.o' k2 c.o - kv 8v · 

(2.22) 

Equation (2.21) differs from the linear equation 
for the field in that the dielectric constant Ek( w) 
is replaced by an integral operator with a kernel 
Ek(w, w'), expressed in terms of the function 
ci>(w, v). If we replace ci>(w, v) by the zeroth ap­
proximation of the distribution function (the first 
term in Fig. 2b), i.e., if we put ci>(w, v) = -if(v )/w, 
then (2.21) goes over into the linear equation for 
the field. 

To obtain a complete system of equations de­
scribing the evolution of the oscillations, we must 
also obtain an equation for the function ci>(w, v ). 
This quantity has the meaning of a distribution 
function averaged over the spatial pulsations. We 
shall henceforth call it the background distribution 
function. From the form of the diagrams in Fig. 2b 
it follows that ci> ( w, v) satisfies the equation 
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- ioo<D (oo, v) = f (v) 

+ ie2 ~ \ E_ (oo') a Eq ( (iJ") 
m" ..:..J J q av (I) - qv - oo' 

q 

a<D (ro- oo'- ro", v) doo' doo" 
X ----

av 2n 2n ' (2.23) 

which is an analog of Dyson's equation in quantum 
field theory. 

Equations (2.21) and (2.23) can be called gen­
eralized quasilinear equations 5 >. Under certain 
supplementary assumptions they go over into the 
well known equations of the quasilinear theory for 
a weakly turbulent plasma [ 14 •15 ]. As will be seen 
from what follows, the condition under which this 
takes place is that the width of the spectrum of the 
plasma oscillations be sufficiently large. In the 
other limiting case, when the spectrum is very 
narrow, for example when a "monochromatic" 
(more accurately -periodic ) wave is excited in 
the plasma, Eq. (2.23), while retaining the same 
meaning as for a weakly turbulent plasma (account 
of the reaction of the wave on the distribution func­
tion ), has entirely different properties and corre­
spondingly different solutions. 

We now consider in greater detail the manner 
in which (2.23) goes over into the quasilinear equa­
tion for a weakly-turbulent plasma. We substitute 
first in tl}e right side Eq ( w) in the form (2.16) 
(this means that we neglect the time dependence of 
the field amplitudes, I Eq ( t) I = E&), and integrate 
with respect to w' and w ". As a result we obtain 

( e )2 
1 E 0 1

2 a 1 -irot:D(oo,v)=f(v)+i- '5;-q-q-----
m ..:..J q2 av oo + ooq - qv 

q ' 

X q at:D ~:· v) (2.24) 

The range of values of w in which <I> ( w, v ) is 
large, is connected with the characteristic time T 

of the variation of the function <P(t, v) by the rela­
tion I w I - T-1• We assume that the following con­
dition is satisfied 

(2.25) 

where the averaging is over q. Then we can ne­
glect w in the denominator of the right side of 
(2.24); however, inasmuch as w lies in the upper 
half-plane, we must put w - iO. We can then go 
over directly to the t-representation in (2.24), and 

5>we emphasize that when summing the diagrams that lead 
to (2.21) and (2.23) we have not used the approximation (2.16) 
for the field. The latter was needed only to disclose the "large" 
terms. 

obtain the quasilinear equation for a weakly turbu­
lent plasma: 

il<J) (t, v) = i ~ \ dq IE o 12 _!__ --,-------1----,--=-
dt rrt2 J q2 q OV ffiqO- qV + iO 

at:D (t, v) 
X q ov 

e2 \ dq . a a<D (t ) 
= n fn2 J qz I EqO 12 q av 6 (ooqO- qv) q av' v 

(2.26) 

Let us explain the meaning of the condition 
(2.25). Inasmuch as the right side of (2.25) will 
be minimal when v lies in the resonant region of 
velocities, we put v ~ wq I q. Considering, for 
simplicity, the case of Langmuir oscillations, for 
which wq- w0, and putting v = w0/q0, where q0 

is the average wave number, we obtain in place of 
(2.25) 

(2.27) 

( .6.q -width of the wave packet). The quantity T 

has here the meaning of the characteristic relaxa­
tion time of the distribution function in the reso­
nant region of velocities, and is determined by the 
condition 

-r:~D/ (~v)2, D~e2qZcp2 /rn2~qv, 

(2.28) 

where D is the coefficient of quasilinear diffusion 
in velocity space, and cp is the average potential 
of the electric field of the wave: 

Substituting (2.28) in (2.27) we find that the condi­
tion under which (2.24) goes over into the quasi­
linear equation takes the form 

(2.29) 

which coincides with the condition for the applica­
bility of the quasilinear equation, obtained by 
Vedenov et al. [ 14 ] from other considerations. 

The physical meaning of (2. 29) consists in the 
fact that the scatter of the phase velocities of the 
wave should be considerably larger than the ve­
locity of the oscillations of the particles in the po­
tential well of the wave field, with amplitude cp. On 
the other hand, (2.29) can be regarded as a crite­
rion of plasma turbulence. Equation (2.26) contains 
no terms describing an "adiabatic" change of the 
distribution function in the nonresonant region. To 
obtain these terms, we turn to the integral in the 
right side of (2.23) and take into account effects 
connected with a weak change of the field ampli-
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tude. Inasmuch as Eq ( w) becomes especially 
large when w = w&. the main contribution to the 
integral in (2.23) is made by the regions in which 
w" ~ w& and w' ~ wl!..q = - w&. Therefore we rep­
resent the denominator of the integrand in the form 
w -w'- w& + w&- q•v and expand (w -q•V -w')-1 

in powers of w - w' - w&, confining ourselves to 
two terms of the expansion: 

1 1 ro-w' -Wq0 

w-qv-w' ~ roq0 -qv+i0 -(roq0 -qv+i0)2 • 

(2.30) 

Substituting this expression in (2.23) and using 
the convolution theorem (see note 3 ) , we obtain in 
the t-representation 

DID (t' v) = n (!__)2 \ ~IE (t) 12 _!___ 
Dt m J q2 q q Dv 

0 8 1 ( e )2 C dq 8 
X <'l(wq -qv)qBviD(t, v) +-y m j {fqay 

)<' f 1 [ d I Eq (t) 12 8 2 
l(wqo-qv)z dt qav<D(t,v)+2/Eq(t)/ 

X q :v :t (J)(t, v)J}, (2.31) 

where the second integral is taken in the sense of 
principal value. The term with o<I>/Bt in the right 
side can obviously be neglected. Once this is done, 
(2.31) will coincide fully with the quasilinear equa­
tion, which takes into account the adiabatic varia­
tion of the distribution function in the nonresonant 
region. The conditions for the applicability of this 
equation are determined as before by (2.23). 

We can show analogously (for more details see 
[ 19], pp. 14 and 15 ), that the equation for the field 
(2.21) goes over when condition (2.29) is satisfied, 
into the equation of the quasilinear theory for a 
weakly turbulent plasma: 

dEk(t) 
-d-t- = (- iwk0 + Y~< (t)] Ek(t), (2.32) 

( ) Wo2 D<D ( t, v) \ , 
Yk t = n 

£k'k2 Dv r=w 'tk 
k' 

(2.33) 

where w~ is the real part of the frequency in the 
linear approximation. 

3. QUASILINEAR THEORY OF "MONOCHRO­
MATIC" WAVES 

In this section we examine in detail the applica­
tion of the generalized quasilinear equations (2.21) 
and (2.23) to an investigation of the evolution of a 
nonlinear "monochromatic" wave. The sum in 
(2.23) pertains now to a discrete set of wave vec­
tors q = nk, n = ± 1, 2, ... , where 2rr/k is the 

wavelength, and the amplitudes of the multiple 
harmonics have a higher order of smallness com­
pared with the amplitudes of the first harmonic, so 
that they can be neglected. Neglecting also the de­
pendence of the wave amplitude on the time in 
(2.23) 6>, we arrive at Eq. (2.24), in which the sum 
consists of two terms corresponding to q = ± k. 
Introducing a notation which is more convenient 
for this case 

u = v- ffik/ k, x = ku/ a 
(3.1) 

(the quantity a is of the order of the frequency of 
the oscillation frequency of the particles captured 
by the potential well of the wave; a/k is accord­
ingly of the order of the velocity of the captured 
particles), we obtain the fundamental equation in 
the form 

i 8 1 8 
<D(w,x)=-f(x)-a2 ,- 2 2 2" <D(w,x). (3.2) 

w ux w -ax ux 

To solve this equation we introduce the function 

a 2 8 
'V(w, x) = - 2 - 22 ,-<D(w, x). 

w -ax ux 
(3.3) 

Differentiating both halves of (3.2) with respect to 
x and substituting (3.3), we obtain 

82 ( w2 ) i df 
--2 'V(w,x)+ 2 -x2 'V(w,x)=--d. 
OX a (t) X 

The solution of (3.4) can be represented in the 
form of an expansion in normalized parabolic­
cylinder functions 1/Jn ( x): 

(3.4) 

where Hn (x) are Hermite polynomials. The func­
tions 1/Jn ( x) satisfy the equation 

d2¢n(x) +(2n+1-x2)¢n(x)=0. (3.5) 
dx2 

Putting 

df 00 

a7;; = .s ~n¢n (x), 
n=O 

00 df 
~n = ~ ¢n(x) dx dx, 

-00 

(3.6) 

we get from (3.3) and (3.4) 

(3. 7) 

6 )It will be shown below that this is valid if condition (3.28) 
is satisfied. 
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Going over to the t-representation, we obtain 

OO>(t,x) df 
ox - dx 

2n+ 1-x2 __ _ 
- ~ 2n + 1 ~n'\jln·(x)[1- cos atl"2n + 1}. (3.8) 

n 

To calculate the distribution function .P ( t , x ) we 
replace (x2 -2n-1)1/Jn(x) in (3.8) by d21/Jn(x)/dx2, 

after which the integration becomes elementary. 
Returning to the variable u, in accordance with 
(3.1), we obtain 

ll>(t, u) = f(u) + -~ ~ 2:~ 1 :u '\jln( k:) 
X ( 1 - cos at l"2n + 1 ) . (3.9) 

We see from (3.9) that .P(t, u) differs little from 
its initial value f(u) for t « a-1 - (keE0/m )-1/2, 

where Eo is the amplitude of the wave. When 
t > a-1, the second term in (3.9) oscillates with 
variation of t, and decreases rapidly when 

u = v- w,j k'>a/ k ~ (eE0 / km)'!., 

i.e., the quasilinear distribution function is dis­
torted only near the resonant velocity v = Wklk 
in the velocity interval of the order of the velocity 
of the oscillation of the particles "captured" by 
the wave. The frequency of the oscillations of the 
distribution function near the phase velocity, as 
can be seen from (3.9), is of the order of a, which 
coincides with the oscillation frequency of the par­
ticles in the potential well of the wave. 

Substituting now (3. 7) in expression (2.22) for 
Ek(w, w'), we obtain 

i [ roo2 ~ dv df e,(w, oo') = --- 1 + k 
oo-ro' 7 oo-kv dv 

1 (2n+1)a2 -k2u2 (ku\] 
X.) du '\jln -I . 

ro- oo,- ku \ a J 
(3.10) 

Using (3.10) and (2.21) and carrying out elemen­
tary transformations, we get 

E,(w)= 4:n:eN_~ g,(vLdv- iw02 ~p,. 
ke,(oo) (J)- kv 2:n:aen(w) n 

) ( ku) (2n + 1) a2 - k2u2 
X du'ljln -

a oo- wk.-ku 

X dw'E,(w') 
~ (w-w')[(oo-oo')2-(2n+ 1)a2}' 

(3.11) 

where Ek ( w ) is determined by formula (2.11). 
Multiplying both halves of (3.11) by i(w -wk) 
( Wk -oscillation frequency in the linear approxi­
mation, see (2.14)), and going over to the t-repre­
sentation, we get 

dEk(t) . roo2 ~n 1 ( ku) ---a:;-=- ~oo"E"(t)- ""'aa ~ 2n + 1..) du'ljln a 
n -

t 

X [ ( 2n + 1) a2 - k2u2} ~ dt' ( 1 - cos at'l"2n + 1 ) 
0 

X Ek (t') exp [i(ku + Wk)r(t'- t) }. (3.12) 

In the derivation of (3.12) we have neglected all 
the singularities of the right side of (3.11), which 
are located below the point Wk, since they make 
an exponentially small contribution for sufficiently 
large t. In addition, we have left out the term 
J dvgk(v) exp ( -ikvt), which decreases rapidly 
with increasing t, owing to the factor exp ( - ikvt), 
whi.ch oscillates at large values of t. The charac­
teristic time of this decrease is ( kv g ) - 1, where 
vg is the effective "width" of the function gk(V ). 
We assume that this time is small compared with 
the other characteristic times, which determine 
the variation of the field amplitude. Using (3.5) 
and the relation (see [20]) 

00 

~ '\jln (y) eiyz dy = (2:n:) '/, in'\jln (z), (3.13) 
-00 

we carry out the integration with respect to u in 
the second term of the right side of (3.12). As a 
result we get 

dEk (t) . , roo2a 2 in~n 
--=-~w,Ek(t)-(2:n:)1•-- ~ --

dt · e,' k n 2n + 1 
t 

X ~ dt'(t'- t) 2 '\jln(a(t'- t)] 
0 

X ( 1 - cos at'l'2n + 1) Ek (t') exp [ iook (t' - t)]. (3.14) 

The integrand in (3.14) contains a product of the 
expression 

'\jln[a(t'- t)] (1- cos at'l'2n + 1) 

which changes rapidly with variation of t' (the 
characteristic time of the variation is T ~ a - 1 ) 

and the quantity Ek(t') exp (iwkt'), which obvi­
ously is equal to the slowly varying amplitude of 
the field E~(t'). Neglecting the variation of E~(t') 
during the time a-1, we can move E~(t') outside 
the integral sign. Then we obtain after simple 
transformations 
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dE,.(t) [ from which we see that when at « 1 the differ--d_t_ = - iw,. + e,.(t)]Ek(t), (3.15) 

- 'IJJ2n (0) COST l'4n + 1] - i~2n+1 ['IJJ2n+l (T) 

ence between rk(t) and the linear increment is a 
small quantity of the order of (at) 112• We note that 
when at ~ 1 the left side of (3.21) decreases quite 
rapidly with increasing n, so that when t ~ a-1 we 
can confine ourselves in the expression (3.19) for 
rk(t) to the first few terms of the series. Inas-

- (4n + 3)-'h 'IJJ;n+l (O)sin 't'f4n + 3]}. 

Integrating the equation, we get 

(3.16) much as the latter are of the same order as the 
linear increment Yk· the difference between 
rk(t) and Yk becomes appreciable when 

En (t) =En (0) exp {-it [ wn° + iyn + u-1 ~ dt'e" (t') ]} . 
0 

t 
(3.17) 

From (3.17) we see that C 1 Re J dt'Ok(t') is the 
0 t 

variation of the increment, and C 1 Im J dt' ek(t') 
0 

is the real part of the frequency, due to the dis tor­
tion of the distribution function by the reaction of 
the wave. By examining the series (3.16), we can 
easily verify that it converges quite rapidly, so 
that the order of magnitude of ek(t) does not ex­
ceed the order of magnitude of the first term of 
the series. Calculating the values of f3n from (3.6) 
under the assumption that f(v) is a Maxwellian 
distribution, we can easily obtain 

t 

t-1 j e,. ( t') at'~ y,., (3.18) 
0 

where Yk is the increment of the linear theory. 
Inasmuch as Yk « w~, the nonlinear correction to 
the real part of the frequency can be neglected. On 
the other hand, the correction to the linear incre­
ment is quite appreciable. We shall therefore ex­
amine in greater detail the quantity 

t 

f"(t)=v"+t-1 Re~ Sn(t')dt', 
0 

(3.19) 

which has the meaning of a time -dependent incre­
ment. 

We investigate first rk(t) for small t (at« 1). 
We make use of the fact that parabolic-cylinder 
functions of sufficiently small arguments and high 
orders have the following asymptotic representa­
tion [2o]: 

'IJJ2n(z) = 'IJJ2n (0) {cosz}'4n + 1 + O[z'h(4n + 1)-'1•]}. 
(3.20) 

Taking (3.20) into account, we obtain 
t Cl.l' 

t-l \ dt' \a. ['IJJ2n (•) 
0 0 

- 'IJJ2n (0) cosT l'4n + 1] < 'IJJ2n (0) ( at)'1•( 4n + 1)-'i•, 

(3.21) 

t "' a-1 "' (keEn° / m) '''· 

We now investigate rk(t) with t .<: a-1• We 
rewrite formula (3.19) in the form 

r } roo2 -~~ (-1)'%n J d-r'IJJ2n(T) +(2n)'ht-1-, - 2 
n cr.t' Ek ka 

X~ (-1)n~2n '\j)2n(0)(1-cosatl'4n+1). (3.22) 
n 4n+ 1 

Using (3.13) and (3.6), we can write for the first 
term in the curly brackets 

(3.23) 

The substitution of (3.23) in (3.22) leads to exact 
cancellation of the first term of Yk in (3.22). The 
second term in the curly brackets of (3.22) takes 
the form 

00 

~ (- 1) 11 ~2n ~ d-r'lj)2n (-r) 
n at' 

00 00 

= (2n) -'/• ~ ~2n ~ d-e~ dx'lj)2n (x) eitx 

at' -oo 

"" 00 df 
= a(2n)-'" \dt" ~ du--cos (kut"). 

"t' -oo du 
(3.24) 

This expression vanishes when t-oo (taking 
into account the fact that u = z - w k /k and f ( v ) 
oo exp (- v2 /vi), it is easy to verify that the term 
(3.24) begins to decrease rapidly when t > (kvt)-1). 

Thus, for sufficiently large t, the value of r k ( t) 
becomes 

(3.25) 
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Consequently, at times that are short compared 
with the period of particle oscillation in the poten­
tial well of the wave (at « 1 ), the nonlinear incre­
ment rk(t) is close to the linear increment Yk· 
r k ( t ) attenuates in oscillatory fashion like t - 1 at 
large values of t. However, the amplitude of the 
wave, given by the expression 

(3.26) 

does not tend to a stationary value as t-oo, since 
the oscillations of trk(t) are not damped. The 
characteristic period of these oscillations is of 
the same order of magnitude as a-1 -the period 
of oscillations of the particles in the potential well 
of the wave. The amplitude of the oscillations of 
trk(t) is of the order of 

tfk(t) = (2n:)'i•roo2 ~ (-f)n ~2n'IJl2n(O) ,_ '\'k. (3.27) 
ek'ka2 4.n -l- 1 a 

We have continuously assumed above that the 
field amplitude changes quite little during the time 
of the nonlinear evolution of the wave. It follows 
from (3.26) and (3.27) that this takes place under 
the condition 

'\'hI a~ 1. (3.28) 

Under this condition, the exponential in (3.26) can 
be expanded in a series, and the average amplitude 
of the wave is equal to 

Eh0 (t) ~ Eh0 (0) [ 1 + (2:~:::02 ~ (~ni~~2n '1Jl2n (0)]. 
n 

(3.29) 
In conclusion the authors thank R. Z. Sagdeev 

for stimulating discussions, and also A. A. Vedenov, 
B. B. Kadomtsev, and L. P. Pitaevski'l for a useful 
discussion of the results. 
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