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A hypothesis of the creation of astronomical bodies as a result of gravitational instability of 
the expanding universe is investigated. It is assumed that the initial inhomogeneities arise 
as a result of quantum fluctuations of cold baryon-lepton matter at densities of the order of 
1098 baryons/cm3• It is suggested that at such densities gravitational effects are of decisive 
importance in the equation of state and the dependence of the energy density E on the baryon 
density n can qualitatively be described by graphs a of b of Fig. 1. E vanishes at a certain 
density n = n0• A theoretical estimate (containing some vague points) yields initial inhomo­
geneities in the distribution of matter which can explain the origin of clusters of 1062-1063 

baryons ( 105-106 M0 ). The calculated mass is smaller than that of the galaxies by a factor 
of 105-106; it is in fact closer to the masses of globular clusters. The hypothesis is pro­
posed that galaxies are produced as a result of an increase of nonuniformities in the motion 
and distribution of the gas formed during gravitational collapses of the primordial stellar 
clusters. According to this hypothesis the plane component of the galaxy is produced from 
the gas, whereas the spherical component consists mainly of clusters of primordial stars 
captured by the gravitational field of the rotating gas cloud. 

UNITS AND NOTATION 

IN the gravitational system of units we put o = c 
=G=l. 

The unit of length is c- 1/ 2o1/ 2 a 112 = 1.61 
x 10-33 em. 

The unit of time = c- 3/ 2o1/ 2 G1/ 2 = 5.35 x 10- 44 sec 
= 1.7 x 10-51 year. 

The unit of mass= c 1/ 2o1/ 2 a- 1/ 2 = 2.18 x 10- 5 g 
= 1o-3s Me. 

The baryon density is n; n = 1 at a density 
0.24 x 1099 baryon/cm3• 

The average distance between baryons is 
a = n - 1/ 3 • The relative perturbation of the density 
is expanded in a Fourier series of the orthogonal 
functions 4:>K, defined (to simplify the normaliza­
tion) in a cube of the volume period V = V0a 3 ( V0 

does not depend on the time ) : 

tln "" - = Li <D,.(~)z,.(t). 
n 

(1) 

" 
Here ; = x/a is the co-moving dimensionless 
spatial coordinate (3-vector}, and K is a dimen­
sionless wave vector (independent of the time). 
The function 4:> satisfies the normalization condi­
tion and the equation 

x2 
tl<D + -2 <I> = 0. 

a 

For example, 4:> = v01/ 2 exp ( iK; ). The quantity zK 

defined in accordance with (1) is called the "am­
plitude of the inhomogeneity." 

E-energy density in the rest frame of the 
material. 

p = ndE/dn - E is the pressure. 
A dot over a letter denotes a time derivative. 
C = the limit of (a)2 as t - co; the symbol 

~ stands for equal in order of magnitude; the sym­
bol co denotes proportionality. 

1. INTRODUCTION 

The cosmological theory of the expanding uni­
verse is at present generally accepted. This 
theory is based on a nonstationary solution ob­
tained by A. A. Friedmann for Einstein's equations 
of general relativity, and explains, in particular, 
phenomenon of the "red shift" (see, for example, 
the series of articles devoted to the memory of 
A. A. Friedmann [1]). 

Recently Ya. B. Zel'dovich (see, for example,m) 
presented convincing arguments in favor of the 
assumption that matter was cold in the initial, 
dense state and indicated that under certain as­
sumptions concerning the initial relations between 
the baryon and lepton densities it is possible to 
explain, within the framework of these ideas, the 
predominant abundance of hydrogen in the uni-
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verse and the low temperature of intergalactic 
space. It can be assumed that during the early 
stage of the expansion the matter in the universe 
was practically homogeneous, and the "primordial' 
astronomical objects were the result of gravita­
tional instability. Although many astronomers and 
astrophysicists object to this point of view, an in­
vestigation of this point of view is essential. For 
the development of such a hypothesis, _great sig­
nificance is attached to a study of the laws whereby 
small inhomogeneities of density build up, and to 
the determination of the statistical characteristics 
of the initial inhomogeneities. The first problem 
was solved within the framework of the theory of 
the expanding universe by E. M. Lifshitz and 
again considered by Ya. B. Zel'dovich (see [t,2J), 
while the solution of the second problem calls for 
an examination of the initial stage of expansion of 
the universe, and therefore contains many hypo­
thetical premises. However, by combining theo­
retical considerations and astronomical observa­
tions we can hope to obtain the necessary initial 
data for the solution of cosmogonical problems 
and information concerning the physical laws ob­
taining at extremely high densities of matter. 

The fundamental equation of the theory of the 
expanding universe can be taken to be one of 
Einstein's equations 

Ro0 = 8n(To0 - 1/2T). 

Substituting for the case of a homogeneous world 
R~ = -3a/a and the components of the energy­
momentum tensor in the form T~ = E, T = E - 3p, 
we get 

ii = - ~ ( e + 3p) a. (2) 

Equation (2) has the integral 
. 8n 
a2 = -ea2 + C, (3) 

3 
where the integration constant C determines, as 
is well known, the sign and the magnitude of the 
spatial curvature. If we take Oort's estimate for 
the average density of matter at the present time 
p = 3 X 10-31 g/cm3, then a2 > 87r€a2/3 and the 
constant C > 0, although it is very small: C R;j a2 

= 1.6 x 10- 52 • This is a case of Lobachevskil 
geometry. However, estimates of p are not very 
accurate and it is not excluded that C = 0 and 
p = 1.2 x 10-29 g/cm3, and that at the present time 
a2 = 2 X 10- 53 (a2 -+ 0 as t-+ 00 ), and even 
C < 0 is not excluded. 

It is assumed in this paper that the equation of 
state of matter at n « 1 coincides qualitatively 
with that for a degenerate Fermi gas, and that the 
effect of interaction and transformation of fer-

mions does not play a very important role. Ac­
cordingly, E ~ n413 for n113 > M (M = 0.76 x 10- 19 

is the baryon mass) and E = Mn when n1/ 3 < M. 
We distinguish arbitrarily between four (or 

three) stages of the expansion of the universe: 

stage 1 e~1 a~1 1~t 

stage 2 e.-- n'l• a.-- t'1• 1 < t< !vl-2 

stage 3} e = !vln {a.-- t'1•!vf'1' !vl-2 < t < 1v1 c-'lz 
stage 4 p¢.e a= C'l•t Mc-'1•< t. 

During the first stage the gravitational interac­
tion of neighboring particles is ~ 1 and has an 
important influence on the equation of state. An 
investigation of this stage is essential for the de­
termination of the initial inhomogeneities of 
quantum character. If C = 0 then the fourth stage 
does not set in. 

Investigations carried out by E. M. Lifshitz [2] 

and Ya. B. Zel'dovich (verbal communication) of 
the laws governing the build up of small density 
perturbations can be summarized as follows. 
Neglecting the effects of the spatial pressure 
gradient, the perturbations build up during all the 
stages in inverse proportion to a2: 

(4) 

where ZoK is the "initial" amplitude at a ~ 1. 
Ya. B. Zel'dovich called our attention to the 

importance of taking into account the pressure ef­
fects, p ~ E, during the second stage for short 
waves. According to Zel'dovich, the stability 
condition is M-2 > t > K- 2 (that is, in particular, 
K > M ). If the stability condition is satisfied, os­
cillations of the particle density take place with 
conservation of the adiabatic invariant. 

When K 2 M, formula (4) for the third and 
fourth stages should be replaced by a formula that 
takes into account the effect of the pressure 
gradient in the second stage: 

z,. (t) = zoxB (x) I ti2, t > M-2• (5) 

Calculation of the function B ( K ) for K ~ M calls 
for the knowledge of the equation of state when 
n ~ M3 = 10 42 baryon/cm3• 

We accept in this paper Zel'dovich's hypothesis 
that the initial temperature of matter in the uni­
verse was zero, and concentrate our attention on 
a consideration of quantum fluctuations of the 
density. 

We note that during the course of the expansion 
of the universe the temperature of the matter first 
increases somewhat, owing to the incomplete 
adiabaticity of the transformation of the elementary 
particles in the second stage, after which it drops 
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as a result of the adiabatic expansion of matter, 
reaching ~ 10-7 erg or less at densities on the 
order of 1042 baryon/cm3• Zel'dovich's estimates 
(verbal communication) show that the tempera­
ture effect is not significant in the formation of 
inhomogeneities. 

2. FUNDAMENTAL EQUATIONS FOR SMALL 
DENSITY PERTURBATIONS 

The equations derived in this section coincide 
in content with the equations of E. M. Lifshitz,C2J 
but are written in a different coordinate system, 
with a view of going over to quantum theory. The 
quantization of small oscillations is easiest to 
carry out if the equations of motion are written in • Lagrangian form with 

Lx = 1l2m(t)i2- tf2r(t)z2• 

We then introduce a wave function ~K ( z, t ), sat­
isfying the Schrodinger equation [ m ( t) and r ( t) 
are known functions ] 

1 82'1" r(t)z2 'I' . o'l' 
- 2m(t) of'- +~2- = -LTt. (6) 

The "mass" m should correspond here to the 
value (7), obtained for short-wave oscillations 
(that is, for an unperturbed metric) as a result of 
a simple direct calculation of the change in the 
fraction of the Lagrange function 

connected with the matter. Expanding in powers 
of z2 and z2' we get 

a2 de 
mx(t)=---, 

x2 dn 

d2e dp 
rx (t) = n dn2 = dn. (7) 

To obtain r in the case of long-wave perturba­
tions, it is best to start from the equations of mo­
tion, obtaining the latter by a method which is 
close to the method of Ya. B. Zel'dovich (verbal 
communication). 

Let us consider the expansion (1) of an arbi­
trary perturbation in orthogonal functions <I>, 
satisfying the equation 

~<D + (xI a) 2<D = 0. 

The function <I> can be written in the form of an 
exponential or a sinusoid, or else in spherically 
symmetrical form 

<D co.:> sin xs I xs 

(8) 

(~ is the radius). The dependence of zK on t is 
determined in all cases only by the value of the 
parameter K in Eq. (8). To find this dependence, 

it is sufficient to satisfy the equations of motion 
at the point ~ = 0 in the spherically symmetrical 
case. Then, by virtue of the isotropy of space, the 
equations of motion will be satisfied automatically 
in all the remaining points. The fundamental Eq. 
(2) is the equation of motion at the point ~ = 0, 
accurate to effects of the spatial pressure grad­
ient. 

For long-wave perturbations we can neglect the 
effects of the spatial pressure gradient. We shall 
denote by the index zero the unperturbed quantities 
and by the index 1 infinitesimally small quantities 
of first order 

de 
a= ao +at, t =to+ t1, e =eo+ -a1 etc. (9) 

da 
Substituting (9) in (2) and separating the terms of 
first order of smallness we obtain equations for 
the perturbation amplitude. Here we consider t 
as the local time [ dt = ds at the point ~ = 0; it is 
just this t which enters in (2)], and t0 is regarded 
as the "world time" of the coordinate system. 

Lifshitz and Zel'dovich have assumed that 
t 1 = 0. Zel 'dovich actually used variation of the 
integration constants in the analytic solution of 
(2), a simple matter if one uses the special equa­
tion of state E ~ n 'Y; he considered y = 1, )' = o/a, 
and )' = 2. In the general case, the substitution 
(9) with the condition t1 = 0 in (2) leads to the 
equation of motion 

_!_ _!!__ ( ao2 !:__ ( ~~) ) = 4:rt ( n de + 3n dp ) at. 
a0 dt, dt a0 dn dn 

(10) 

We note that inasmuch as one of the solutions of 
this equation should be ai co.:> ao [ a time shift of 
the unperturbed solution of (2)], Eq. (10) can be 
written in the form 

alfal= a"~iao. (11) 

Introducing the relative amplitude of the in­
homogeneities 

z = n1 I no= -3at / ao, (12) 

we obtain from (10) or (11) for the special equa­
tion of state E ~ n"Y Zel'dovich's result, namely, 
two independent solutions 

z,..._ta, at=2-~/3y, a2=-L 

We now forego the condition t 1 = 0, imposing 
an additional condition, which is useful to us, 
m = (a/K )2 dE/dn [as in (7)]. The first term in 
an equation of the type (10) should be of the form 
( w = dE/dn) 

1 d ( 2 d ( a1 )) -a; dto coao dto ao . 
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Obviously t 1 must be chosen such as to add to the 
equation a term 

We put 

ao dwo -~ ( ~ ) . 
dt dt \ ao 

(13) 

Recognizing that, accurate to second-order terms, 

d2a / dt2 = iio + ii1 - 2i1iio - t1ao, 

we obtain under the gauge condition (13): 

1 d ( dz ) { ( de dp ) --- wao2- = 4:rtn -+3-
a2w dt dt \ dn dn 

- S:rt: (e + 3p) + 3 ~: ~ ( :~ )}z. 
[Starting with (14) we shall omit the subscript 
zero in differentiating with respect to the world 
time t0.] 

(14) 

For the special equation of state E = n l' we ob­
tain again two linearly-independent solutions 

z ~ try., a1 = 2 - 4 I 3y, az = 1 - 2 I y. 

The second solution vanishes (for long-wave 
perturbations) when the reference frame is trans­
formed to t1 = const. To the contrary, when 
t1 = -zdp/dE, the solution with a 2 = -1 vanishes. 

For the short-wave oscillations, Eq. (14) 
should be supplemented by a term which takes into 
account the spatial pressure gradient [according 
to formula (7)]. Taking (3) into account, the equa­
tion takes (for the particular case C = 0) the form 

1 d ( dz ) { ( de dp ) --- a2w- = 4nn -+3-
a2w dt dt dn dn, 

dp d ( dp ) x2 dp } 
- S:rt de (e + 3p) - 24:rten dn \ de -7;,2 de z. (15) 

When ')I = const, the solution of this equation is 
expressed in terms of Bessel functions; for ex­
ample, when ')I = % we have increasinA and de­
creasing solutions of the form ( J ~ t 1 2 K ) 

{ cos{)·- {}-1 sin{}, 
ZN 

sin{}+ {}-1 cos 'fr. 

3. THE FUNCTION B (K) AND THE MASSES OF 
STARS OF PREGALACTIC ORIGIN 

Yu. M. Shustov and V. A. Tarasov have at our 
request solved Eq. (15), with the aid of an elec­
tronic computer, for different values of K. The 
calculations were made for the simplest equation 
of state, satisfying E = nM with n 113 « M and 
E: = An 4/ 3 with n1r3 » M (A is a constant ~ 1) 

(16) 

The asymptotic value of p as n- 0 is less 
satisfactory in this equation; for n113 > M no ac­
count was taken of the transformations and inter­
actions of the baryons. 

The function a ( t ) can be obtained in the case 
of Eq. (16) analytically (Shustov). Shustov and 
Tarasov find, by integrating (15) the limiting 
value as t - oo of the auxilliary variable 

~ = z(i + a2M2 I A2)-'l', 

putting dt/dt = dz/dt ~ z0 as t- 0. It is obvious 
that t ( 0()) (/) z0B. 

In accordance with the results of the sections 
that follow, we put z0 ~ K. t ( 00 ) is a function of 
the parameter A 112 K. This function is oscillating 
and sign-alternating, but attenuates rapidly with 
increasing K. 

The distribution of the stars over the masses 
depends in a complicated nonlinear manner on z, 
and can hardly be obtained without very cumber­
some calculations. For a qualitative estimate let 
us determine the function F ( N) = .C:.N/N, where 
N is the average number of particles in a certain 
volume V = N/n and .C:.N is the mean -square devi­
ation 

We obtain F ( N) from formulas which, according 
to N. A. Dmitriev (verbal communication from 
Zel'dovich) can be employed when F ( N) is of 
such form that it is essential to exclude the effect 
of the fluctuations on the boundary of the averaging 
region. In our notation 

00 00 ~ 

F(N) = ( ~ z2 (x)x2e-><'14a'dx J N~ x 2e-x'f4a'dx) , 
0 0 

00 

N = 4:rt ~ e-a'~'£2d£, 
0 

i.e. a= n'l•jN'I'. 

The intuitive meaning of formulas (17) is that 

(17) 

.C:.N and N are calculated for a volume V with 
diffuse boundaries. For statistically independent 
particles we have z = 1 and F ( N) = N- 1/ 2 

It is obvious that the formation of objects with 
N particles is possible only if F ( N) ~ 1. It can 
be assumed that if there exist maxima of the plot 
of the distribution of the stars by masses, then 
they correspond at least approximately to the 
maxima of functions of the form Nm F ( N ) ( m ~ 1 ) . 
Putting (arbitrarily) for estimating purposes 
m = 1/ 2, we obtain, using the results of Shustov 
and Tarasov (assuming A= 5.8, corresponding to 
a mixture of 1 proton + 1 electron + 1 neutrino 
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without account of the transformation of the 
baryons and of the interactions) a maximum of the 
function Nt/2F at N = 0.47 x 1057 , that is, at a mass 
m = 0 .4M0. The assumption that the stars most 
preferably produced are those with mass ~ M0 
is due to Zel'dovich, who started from an examina­
tion of the boundaries of the stability region. 

One could have assumed that the stars which 
enter in globular clusters were produced at an 
earlier stage of the expansion of the universe, 
and their mass distribution should be described 
by the theory developed above. Sandage [3] inves­
tigated the distribution of the stars of the glob­
ular cluster M3 with respect to their absolute 
stellar magnitudes. Maxima were obtained near 
0.8~ and at (3-4)M0. Whereas the first max­
imum could be related somehow with the fore­
going theory, after refining the equation of state 
and the averaging laws, the presence of the second 
mass maximum (which consists essentially of the 
variable stars of type RR-Lyrae), cannot be ex­
plained. It is obvious that stars brighter than the 
sun cannot be of the same age as the universe, 
and at least part of their mass is of secondary 
origin. 

The function F ( N) for arbitrary z ( K ) in­
creases monotonically with decreasing N (re­
mark by Shustov). It is possible that this means 
that the great part of the primary stars has a 
mass smaller than OAM0 (determined by phenom­
ena which we did not take into account), and all 
the masses of Sandage's distribution are of 
secondary origin. 

4. THE HYPOTHESIS CONCERNING THE EQUA­
TION OF STATE WITH n- 1 

In the case of a degenerate Fermi gas of 
relativistic noninteracting particles, e: = An413 

with A ~ 1. The electromagnetic interaction of 
the extremely relativistic fermions in all orders 
of the perturbation -theory series is (/.) n 413 , that 
is, it only changes the value of the coefficient A. 
We assume that an account of the mutual trans­
formation of fermions and of all possible interac­
tions still leaves us with a formula of the type 

s =A (n)n'f,, where A (n) ~ 1 for 1 > n'f, > M. 

Another assumption of the theory is extrapolation 
of the concepts of general relativity down to dis­
tance scales of the order of 1.61 x 10-33 em. In 
all probability, at such scales our concepts of 
space should be reviewed, that is, we are on the 
border of applicability of the existing theory, a 
fact which does not exclude the possibility of ob-

taining qualitatively correct results in the sense 
of the "correspondence principle." 

At densities on the order of unity (in gravita­
tional units) the exchange and correlation gravita­
tional interactions of fermions become comparable 
in order of magnitude with the Fermi energy. 
Therefore the gravitational interactions become 
decisive in the equation of state. Qualitatively the 
role of these effects is obvious from the expansion 
of e: in powers of the gravitational constant 
[more accurately, in powers of ( G1i/c3 )n2 / 3 ]: 

s = An'/, + Bn2 - Cn'''· (18) 

In this expansion, which is valid when n « 1, the 
second term is the exchange gravitational interac­
tion, and the third is the correlation interaction. 
A, B, and C are of the order of unity and are 
larger than zero. When n ~ 1 the kinetic and ex­
change energies are as before greater than zero, 
and the correlation energy is as before less than 
zero, but owing to the effect of the subtraction of 
quantitatively unknown expressions, any theoretical 
estimates of even the qualitative nature of the 
curve e: ( n ) are hypothetical. We assume that a 
dependence analogous to (18) takes place also for 
n ~ 1, that is, that for a certain value n = na the 
quantity E reaches a maximum, and that E = 0 
when n = n0 (see the Figure, curve a). 

An equation of state of this form makes it pos­
sible to formulate correctly the problem of cal­
culating the initial perturbations (see below). 

More satisfactory is also the qualitative char­
acter of the unperturbed solution. The dependence 
of the world radius a on the time is obtained 
from (2). For t = 0 we put a = 0, i.e., 

e = -3C /8:rta2, ii ~ -(e + 3p) ~ -3nde/ dn > 0. 

For t « 1 we have a - a 0 ~ t2• e: + 3p = 0 at the 
point of inflection of the a ( t ) curve, and beyond 
a ~ tt/2. 

The solution for a ( t) can be symmetrically 
continued into the region t < 0: 

a(t) = a(-t). (19) 

It is natural to assume that this symmetry extends 
to all physical properties, so that 

'l'(t) = '1'*(-t), 
where lJ1 is the state vector. The entropy of a 
certain part of the universe is S ( t) = S ( -t ), 

(20) 

S ( 0) = 0. Such a "doubling" of physical reality is 
by virtue of its identical character not very 
meaningful, nor does it lead to any difficulties in 
principle. But on the other hand this eliminates the 
customarily raised question: "And what when 
t < 0?" 
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We shall consider in what follows also a variant 
of the equation of state (a plot of which is shown 
in the figure, curve b), for which dt/dn- oo as 
E- 0. If we assume in this limiting case that 
E ~ (a - a 0 )112 , then we can readily obtain from 
(3) the dependence of a - a 0 on t (it is obviously 
logical to consider in this equation only the case 
c = 0): 

a- ao ~ ltl'h. (21) 

In this case, as in the case of curve a, it is 
logical to assume symmetry of the states under 
time reversal. An alternate solution of the prob­
lem of negative time is possible (for C = 0), if 
the equation of state has the form shown on curve 
c ( E - const as n - oo) or on curve 
d [ E - A (a - a 0 )2 as a - a 0 ] • In case c, at the 
initial stage of the expansion of the universe, so 
long as E"" const, p = -E, a/a= const > o, i.e., 

as t-+- oo. (22) 

Subsequently, when E ,., const ( E ~ n 4/ 3 ), the ex­
ponential growth is transformed into a growth like 
a ~ t 112 • Analogously, for case d: 

as t-+- oo. 

We can attempt to determine the true charac­
ter of the equation of state at n ~ 1 by comparing 
the observational data with the deductions of the 
theory concerning the magnitude of the initial 
density inhomogeneities. 

5. QUANTUM THEORY OF OCCURRENCE OF 
INITIAL PERTURBATIONS AT n .... 1. 

Small density perturbations can be described 
with the aid of a wave function that depends on the 
dynamically-independent generalized "normal" 
coordinates zK. In the case of statistical inde­
pendence this function is of the form 

(23) 

" 
Each of the functions .YK 1) is described by its own 

l)we shall henceforth omit the index K in most cases. 

Schrodinger equation of the harmonic-oscillator 
type (24), with the "mass" m ( t) and "elasticity" 
r ( t) as variables (it is not necessary here to 
have m > 0 and r > 0 ) 

1 82'¥ rz2 aw 
-2m az2 +-2-'¥=-iiit. (24) 

Here 

(25) 

(26) 

The Schrodinger equation with a potential en­
ergy proportional to z2 has two classes of self­
similar solutions: 

'V+(z, t) = v+(t)e-~(t)z', 

'lf_(z, t) = v_(t)e-~(t)z'z. 

These solutions satisfy (24), if the complex 
parameters !J., v+, and v_ satisfy the following 
ordinary differential equations: 

d~/dt= i(2~2 /m-r/2), 

dv+l dt = i~v+l m, 

dv_f dt = 3i~v-/ m. 

The initial values of v and IJ. can be arbitrary 
(with Re IJ. > 0). 

(27) 
(28) 

(29) 

(30) 

(31) 

We note that the general solution of the Schro­
dinger equation can be represented in the form of a 
contour integral with respect to the parameter IJ.. 

For example, 
1 +oo 

'V(z, t) = Zn ~ dyoe-~(t)z'[C+(Yo)v+(t) + zC_(y0)v-(t)]. 
-oo 

(32) 

At the initial instant of time we have here IJ. ( 0) 
= xo + iyo, x0 = const > 0, and the time-independent 
functions c + and c_ are determined from the in­
tegrals 

+oo 
V+ (0) c+ (yo) = ~ dz I z I e-lt(O)z''Jf (z, 0) (33) 

and analogously for C_. A similar representation 
in the form of multiple integrals can be written 
for the elements of the Landau-Neumann density 
operator (the case of a "mixture"). 

We assume that each of the degrees of freedom 
of zK is described by a wave function of the type 
(27) 

We put below 
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1-t = x + iy = x-2 (X + iY). (34) gradient dp/dn (short-wave term), which has in 

Obviously 
both cases a sign opposite to that of dE/dn "'m. 
Therefore dp/dE < 0, which leads to a short­

z2 = il4x 

or (in order of magnitude) 

(35) wave instability in the initial period of time as 
t- - 00 • But even if an account of the nonlinear 
terms ensures that "initial" perturbations are 

z ,...., xX-'''· (36) 

We omit in (29) the small term nd2E/dn2 = dp/dn 
from formula (26) for r [we confine ourselves to 
the case of '~long" waves; this is possible, if the 
first term in r """ ( a/K )2 dE/ dn is not anomalously 
small]. We find that the equation for K2iJ. = X + iY 
no longer contains K. We arrive at the conclusion 
that if the solution of Eq. (29) exists at all, then 
the initial inhomogeneity z0 ( K) should be propor­
tional to K and should not contain other parame­
ters which differ from unity in order of magnitude. 
Thus, for long-wave perturbations 

z ,...., x 1 a2• 

Using the law of averaging (17), we obtain 

F(N) = l'l.N IN,...., N-'t, I a2 

(with a proportionality factor -1 ). 
For N :S M- 3 we need a correction for the 

pressure effect in the second stage: 

F ,...., N-'t.B (N) I a2, 

where 
co Gil 

[B(N))2 = ~ B2 (x)z02x2e-'~<'f4a.'dx J ~ Zo2x2e-><'14a.'dx. 
0 0 

(37) 

(38) 

(38a) 

At the present time a2 = 10- 52-10-53 • Therefore, 
the formation of clusters with F ( N) - 6N;N - 1 
could have occurred up to the present time for 
masses containing N = 10<6/ 5 ) 52 or 10<615 >53 parti­
cles, that is, masses of the order of m = 3 
x 105-3 x 106M0 • In order of magnitude this is the 
mass of a globular cluster. 

The detailed discussion of the physical proc­
esses occurring when n - 1, contained in this 
paragraph, is of necessity beyond the level of our 
present-day knowledge. But even if our notions 
change very radically, the correctness of formula 
(38) is not excluded. A solution of (29) over the 
entire time interval undoubtedly exists if stability 
(that is, r /m > 0) corresponds to the initial instant 
of time t- 0 or t--oo. This criterion is satis­
fied by the equation of state represented by curve 
a of the figure ( r < 0, m < 0), and is not satisfied 
by the equations of state of curves c and d. In 
these two cases, by virtue of the condition dE /dn 
- 0 as n - n0 or oo, the principal term in the 
"elastivity" r is the term of the spatial pressure 

finite (which is doubtful), there is no doubt that 
the amplitude of the initial perturbations obtained 
in such theories is too large (gigantic clusters of 
galaxies will be produced). For these reasons we 
turn to curves a and b. 

For a unique determination of iJ. ( 0 ) in the case 
of curve a we must stipulate in addition 

j.t(O) = 0. (39) 

In this case 

~-t(O) = 1l2(rm)'i•, z(O) = 1 I2V2(rm)'l•. (40) 

However, the requirement that the wave func­
tion (39) be stationary for the nonstationary state 
(a: > 0) does not seem quite logical to us. It is 
therefore possibly of interest to consider the 
equation of state of curve b. In this case 

[the sign of r is determined by summation of all 
three terms in the curly brackets of (26)]. Among 
the solutions of (29) there is one distinct solution 
that admits of a power-law approximation as 
t - 0 (self-similar instability) 

(42) 

Here c0 is a definite constant -1, Re C0 > 0, and 
Re iJ. - oo as t- 0, that is, with such an equation 
of state the matter in the universe experiences in 
the initial state no density fluctuations. 

We now consider the behavior of the solution 
of the system of equations for X and Y [equiva­
lent to Eq. (29)] as t- oo and as 1-- ta [ ta is 
the instant when m = (a/K)2dE/dn vanishes2l]. 
Assuming that E -- n 413 as t -- 00 , we then have 
an asymptotic solution 

(43) 

The constant B 00 can be arbitrary if the in­
equality X « Y is satisfied. This asymptotic 
solution describes an increase in z proportional 
to t, corresponding to the result of the classical 
(that is, not quantum) theory. If the constant B 00 

does not depend on K, it is obvious that we have 

2>E:. B. Gliner (in a paper now in press) calls states with 
dE: /dn = 0, in .connection with the isotropic character of the 
four-tensor Tk1 00 Ok i, a IL-vacuum. 
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the already mentioned result (38), 6-N/N 
~ N- 516 a.- 2• Near the point t = ta, the integral 
curve passes (through an anti node-type singular 
point). 

Y=Ya+Aa(t-ta)Z, X=Ba(t-ta) 2• (44) 

When t < ta it is obvious that Aa and Ba - 1, 
since Xo ~ 1 as t - 0 in the case of an equation 
represented by curve a, or C0 ~ 1 in the case of 
an equation represented by curve b. If analytic 
continuation of the solution in the vicinity of the 
point ta is possible, then Aa and Ba are con­
tinuous and Boo ~ 1. However, the possibility of 
analytic continuation gives rise to certain doubts, 
for when t- ta we have z ~ 1/(t- ta ), that is, 
z - oo (according to the linear theory). Actually 
it is necessary to take account near the point ta 
of nonlinear effects. 

The singular character of the point ta can be 
greatly reduced by going over to a reference 
frame with t1 = 0. This causes us to assume that 
a change in the order of magnitude of z at the 
point ta can hardly take place [although it is quite 
possible that when t > ta the statistical state of 
each elementary "oscillator" zK is no longer de­
scribed by the wave function (27), but by a density 
operator). 

6. COSMOLOGICAL HYPOTHESIS 

Let us assume that formula (38a) is correct. In 
this case the instant of formation of clusters con­
taining N particles with mass m = NM is deter­
mined by the condition F ( N, t) = 6-N/N ~ 1, that 
is, (taking into account that a - t- 113 Mt/3) 

t(N) ~ N'I•M[B(N)]-'h ~ 102 years· [;c:J"B-'Io. (45) 

The first to be formed are obviously "primordial" 
stars with mass m ::s OAM0(at t ~ 102 years). 
From similarity considerations we assume that 
the fraction of the primordial gas not captured by 
the stars decreases in accordance with a power 
law of the form [ t ( N0 )/t) a. Under likely values 
of the exponent a, no more than several per cent 
gas remain at a time corresponding to 109 years. 

How do we explain the formation of galaxies 
[for which, according to (45), t(N) ~ 1016 years]? 
The answer presented here for discussion con­
tains several hypothetical assumptions. 

Clusters containing not more than a certain 
critical number of primordial stars will sooner 
or later experience the gravitational collapse of 
Tolman-Oppenheimer-Snyder-Volkoff (the ques­
tion of the evolution of stellar clusters, leading 

to collapse, has recently been discussed in con­
nection with the problem of quasars; see, for 
example,[(!; the duration of the evolution de­
creases if a gaseous or dust-like phase is present 
in the cluster). 

An estimate shows that even after t - 106 

years it is possible for quasars with a mass of 
500 M0 , for which the sum of the formation time 
given by ( 45) and the time of hydrogen burn -up are 
close to minimum and of the order of 106 years, 
to collapse. This is followed by collapses of 
larger clusters of matter. According to our hy­
pothesis, which is apparently confirmed by the 
data on quasar observation, several per cent of 
the matter is ejected during the collapses, with 
jet velocities of the order of 103-104 km/sec. 
(The ejection of gas clouds from M-82 confirms 
the lower of these figures.) The collapse results 
in a "post-collapse" object (PC-object), which 
has very small dimensions and is manifest prin­
cipally through its gravitational field. 

It is possible that the bulk of the matter in the 
universe is contained at present in PC-objects; 
with this assumption, an estimate of the average 
density of matter, in which only galaxies are taken 
into account, turns out to yield much too low a 
value and the disparity with the condition C = 0 
disappears (it is precisely in this context that 
several authors have discussed this hypothesis, 
see, for example, the article by Zel'dovich [1] with 
a reference to I. D. Novikov). Incidentally, the in­
tergalactic primordial stars with low luminosity, 
and intergalactic gas and dust of low density, are 
also very difficult to observe, and we do not ex­
clude the possibility that it is just these compo­
nents that constitute a principal or appreciable 
fraction. 

We propose that the process of formation of 
galaxies begins at t ~ 109 years and still continues, 
and will continue to infinity, encompassing ever 
increasing masses; the non-uniformity of the gas 
distribution is first produced in this case by jets 
due to collapses of clusters of primordial stars 
and during the later stages an ever increasing 
role will be assumed by collapses of cores of 
galaxies and clusters of PC-objects. By the time 
t - 109 years is reached the proposed fraction of 
the gas component is approximately 10 per cent; 
these are remnants of the primordial gas and of 
gas produced by small collapses. At t ~ 109 years 
there occur collapses of clusters containing 
105M . The kinetic energy of the jets ejected in 
such collapses can reach, according to our hy­
potheses, 1053-1055 erg; this energy goes over 
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into the energy of the shock waves propagating 
through the gas. Streams of gas are produced, 
and in regions where several streams meet the 
density of the gas increases by a factor of several 
times. As a result of the gravitational contraction 
of these condensations, galaxies are subsequently 
produced (possibly in pairs or in groups), with 
masses amounting to approximately t;3- 1/ 5 of the 
mass of the gas. If the time for the formation of 
the condensations is 109 years, then the formation 
of a cluster with mass 1044 g requires a velocity 
of 106 em/sec, that is, an energy of 1058 erg. Ac­
cording to our assumption, this is the energy of 
101-103 collapses of masses equal to 105M0 , or 
1-102 collapses of masses of 108M0 • 

The gas clouds which become condensed in 
collisions of jets should possess in most cases an 
angular momentum and constitute the flat com­
ponent of the galaxies. To complete the picture, 
we must assume, that after the condensed regions 
of gas have been formed, some small fraction 
( ~ 1 per cent ) of the globular clusters of 
primordial stars "left intact" by the collapses, 
and a similar fraction of the PC-objects, is cap­
tured by the galaxies, thus forming the spherical 
components of galaxies. In accordance with the 
observations, the spherical component of a galaxy 
practically does not participate in the galactic 
rotation of the gas and in the formation of stars 
of secondary origin from the gas. 

The mass of single PC-objects (that is, not 
included in the clusters and in the core) in our 
galaxy is apparently much smaller than the mass 
of the galaxy, otherwise their gravitational field 
would be manifest in the speed of galactic rotation. 

(This does not exclude a considerable number of 
PC-satellites of the galaxy with former semi­
axes.) 

Globular clusters not captured by galaxies 
have not been observed. This may be due to their 
lack of bright and variable stars, characteristic 
of galactic clusters, which apparently arise (or 
are captured) when galactic clusters pass through 
the core of the galaxy. 

Of course, the picture described is very hypo­
thetical and must be supplemented, refined, or 
rejected as a result of further considerations. 

The author is grateful to Ya. B. Zel'dovich, 
numerous discussions with whom led to formula­
tion of the entire problem as a whole and enriched 
the work with many ideas. The author is also 
grateful to I. E. Tamm and E. M. Lifshitz for a 
discussion and valuable remarks. 
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