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The Z emach-Glauber formalism is used to calculate the differential cross section for scat­
tering of slow neutrons by gas molecules. The limits of applicability of the Krieger-Nelkin 
formula are examined. A calculation is made of the differential cross section at low momen­
tum transfers, when the quasiclassical approximation is not applicable. 

THE question of the role of rotational states of not applicable. In the present paper we try to fill 
molecules in the scattering of slow neutrons has this gap. 
been treated by many authors.Ct-BJ In the work of We shall not be interested in the low-tempera-
Krieger, Nelkin[2] and Messiah, [3] a quasiclassi- ture region (kBT « .6-Er, .6. Er-separation be-
cal calculation is made of the double differential tween rotational levels), since it has already been 
cross section for scattering of neutrons by mole- treated in sufficient detail by Volkin. [ 4J 
cules. Their method is actually equivalent to the 
mass-tensor approximation. In the papers of 
Zemach and Glauber[!] and Volkin,C4J they dis­
cuss, within the framework of the approximation 
of small scattering times (Placzek method) the 
problem of the angular distribution of the scattered 
neutrons; in the work of Volkin, [4] Rahman, [5] 

Griffing, [s, 7] Young and Koppel, [B] the quantum 
character of the rotations is taken into account and 
they sum the partial double differential cross sec­
tions for transitions between any two rotational 
states of the molecule. 

The simplicity of the quasiclassical Krieger­
Nelkin formula [2] and its wide use in interpreting 
the results of experiments makes it desirable to 
establish the limits of its applicability, especially 
as deviations have already been observed from 
theoretical calculations made on the quasiclassical 
approximation. [ Ht] A solution of this problem was 
attempted by Kosaly and Solt,C 12] who found the 
condition for equality of the exact values of the 
Placzek moments and their values as determined 
in the quasiclassical approximation. Starting from 
the moment theorem, these authors propose to cor­
rect the Krieger-Nelkin formula. But so far no 
regular method has been proposed for finding cor­
rections to the Krieger-Nelkin formula in the re­
gion of momentum transfers where this formula 
gives the main properties of the spectrum of scat­
tered neutrons, and there is no simple formula for 
the neutron spectrum in the region of low momen­
tum transfers, where the quasiclassical formula is 

1. BASIC FORMULAS 

In the Zemach-Glauber formalism the differen-
tial cross section for scattering of unpolarized 
neutrons by gas molecules is given in the form[t] 

Here tik0, tik are the momenta of the neutron in the 
initial and final states; tit< = tik - tik0, 

E = ti 2(k2 - k~) /2m are the change in momentum 
and energy of the neutron, R = ti2K2 /2Mmot. A 11 

and Cv are the amplitudes for coherent and inco­
herent scattering of the neutron by the v-th nucleus 
in the molecule, r 11 = bv + u11 ( b 11 is the radius 
vector to the equilibrium position of the v-th 
nucleus in the molecule in the center-of-mass sys­
tem of the molecule, uv is the displacement of the 
nucleus from its equilibrium position), ( ... ) de­
notes a statistical average over the states of the 
system with the Hamiltonian 

H = Hr + llv, Hr = 1/2/FL-I-1 -L, 

llv = ~fiw"(aA+a._ -t- 1/2), [a-., aA,+] = 0'-1.', 

" 
where Li (i = 1, 2, 3) is the angular momentum 
operator for the molecule, Iik is the moment-of­
inertia tensor of the molecule, Wi\ is the frequency 
of the i\.-th normal mode of the molecule, a~ and 
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at.. are the operators for creation and annihilation 
of the normal vibrations. 

The parts Hr and Hv of the Hamiltonian de­
scribe, respectively, the rotation and internal os­
cillations of the molecule. We are assuming that 
the molecular rotation and vibration do not inter­
act. If we consider the case where the separation 
of rotation levels is much smaller than the energy 
of a single vibrational quantum, we easily obtain[2] 

H, _ · ixrv[J -i><>rv H V R V __ fi:xr.v 
v = e ve = v + v + v, v - Mv , 

( liw,.Mv )'" 1Cv=i ~ - 2- Vv(A.)(aA+-aA), 
A 

( 1.2) 

where Vv (A) are the orthonormal vectors of the 
normal vibrations of the molecule, Mv is the mass 
of the v-th nucleus. In addition, [2] 

i, k, l = 1, 2, 3, (1.3) 

Eikl is the completely antisymmetric tensor. 
Now, using (1.2) and (1.3), we find for (x vv ( T)) 

the following expression: 

<:xvv(•)) = <exp {h(H, + Hv)} exp {-h(H/ + Hv')} >~ 

(1.4) 

In the present paper we deal only with the inco­
herent part of the scattering (v = v'). In most 
cases, for example for hydrogenous compounds, 
the role of interference terms (v ""v') is negligible. 

The calculation of ( Xvv( T)) is conveniently done 
by using the following simple· relation: L 13J 

_ _ ( _. '(- d (- d, <TV('t')Sa('t))} 
- exp l ~ J a J • S ( ) ) 

o :• (a't 

~ 

Sa(•)=Texp{-ia~ d•'T7(•') }, S(•)=St(t), 
0 

where T is the operator for chronological ordering. 
Expanding Sa ( T) in the exponent in (1.5) in powers 
of V ( T), we find for S ( T), to terms of fourth order 
in V ( T), the following expression: 

' ~ 
<S ('t)> = exp { -i <V (0) )T- 1/z ~ d•' ~ d•"[ (TV ('t') V ( •")> 

0 0 

. ~ '( '( 

- < V (0) ) 2] + _!_ ~ d•' ~ d't" ~ do'" [<TV ('t') V ('t") 
. 6 0 0 0 

X V('t"'))- 3 (TV('t') V('t")) (V(O)) + 2(V(0)>3] 

'( '( '( '( 

+ 1/24 ~ d•' ~ d•" ~ d•"' ~ d't"" [<TV ( 't') V ( 't") V ( •'") 
0 0 0 0 

- 4 (TV ('t') V (•") V (•"')) < V (0)) + 12 (TV ('t') V ('t")> 

X <V (0) ) 2 - 6 (V (0) ) 4] + ... J. (1.6) 

A characteristic feature of (1.6) is that the ex-
pansion is made in functions which in many cases, 
in the terminology of the diagram technique, cor­
respond to coupled diagrams. For example, in the 
case of a crystal in the harmonic approximation or 
a Maxwellian gas, the first two terms in (1.6) al­
ready give the exact result for the correlation 
function. The remaining terms in the expansion 
are identically zero (in the first case as a conse­
quence of Wick's theorem). In the case of a liquid, 
formula (1.6) allows one to obtain corrections to 
the Gaussian approximation. 

2. CALCULATION AND ANALYSIS OF THE 
DIFFERENTIAL CROSS SECTION FOR 
SCATTERING OF SLOW NEUTRONS BY 
MOLECULES 

For simplicity we treat the case of an axially 
symmetric molecule. We assume that the energy 
of the incident neutron and the mean energy of 
thermal motion of the molecule are small com­
pared to the energy of the first vibrational level 
of the molecule. For this case we rewrite formu­
la (1.4) in the form: 

<xvv(•)> = exp(-i'tRv)Z-1 ~ exp{-~(EJK+En).)} 
n).IKM 

+Vr + Rr + V,)} llKM, n1.) 

= exp ( -i1:Rv) (exp (i't'Hv) 

X exp {-i-c(Hv + i\Hr + Rr + Vr + Vv)}>. (2.1) 

Here EJK = 1hti2[pJ(J + 1) + (p3 - p) K21 is the 
eigenvalue of Hr, Pi= Ii 1, Pt = p2 = p "" P3• Ii are 
the principal moments of inertia of the molecule, 
I JKM) is the wave function of the rotational state 
of the molecule, proportional to the Wigner 
D-function; J(J + 1), K, and M are the eigenvalues 
of the operators L2, L3 (the projection along the 
molecular axis), Lz (the projection along the 
space fixed axis z); n.>.. are the occupation numbers 
of the vibrational levels, Enr... = ~tiwA. (nil. + 1h), Z 
is the partition function for the rotational and vi­
brational states of the molecular gas, 6Hr = Hr 
- EJK . 
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Using (1.6) and keeping of all the terms in 
(x 1111( r) ) that are associated with vibration of 
atoms in the molecule, only those that are inde­
pendent of T, we find for <.x 1111(T)) the expression 

(:X:w(-r)) = e-zw exp {-ia1-r- ~-r2 + ias't3 +a,,,+ ... }; 

tt,z,~;a 

W = ~ 12M 1i lvv(A.) 12, 
1. v Ul}. 

a2 = 1/2 [ (V,2) + (R,2) - (R,)2], 

as= 1/a[(V,IIllrVr> + (Rr6HrRr> + (Vr2Rr> + (V,RrVr> 

+ (RrVr2)- 3(Vr2)(Rr) + (R,3)- 3(Rr2)(Rr) 

(2.2) 

The expression for a4 is quite complicated and 
will not be given here. In calculating the Debye­
W aller factor 2W we have set ( nA,) = 0. 

The expression (2.2) is convenient in that, ne­
glecting the term ( R~) - ( Rr )2 in a2 and the 
terms with a3, a4 in the high temperature limit 
(kBT » ~EJK), we arrive at the expression for the 
correlation function that was obtained by Krieger 
and Nelkin. [2] Furthermore, with (x 1111 ( r)) in the 
form (2.2), we can consider the question of the 
role of the terms ia3r, a4r 4, i.e., the problem of 
the validity of the Krieger-Nelkin formula. Sub­
stituting (2.2) in (1.1) we verify that the main con­
tribution to the integral comes from the region 
T ~ r 0 = ~-t, ~2 = kBTR + a2• In order for the role 
of the terms ia3r 3, a4r 4 to be reduced to correc­
tions to the Krieger-Nelkin formula, we must 
satisfy the conditions 

(2.3) 

With condition (2.3) the differential cross sec­
tion for incoherent scattering of neutrons by the 
11-th nucleus of the molecule will have the form 

(2.4) 

where;= (E + a1 + R)/2A, Hn(~) is the Hermite 
polynomial of degree n. 

We shall now have to establish when the condi­
tions (2.3) are satisfied. For this purpose we 
must determine the values of a2, a3, a4• We shall 
not present the technique for computing matrix 
elements (one can become familiar with the compu­
tation of similar matrix elements from the work of 
Volkin[4J ). We mention only that the computation 
is conveniently done in the coordinate system fixed 
in the molecule. Since we are interested in the 

case of high temperature (kBT » ~EJK), averages 
of the type ( V~) can be taken in the classical limit. 
At the same time averages of the type 
(Vr( 6Hr)nVr) ( n ?f. 0) should be calculated 
using quantum mechanics with passage to the 
limit of high temperatures only at the end of the 
computation. 

We carry out the further treatment for a 
spherically symmetric molecule ( p3 = p). In this 
case we have: 

(Vr2) = 8/sBEx2b2, h2 = bv12 + bvz2 + bva2, B = 1/2h2p, 

E = 3/zkBT, (Rr2) - (Rr)2 = 4/ ~2x4b4, 

(Rr3) - 3(Rr2)(Rr) + 2(Rr)8 = 6/slJ3x6b6, 

(VrRrVr> + (Vr2R,.) + <RrVr2>- 3(Vr2)(Rr> = 16/~2Ex4b4, 

( V .RrZVr) = 24/asB3Ex6b6. 

More complicated calculations are needed for 
finding expressions of the type (Vr(oHr)nvr) 
( n ?f. 0). Choosing the z axis of the laboratory 
coordinate system along the vector IC and using 
the addition theorem for the D-functions, we find 

(Vr(<'IHr)nV,) = 4/4sB2x2b2((EJ- EJ+i)n(2J + 1)-1(2/ + 3) 

X (4J2 + 3/ + 5) + (EJ- EJ-1)n(2J + 1}-1(2/- 1} 

X (4J2 +51+ 6})J, 

where the averaging operation (. •• ) J is defined 
by the formula 

(aJ)J = ~ e-f'EJ (21 + 1)2 aJ / ~ e-IIEJ (2J + 1)2 • 
J J 

In particular, for n = 1 and n = 2 the preceding 
expression reduces, respectively, to the relations 
(kBT »B): 

(V,BH,Vr> = 16fg[J2J!}x2bz, <Vr(<'1Hr)2Vr) = 14f:J32E2x2b2. 

At the same time (Rr6HrBr) "' B3K4b4 with a co­
efficient of proportionality of order 1. 

We proceed to consider the conditions (2.3). To 
do this we take various limiting cases separately. 

1. Low momentum transfers (K2b2 < 1). In this 
case the coefficient has the form 

while the coefficients a3 and a4, which are deter­
mined mainly by the expression 
(Vr(6Hr)nVr) (n = 1, 2), have the form 

aa ~ 4tsB2kBTx2b2, a,~ 4/sB2 (kBT}2x2b2• 

In general the criteria (2.3) are not satisfied 
when K2b2 < 1. Consequently the expression (2.4) 
for the double differential cross section is weakly 
convergent or even divergent. A fortiori we see 
that when K2b2 < 1 the Krieger-Nelkin formula is 
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not applicable. Kosaly and Solt[ 12] arrived at 
practically this same conclusion by using the 
theorem of moments. In order to obtain a conver­
gent expression for the double differential scatter­
ing cross section it is sufficient to note that the 
divergence of (2.3) is connected with the expres­
sion ( V r U>Hr )nv r), proportional to 1e 2b2• Thus, 
going back to (1.4), we can neglect the operator 
Rr, whose contribution when 1e2b2 < 1 is small 
compared to the contribution of V r· In this approx­
imation, using formula ( 1.6) and retaining terms 
in the exponent in which the power of Kb is no 
greater than two, we find for the correlation func­
tion (x 111,( T ) 

" 't 

<x.vv(-r)) = e-2Wexp{ -ia(C- ~ d,;' ~ dT." <Vr('t')Vr('t")) 
0 0 

+···}· (2.5) 

In the case of a spherically symmetric molecule 
the function (Vr( T')Vr( T")) can be easily cal­
culated, and for kBT » B the correlation function 
( X11 v(T) takes the form 

<xv,.(,;)) = e-2w exp {-8/iiix2h2 - 2/t~ks1'x2b¥- a1,; 

+ g(,;) + ... }, 
g(,;) = 32/ 45x2b2(1- 2BkBT,;2) exp (--B/cp,T-r;2). (2.6) 

First expanding (x 1111(T)) in powers of g(T) 
and keeping only two terms in the expansion, we 
find for the double differential cross section for 
scattering of slow neutrons the expression: 

X exp [- ( e + a, + R) 2 J 
4d,2 

16 x2b2 [ (e + a1 + R) 2 J 
+ 45 (nBkBT) '/, exp - 4BkBT 

X (e+a1 +R)2 } 
4BkBT + ... ' 

d 12 = kBT(R + 2f1~x2b2). (2. 7) 

In obtaining (2. 7) we restricted ourselves to the 
first term of the expansion of (x vv ( T)) in the 
small parameter IC 2b2 < 1. In a definite sense this 
expansion is the analog of the one-phonon approxi­
mation in the theory of scattering of neutrons by a 
crystal. If we relate (2. 7) to the procedure pro­
posed by Egelstaff[ 14] for determining the spectral 
density of the autocorrelation function of the mo­
mentum of an atom, by introducing the variables 

a= li2~e 2/2MmolkBT, {3 = E/kBT, we easily find 
from (2. 7) the following expression for the spec­
tral density p ( {3 ) of the autocorrelation function 
for the momentum of an atom in the molecule: 

~ =I= 0. 

A peak in the curve of p ( {3) corresponding to the 
energy transfer E R:: 2 ( BkB T) 112 should appear in 
the spectrum of slow neutrons scattered at small 
angles, completely analogous to what is observed 
in crystals. Apparently the observed structure of 
the energy spectrum in the small angle scattering 
can be explained by using this autocorrelation func­
tion for the momenta of the atoms in the molecule. 

2. Medium momentum transfers 
( 1 < ~e 2b2 < kBT /B). The coefficients for this case 
have the form 

d 2 = kBT (R + 4/aBx2b2), 

aa = 4/,~2kBTx4b', a4 = 0.03B3kBTx6b6• (2.8) 

One can verify that the conditions (2.3) are satis­
fied in this case. But this means that (2.4) is 
applicable. From the derivation of (2.4) it follows 
that it gives the correct Placzek moments up to 
fourth order. The second and third terms in (2.4) 
affect the "wings" of the curve and determine the 
asymmetry in the neutron spectrum. 

3. Large momentum transfers (IC 2b2 > kBT/B). 
In this case conditions (2.3) are not satisfied. 
Formula (2.4) is not applicable. The calculation of 
the spectrum should be done by Volkin's method, [4] 

since in this case the operator Rr plays the major 
role. 

1 A. C. Zemach and R. J. Glauber, Phys. Rev. 
101, 118 (1956); 101, 129 (1956). 

2 T. J. Krieger and M.S. Nelkin, Phys. Rev. 
106, 290 (1957). 

3 A. M. L. Messiah, Phys. Rev. 84, 204 (1951). 
4 H. C. Volkin, Phys. Rev. 113, 856 (1959); 117, 

1029 (1960). 
5 J. Rahman, J. Nucl. Energy, A13, 128 (1961). 
6 G. W. Griffing, Phys. Rev. 124, 1459 (1961). 
7 G. W. Griffing, Inelastic scattering of neutrons 

in solids and liquids, IAEA, Vienna, 1, 435 (1962). 
8 J. A. Young and J. H. Koppel, Phys. Rev. 135, 

A603 (1964). 
9 Randolph, Brugger, Strong, and Schmunk, Phys. 

Rev. 124, 460 (1961). 
10 Strong, Marshall, Brugger, and Randolph, 

Phys. Rev. 125, 933 (1962). 
11 F. J. Webb, IAEA, Vienna, 1, 457 (1962). 



ROLE OF ROTATIONAL STATES IN THE SCATTERING OF NEUTRONS 351 

12 G. Kosaly and G. Solt, Phys. Letters 6, 51 
(1963); 13, 223 (1964). 

13 I. P. Dzyub and A. F. Lubchenko, DAN SSSR 
147, 584 (1962); Soviet Phys. Doklady 7, 1027 
( 1963). 

14 P. A. Egelstaff, IAEA, Vienna, 1, 65 ( 1962). 

Translated by M. Hamermesh 
68 


