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The effect of the correlational interband interaction of electrons in the form of Coulomb at
traction between electrons and holes on the electron spectrum of a divalent crystal is inves
tigated at arbitrary temperatures. It is shown that at temperatures below some value Tc the 
existence of bound electron-hole pairs of the Mott exciton type is possible. At Tc there oc
curs a second-order phase transition accompanied by a realignment of the [g (p) spectrum 
from the metal or dielectric type into one of the superconducting type [ cf. (9) and (10)]. When 
AP ""'0, the system becomes superfluid; the superfluidity does not lead to superconductivity 
owing to the neutrality of the electron-hole pairs, possibly manifesting itself in "super
thermal-conductivity." The dependence of the transition temperature and of A(p) on the 
relative position of the bands of the non-realigned spectrum is obtained. It is shown that 
when A(p) ""'0 the system is antiferromagnetic if the pairing occurs in the triplet state, the 
period of the magnetic structure being determined by the distance between the extrema of 
the bands in reciprocal space. 

IN 1961 MottC 1J discussed the question of the oc
currence of a metallic state in a univalent lattice 
when atoms are brought together from infinity. He 
indicated that the appearance of a conduction band 
can be delayed by the Coulomb interaction of the 
electrons and the holes, which leads to the forma
tion of bound electron-hole pairs of the Mott exci
ton type. He considered also the case of a divalent 
crystal; at sufficiently large interatomic distances, 
such a crystal has a dielectric-type electron spec
trum. With decreasing lattice constant, the valence 
and the conduction bands partially overlap. How
ever, even in this case the pairing of the electrons 
with the holes can retard the transition to the 
metallic state. This question was subsequently 
considered by ArkhipovC 2J and by Keldysh and 
KopaevC 3J. In the present work we consider also 
this simpler case, while the analysis of the uni
valent crystal will be the subject of a different 
paper. 

1. FORMULATION OF THE PROBLEM 

Assume that we have a divalent crystal with two 
close-lying bands. At high temperatures the inter
band correlation is not important and the spectrum 
is well described by the self-consistent-field ap
proximation. We shall assume that this spectrum 
is known. With decreasing temperature, the corre
lation interaction between the different bands, 
which has the character of a Coulomb attraction 

of electrons and holes, can become sufficiently 
significant for the pairing of electrons and holes 
to become thermodynamically convenient. Here, 
obviously, a second-order phase transition takes 
place. We shall determine the character of the 
realignment of the spectrum and the temperature 
of the phase transition as a function of the pres
sure, and we shall also clarify the magnetic struc
ture resulting from triplet pairing. 

Assume that prior to the realignment (when the 
interband interaction is insignificant) the electron 
spectrum is Et 1 (p) in the lower band and [g 2(p) in 
the upper band. In our problem the principal role 
is played by states with energies in the vicinity of 
max [g 1 (p) and min Et'2(p). In this region, the spec
trum can be regarded as quadratic. The extrema 
of the bands can be either at one point of the 
Brillouin zone, or at non coinciding points. For 
example, a case is possible when the minimum of 
the conduction band is located at the center of the 
Brilluoin zone, and the maximum of the valence 
band at its vertices. For a cubic crystal, in the 
region of interest to us, the dispersion law is then 
expressed as follows: 

Et 1 (p) = max [g 1 - (p - q) 2 I 2m1, 

Et2(p) =min Et2 + p2 I 2m2, (1) 

where p-quasimomentum, q-half of the major 
diagonal of the Brilluoin zone (accurate to within 
the reciprocal-lattice vector, depending on the 
value of p), and m 1 and m 2 are the effective masses. 
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The process responsible for the pairing is 
shown in Fig. 1. In this process the electron goes 
over from a state with quasimomentum p from 
zone 2 into a state p', 2, while the hole goes from 
the state p + k, 1 into the state p' + k, 1. With the 
aid of the diagram technique of field theory we can 
readily verify that this scattering is large in any 
order of perturbation theory, if the conduction and 
valence bands overlap. This was done by Keldysh 
and KopaevC 3J for the case when the extrema of 
the bands are located at one point. 

The first correction to the vertex part, describ
ing the interaction of the electron with the· hole, is 
of the form 

r 12<1> (p, p'; k) =.(2~)' ~ a•p"r!2(0) (p, p") GH<o> (p" + k) 

X Q22(0) (p") f12(0l (p", p), (2) 

where r 12<0>(p, p 11) is a simple vertex, p" = (p", E"), 
k = (k, w), and G11<0l and G22<o> are the Green's 
functions of zeroth approximation in the lower and 
upper bands, respectively. 

If the distance between the extrema of the bands 
in momentum space is q, then as k- (q, O) the 
poles of both Green's functions G11 and G22 come 
closer together on the Fermi surface, as a result 
of which the entire expression (2) becomes singu
lar. Putting, for example, k = (q, w) and using the 
dispersion law (1), we obtain after integration with 
respect to E" 

rt2(1l(p, p'; ro) 

=) rt2(0) (p p") rt2(0) (p" p') sign (PF -I p" I) d3p" 
' ' (PF2 -p'")/2~t-ro(2n:) 3' 

(3) 

where PF is the Fermi momentum and 
JJ. = m1m 2/(m1 + m 2). We set Planck's constant 
equal to unity. It is seen from (3) that r 0 >(w) has 
a logarithmic singularity at the point w = 0. This 
circumstance points to a strong correlation be
tween the state p, 2 and p + q, 1. 

Summing the corrections obtained from (2) by 
iteration, we can obtain an integral equation for the 

vertex part, the solution of which has poles at 
values of k close to q. These poles offer evidence 
of instability of the ground state relative to pairing 
of the electrons with the holes. However, there is 
no need to investigate the vertex part. We can 
formulate a self-consistent problem, by introduc
ing Green's functions G12 and G21 which are non
diagonal in the quasimomentum. These functions 
differ from zero if pairing takes place, and vanish 
when there is no pairing. We set up a system of 
equations of the type of the Dyson equations for 
the functions Gnn', where n, n' = 1, 2, and pick out 
those solutions of this system which correspond 
to the minimum of the thermodynamic potential. 

2. DERIVATION OF THE FUNDAMENTAL 
RELATIONS 

It is clear from general considerations that the 
interband correlation should lead to the appearance 
of a new period 27f /q in the crystal. In the case of 
the dispersion law (1), q is half the diagonal of the 
Brilluoin zone, so that the lattice is doubled. The 
requirement of translational symmetry imposes on 
the Green's function 

cnn' (p, p'; ro) = ~ G (r, r'; ffi) 'Pr (r) 'ljlp·n' (r') d3r d3r' 

certain definite conditions. Namely, 

cnn' {p, p') = a<>pp' + Mp+q.p'· 

We can assume here that G11 and G12 are propor
tional to Opp', while G12 and G21 are proportional 
to Op +q,p' inasmuch as G11 (p +q,p), G22(p + q,p), 
G12(p,p) and G21 (p,p) correspond to transitions in 
which the energy change is of the order of the width 
of the band. We shall henceforth set G12(p + q,p) 
= G12(p). 

The physical meaning of the function G12(p, -0) 
is clear. It is the wave function of the pair in 
momentum space, and in the case of singlet pairing 
G12 ~ 1, while in the case of triplet pairing 
G12 ~ n · a. Here n is a unit vector which gener
ally speaking depends on p, while a is a vector 
whose components are Pauli matrices. 

We shall carry out the analysis for arbitrary 
temperatures, using the temperature Green's func
tions @J nn' (p, w n). In the general case, the equa
tions for the Green's functions are shown in Fig. 2. 
This figure corresponds to the following expres
sions: 

(iron- tW 2 (p) + ft) @J 22 (p, ron) = 1 + l: 12+ (p, ron) @J 12 (p, ron), 

(iron- tWt(p) + ft)@J 12 (p, ron)= l:12 (p, ron)@J22 (p, ron), (4) 

where JJ. is the chemical potential, 
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tion spectrum, with a gap 

~ (p) = p::i2 (p) 1- (10) 

In the right side of (8) we can now sum over the 
frequencies, and we obtain an equation for the gap: 

~(p) = S rFp' f12(p p') ~(p') th e(p') (11)* 
(2n) 3 ' 2e(p') 2T ' 

12 _ _ ~ l d3p' 12 '· _ 12 , Equation (11) has been written out for the case of 
~ (p,wn)- T Li J (2n)l (p,p • Wn Wm)@ (p ,wm), singlet pairing. If the pairs are triplet, then we 

m 
(5) obtain in lieu of (11) 

and r 12 (p, p'; wn -wm) is the vertex describing 
the Coulomb interaction of the electrons with the 
holes and corresponding to the processes shown in 
Fig. 1. The use of only this type of vertex has the 
following physical meaning: in accordance with the 
pairing notion, we neglect the processes in which 
the number of electrons and holes changes, since 
such processes are accompanied by pair annihila
tion or production; the scattering of electrons by 
electrons, corresponding to the vertices r 11 and 
r 22, is assumed to be taken into account in the 
non-realigned spectrum ft n(P). 

We shall assume for simplicity that the disper
sion law (1) is symmetrical, that is, we put 
m1 = m 2. Let, in addition ft 1 (p) and ft 2(p) be 
measured from the Fermi level. Then 

{g 2 (p) = - {g I (p - q) = {g (p) • 

The solution of (4) is of the form 

iwn + (g (p) 
@} 22 (p, Wn) = - --:-...,.--::c-:-.,....,.....,.-=:::-:-

Wn2+ (g2(p}+l~l2(p, Wn) 12 

(6) 

Substituting (7) in (5) we arrive at an equation for 
~12(p, wn): 

d3p' 
~ 12 (p, Wn} = T ~ S (2n)3f12 (p, p'; Wn- Wm} 

m 

(8) 

This equation always has a trivial solution 
~ 12 (p, wn) = 0, corresponding to the non-realigned 
spectrum. We wish to find a nontrivial solution. 

We neglect retardation, that is, we assume that 
r 12 (p, p') does not depend on the frequency. Then 
~ 12(p) likewise does not depend on the frequency, 
and the quantity 

[ I 12 12 ]'/• + e(p) = + (t2(p) + ~ (p) (9) 

determines two branches of the elementary-excita-

~ ( ) - \ d3p' f12 ( ') ~ (p') he (p') ( ) 
p - J (2n)3 p, p 2e (p') t 2T Dpllp' • (12) 

We see from this equation that the maximum value 
of the gap (which is most convenient thermo
dynamically) corresponds to the function n(p) 
= const. Thus, the magnitude of the gap does not 
depend on the total spin of the pair. 

The thermodynamic potential g can be calcula
ted from the formula [ 4] 

8Q A 

lt. olt. = <Hint>, (13) 

where A. is the interaction parameter. In our prob
lem 

8Q 
1.. a~t. = _ ~ r12 (p, p') Sp {@12 (p, _ O) @12+ (p', _ O)} 

p.p' 

= -~f12 (p p') ~(p)~*(p') the(p)the(p') (14) 
p,p' ' 2e (p) e (p') 2T 2T • 

We see that the minimum of the thermodynamic 
potential corresponds, as should be the case, to 
the maximum value of the gap. 

If we take into account the exchange interaction 
of the electrons from different bands, r~~ch• then 
there will appear in the right side of (14) a term 
of the form 

~ rexcll'z(p, p') Sp @'2(p,- 0) . Sp @'2+(p',- 0). 
p,p' 

This term differs from zero only in the case of 
singlet pairing and is equal to 

~ r 12 (p p')~(p)~*(p') th e(p) the(p') 
;;, exch ' e(p)e(p') 2T 2T ' 

If r~~c > 0, then pairing in the triplet state is 
easier. 

The behavior of the function r 12 ( p, p') in the 
region of small momentum transfers depends 
strongly on the character of the spectrum. In the 
metallic phase r 12 tends to a finite value as 
I p - p' I - 0, and in the dielectric phase it behaves 
like I p - p' l-2. We can calculate r 12 in the usual 

*th =tanh. 
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manner, by threading electron and hole loops on the 
principal interaction line and summing the resul
tant chains. Here, in view of the foregoing, the 
result can depend essentially on whether exact or 
zero Green's functions are used. Therefore, gen
erally speaking, it is necessary to solve a self
consistent problem in which the interaction r 12, 

which determines the energy gap, depends itself 
on this gap. 

Carrying out the indicated summation with allow
ance for four different loops, we obtain 

4ne2 
f1Z(k, Wn) =k - 2-+---c4-n-e2II-(,---k,-w-n-,-) ; 

Il(k, Ciln)=- T ~i _j-_~ Sp{@l 11 (q, Ciln}@l 11 (q + k, Cilm + Ciln) 
m J (2n)3 

+ @122(q, Ciln)@J22(q + k, Ulm + Wn) 

+ 2@112(q, w} @1 21 (q + k, Wm + Ciln)}, 

, 
where the functions @Inn are determined by formu
las (7), and e is the effective charge. 

Summing the latter expression over m and 
neglecting retardation, we obtain 

II (k) 

= 2 ~ dJq e(q+k)e(q}-~(q+k)~(q)-~(q+k)~(q) 

(2n) 3 e(q + k)e(q) 

X _n ( q + k) + n ( q) - 1 
e(q + k) + e(q) 

_ 2 ~ d3q e(q+k)e(q) +~(q+k)~(q) +~(q+k)~(q) 
l2n) 3 e(q + k)e(q) 

X 
n(q+k) -n(q) 
e(q + k)- e(q) 

( e(q) )-1 
n(q) = exp--r- + 1 . 

When T = 0 we have 

II(k)=25~ 
(2n) 3 

X e(q+k)e(q)- ~(q+k)~(q) -~(q+k).~('!)_ 
' e(q + k) e(q) [e(q + k) + e(q)] · 

(15) 

3. SOLUTION OF THE EQUATION FOR THE GAP 

In this.section it will be convenient to use an 
atomic system of units, in which n = m = e = 1. 
The equation for the gap when T = 0 is of the form 

~< >- r d3p' f12( ') ~(p') (16) 
p - J (2n) 3 p, p 2e(p') · 

We consider three different cases of relative posi-

tions of the bands of the non-:-realigned spectrum. 
Case A. ~ (p) = p 2 /2 +d. The bands do not over

lap, and the width of the forbidden band is large 
compared with t.(p). We rewrite (16) in the form 

OJ' 
2e(p)tj5(p)= ~ (2nfsf12(p,p')¢(p'), (17) 

where lj! = t./2E, and the renormalization of the 
vertex can certainly be neglected. The left side of 
this equation can be rewritten approximately in the 
form 

(p2 + 2d + ~2 (0} I d}¢(p}, (18) 

and (1 7) takes the form of the Schrodinger equation 
in the momentum representation for two oppositely 
charged particles with reduced mass 1/2, the quan
tity 2d + t. 2(0)/d playing the role of the binding 
energy. The latter, as is well known, [ 5] is equal 
to one-quarter of the atomic energy unit. Hence 

~(0) =dk(2(1-d/dh))'", (19) 

where 2dk = 1/4 is the maximum width of the for
bidden band, at which pairing takes place. In the 
usual units 

me~ 
dR. = 3,4-i;,eV, 

moeo 

where m 0 and e 0 are the mass and charge of the 
free electron. 

Case B. ~(p) = p 2/2. The vertices of the bands 
touch the Fermi level. From the form of (1 7) it 
follows that lj!(p) decreases rapidly when p > p1 

= [2.6(0)] 112• Therefore we can put under the inte
gral sign in (17) 

¢(p) ={"'(0), p <PI. 
0, p >PI 

(20) 

The vertex r 12(k), calculated with the aid of (15), 
has for k « p1 the form 

f12(k) = 4n/ k2[1 + 0.25(dd ~(0))''']. 

As will be shown below, .6(0) is of the order of dk, 
so that we can put r 12(k) = 41!" /k2• Substituting now 
(20) in (1 7), we obtain 

'IJ(p) = 'IJ(O) (PI2-p2lnl P+PII +2 ~)· (21) 
8ne (p) p p - P1 P 

Comparison of (21) and (20) shows that the latter 
formula gives a good approximation for the solu
tion of equation (17). 

Putting p = 0 in (21), we find 

2 me~ 
~ (0) = n2" = 5.5 moeo~, e V. (22) 

Case C. ~ (p) = (p2 - p~)/2. Let .6(p) be small 
compared with the Fermi energy ~F· In this case 
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in the region k « p1 = [2t:.(pF)] 112 the vertex r 12(k), 
calculated from formula (15), is of the form 

When k are larger compared with p 1, the gap 
does not play any role and 

This condition yields 

~o=4(~)''•p/l•exp(- 2JtPF ). 
n. ln(npF/2) 

(28) 

The analysis carried out in this section shows 
that the dependence of the interaction r 12 on t:.(p) 
is significant only in the case of overlap, when the where K is the reciprocal Debye radius: 

x2 = 8pF I Jt = 2.5 PF· (23) Fermi energy is of the order of dk. 

We put 

f12(k) = 

k > P1 

and break up the integral (16) into two parts 

1 \ d3p' ~p' 
~ (p) = 4rr,2 ~ (p- p')2 (1 +IX~ 2 (pF)) 8 (p') 

[p-p I<P• 

(24) 

We have found above that in the case when the over
lap of the bands is small compared with the gap, 
the latter is of the order of dk. If we take JEF to 
be of the order of dk, then all three momenta PF• 
p 1, and K become of the same order. The two 
terms on the right side of (24) will then also be of 
the same order. With further increase of the over
lap, the first term in (24) becomes small compared 
with the second, and the equation takes the form 

~(p)=.-.1-~ p'dp'~(p')ln (P+P')2+x2 (25) 
4np e (p') (p - p')2 + xz · 

The latter is valid when the condition PF » p 1 is 
satisfied. The inequality PF » K is simultaneously 
satisfied. 

It is physically clear that t:.(p) reaches a maxi
mum on the Fermi surface. We substitute in the 
right side of (25) t:.(p) in the form 

~(p) = { ~o, 
0, 

IP-PFI<Pz. 

IP-PFI>P?.' 
(26) 

t:.0 and p 2 should be determined in a self-consistent 
manner. Integrating (25) after substitution of (26), 
we obtain 

~(p) = __ 1_1n (p + PF)2 + X2 ~oln 2PFP2. (27) 
2m;F (p- PF) 2 + x2 ~o 

Formulas (26) and (27) can be reconciled if the 
following condition is satisfied 

~(pF+pz) = 1f2~(pF) 

4. MAGNETIC STRUCTURE 

We have already seen that in the case of positive 
exchange interaction the total spin of the pair is 
equal to unity, and the Green's function @1 12 is of 
the form 

@ll2(p -0)=- ~(p) (na). 
' 2e(p) 

(29) 

In this case the average spin density S(r) differs 
from zero and is equal to 

S(r) = ReSp(a@l12 (r, -0)) 

JtX :rty JtZ 
=- n/ (r) cos- cos- cos -, 

a a a 

f (r) = 8 Re 2] u~· (r) u~+q (r) ~(~) , 
p 

(30) 

where u~(r) is the periodic part of the Bloch func

tion ljl~(r) and a is the lattice constant. 
Inasmuch as f(r) is a periodic function with 

period a, according to expression (30) the magnetic 
moment reverses sign on being displaced by the 
vector a. Thus, in the case of triplet pairing the 
system is antiferromagnetic. 

In the case when the extrema of the bands are 
at the same point of the Brillouin zone (q = O), 
there is no doubling of the lattice. However, in the 
case of triplet pairing an antiferromagnetic spin 
structure is produced here, too, with a period equal 
to the initial period a. The magnetic moments at 
all the sites will have the same direction, although 
the total magnetic moment is equal to zero. 

5. GENERAL REMARKS 

In Sec. 3 we determined the dependence of the 
character of the realignment of the spectrum and 
of the value of t:. 0 on the mutual placement of the 
bands of the non-realigned spectrum when T = 0. 
These results are shown in Fig. 3, which s,hows 
the dependence of t:. 0 on the parameter d, which is 
positive and equal to the half-width of the forbidden 
band in the absence of overlap, and which assumes 
negative values- JE Fin the presence of overlap. 
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FIG. 3. 

At large negative values of d, the gap is exponen
tially small. In the vicinity of d = 0, the gap .6. 0 is 
of the order of magnitude dk and as d ---.. dk it 
vanishes like (dk- d) 112• When d > dk the gap .6, 0 

is equal to zero. 
As will be seen from the formulas of Sec. 2, 

our model is analogous in its thermodynamic 
properties to a superconductor. In the case when 
S'F » 6(p), all the thermodynamic quantities can 
be calculated from the superconductivity-theory 
formulas (see, for example, [6]) in which we sub
stitute 6 0 for 6 and vF .J 2KPF in place of the 
De bye frequency w D· In particular, the tempera
ture of the transition Tc is equal to y.6. 0/rr, where 
ln y = 0.577. In the case of weak overlap 
( & F « 6 0), the order of magnitude of T c is also 

6o· 
At values of d close to dk and for T "' 0, equa

tion (11) takes on the form of the Schrodinger 
equation (17), in which the role of the effective 
potential energy is played by the product r 12 

tanh (E/2T). Solution of this equation leads to the 
expression 

[ ( d d \l';, 
ll(T)=dh 2 th2·---) . 

2T dh I J 
(19') 

We find from this, in particular, that the transition 
temperature tends to zero as d ---.. dk like 

4dh 
Tc=d/ln---. 

dk-d 

The quantity d, which characterizes the relative 
position of the bands of the non-realigned spec
trum, depends on the pressure, and generally 
speaking decreases with increasing pressure. 
Therefore, if d is positive at normal pressure, 
that is, the crystal is a dielectric, then at large 
pressures d can become negative, and for a speci
fied temperature T the transition to the metallic 
state occurs at a pressure p which satisfies the 
equation T = Tc(dc(p)). 

The spectrum of elementary excitations for 

d < dk and T < T c belongs to the superconducting 
type, but no superconductivity arises, inasmuch as 
the electron-hole pairs are neutral. Nonetheless, 
the phenomenon of superfluidity can take place, 
since, unlike an ordinary dielectric, in this model 
the entire system of electrons can move as a unit 
in the absence of elementary excitations. Super
fluidity can become manifest in the existence of 
super-thermal-conductivity, or more accurately 
energy flow is possible in the absence of a tempera
ture gradient and a chemical-potential gradient. 

In conclusion let us note the causes which may 
make pairing of electrons with holes impossible. 
Such a factor may be the electron-phonon interac
tion, which leads to a mutual repulsion of the elec
trons and holes in a layer of thickness 2w D at the 
Fermi surface. In view of this, the possibility of 
pairing is determined by the sign of the effective 
interaction, which is a sum of the Coulomb attrac
tion and phonon repulsion of the electrons and 
holes. Thus, the pairing criterion is roughly 
speaking the inverse of the superconductivity 
criterion. A factor hindering pairing is also the 
deviation of the dispersion law from spherical 
symmetry, which occurs at large overlaps. 
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