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The width of the gap 6. in the electron energy spectrum of a single crystal of tin in the super
conducting state is studied by the tunnel effect method. The complicated nature of the aniso
tropy of 6. is associated with the presence of surfaces along each of which 6. varies slightly. 
Surfaces, reconstructed according to the experimental data, are compared with the Fermi 
surfaces of tin. 

AS a result of a study by the tunnel effect method 
of the width of the gap 6. in the electron energy 
spectrum of tin, [1] a significant variation of 6., 
depending on the crystallographic orientation of 
the sample, was observed. The anisotropy of 6. is 
of a complicated type. Large regions of approxi
mately constant 6. and sharp boundaries between 
them are, apparently, its distinctive features. In 
order to explain the results, it was proposed that 
the complicated nature of the anisotropy is associa
ted with singularities of the Fermi surfaces of tin. 
In order to verify this hypothesis, it would be 
necessary to try to reconstruct, according to ex
perimental data, the surfaces along which the width 
of the gap varies insignificantly, and then compare 
them with the Fermi surfaces of different bands. 
However, the data obtained turned out to be inade
quate for the reconstruction of these surfaces. 
Previously [t] it was only possible to observe in 
certain sections a correlation in the distribution 
of regions of constant 6. and of the Fermi surfaces 
constructed according to the model of nearly free 
electrons. In this article, a more detailed analysis 
of the data on anisotropy of the gap is carried out, 
based on the results of further investigations. 

1. METHOD OF MEASUREMENT AND RESULTS 

The width of the gap 6., just as in[t], was de
termined from the characteristics for the tunneling 
transition through an insulating layer ~ 10-7 em 
between a single crystal of tin and a tin film of 
thickness ~ 6 x 10-6 em. The current-voltage char
acteristics of the transition and the derivative 
dV /dJ = ~(V) were recorded in experiments at 
1.36°K. In contrast to the case of a tunneling tran
sition between two thin films, the curve .Jl(V) for a 
single crystal has a more complicated shape-
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FIG. 1. Copy of the dV /dJ = CR(V) curves for tunneling 
transitions for samples of various orientations: curve 1 -
(8; ¢) = (2°; 0), curve 2- (8; ¢) = (45°; 17°), curve 3-
(8; ¢) = (77°; 10°) (for convenience, the origin has been dis
placed along the axis of ordinates for different curves). 

usually with several discrete minima. These 
minima may be similar in regard to relative depth 
(Fig. 1, curves 1 and 3) or they may differ by 
several times. In the latter case they appear as 
''wings'' on the curve of the principal minimum 
(Fig. 1, curve 2). 

The complicated characteristics of tunneling 
transitions are evidently due to the fact that several 
groups of electrons in a single crystal, with differ
ent gap values 6.k, contribute to the tunneling cur
rent. In order to calculate 6.k, it was assumed that 
the voltage corresponding to a minimum of the 
curve .9l (V) is equal to e V min = 6.k + 6. *, where 
6.* = 0.56 meV is the width of the gap in the elec-

. tron energy spectrum for a tin film. In what 
follows, the gap 6.k will be given in relative units: 
(6.k) = 26.k/kTc. 
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The main portions of the sphere for tin are 
represented on Fig. 2 in an equiangular conical 
projection. The point with coordinates (8; cp) 
= (0; O) corresponds to the direction of the normal 
to the plane of the sample lying along [ 00 1] ; the 
point (8; cp) = (90°; O) corresponds to the direction 
of the normal along [100]; the point (8; cp) 
= (90°; 45°) corresponds to direction of the normal 
along [110]. The orientations of the samples which 
are utilized in this communication are indicated on 
Fig. 2a. 

Let us observe how samples with similar values 
of ~k are distributed. As already indicated, the 
tunneling current is usually caused by several 
groups of electrons with different values of ~k· 
The contribution of each group can be determined 
from the depth of the corresponding minimum. The 
most intense groups correspond to very deep 
minima. In what follows, we shall consider pri
marily these minima. 

Depending on the crystallographic orientations, 
the width of the gap for a single crystal of tin 
varies up to 1.5 times: from (~k) ~ 4.3 to (~k) 
~ 2.8; in this connection, for the majority of sam
ples (~k) = 3. 7 to 3. 8. It is obvious that, because 
of the finite width of the minima on the complica
ted !1/(V) curves, it is only possible to determine 
accurately the value of ~k for substantial differ
ences in the values of ~. 

In the first place, let us consider samples with 
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FIG. 2. a - the orientation of the samples 
studied plotted on a conical-equiangular pro
jection of a sphere. b through f - regions cor
responding to various values of (~): b - the 
cross-hatching indicates the regions correspond
ing to values of (~) - 4.3; c - cross-hatching 
indicates the regions with (~)- 3.1, the dashed 
line indicates region VIII of article ['] with the 
assumed value(~)- 3.1; d- the cross-hatching 
indicates the regions (~)- 3.4, e - the regions 
(~)- 3.55; f - the cross-hatching indicates the 
regions with (~) = 3.7 to 3.8, the dashed lines 
indicate the boundaries of the regions in which 
the samples, whose <R(V) curves do not have a 

rs·· minimum at (~) - 3. 7 to 3.8, are located. 

a minimum at 1.24 to 1.26 meV [(~) = 4.25 to 4.35], 
which is clearly indicated on the curves of Jl(V) 
(Fig. 1, curves 1 and 2). If we single out the sam
ples which have one of the deepest minima located 
at (~) ~ 4.3 (for example, a sample which corre
sponds to curve 1 in Fig. 1), then it turns out that 
all of them are grouped in a few regions. In what 
follows we shall refer to these regions as "regions 
of corresponding values of ~." The regions with 
values of ~ between 4.25 and 4.35 are indicated on 
Fig. 2b. The boundary of the regions is determined, 
in the case of a sufficiently large number of studied 
samples, as the boundary a transition through 
which is accompanied by an abrupt change of the 
relative depth of the corresponding minimum on 
the tunneling transition characteristics (see [1]). 

Thus, for samples located away from the boundar
ies of the regions of Fig. 2b by an angular distance 
of a few degrees, the depth of the minima on the 
9l (V) curves for (~) ~ 4.3 is already smaller than 
the basic depth by a factor 2 or 3. However, some 
uncertainty in the determination of the boundaries 
arises because of the finite number of samples 
studied. For example, because of the absence of 
samples near cp = 0, 20° < 8 < 25° (Fig. 2a), it is 
impossible to assert with complete certainty that 
region 2 of Fig. 2b extends to the cp = 0 axis, as 
indicated on the figure by the dotted line. 

We note that all of the regions with values of 
(~) ~ 4.3 are located near the [001] axis in an inter-
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val ~ 35°. For some of the samples located outside 
of this interval, the minimum associated with 
(~) ~ 4.3 appears in the form of a ''wing'' on the 
.n(V) curve (see, for example, curve 2 on Fig. 1). 

The regions with values of (~) between 3.05 and 
3.25 are indicated on Fig. 2c. In the angular inter
val e > 35°, (~)has a value from 3.15 to 3.25; in 
the interval e < 35°, we have (~) = 3.05 to 3.15. 
This value of (~), in the form of a "wing" on the 
curve, is observed in the same way for all samples 
lying in the region e < 45°. We note that (~) = 3.05 
to 3.25, as well as (~) = 4.25 to 4.35, is observed 
in the majority of regions in the presence of (~) 
= 3.7 to 3.8 (Fig. 1, curves 1 and 3). 

The regions with (~) = 3.4 are indicated in Fig. 
2d. None of these regions, with the exception of 
those lying near the point (e; cp) = (85°; 9°), contain 
the value (~) = 3. 7 to 3.8. 

For a number of the samples studied, the prin
cipal minimum on the curve corresponds to (~) 
= 3.53 to 3.58. This value of ~ is too close to 
(~) = 3. 7 to 3.8 to be able to distinguish all regions. 
The reliably-established regions are indicated on 
Fig. 2e. 

The region with values of (~) between 3. 7 and 
3.8 is indicated on Fig. 2f. The value(~)= 3.7 to 
3. 75 predominates in the angular interval e > 35°, 
and the value (~) = 3. 8 in the interval e < 35°. The 
boundaries inside of which the principal minimum 
on the .1l (V) curves is not present when (~) = 3. 7 
to 3.8 are indicated by dashed lines on Fig. 2f. 

Although a large number of samples were used 
for the construction of Fig. 2, the boundaries of a 
number of the regions are not determined very 
precisely. The point is that, because of the ex
tremely complicated nature of the anisotropy of 
~ for tin, we assumed it possible to combine into 
one region of Fig. 2 adjacent samples with the 
same value of ~ only in that case when their ori
entations differed by less th:an 5°, although in cer
tain cases, for example, the long region (~) = 3.4 
on Fig. 2d, this requirement was obviously too 
stringent. Because of this we do not consider, in 
particular, the value (~) = 2.8, observed only for 
certain samples. However, even in the most favor
able case, the accuracy of the determination of the 
boundaries is limited by errors in the determina
tion of the orientation of the samples, which may 
exceed 2°. 

2. DISCUSSION OF RESULTS 

Let us consider the obtained data from the point 
of view of the hypothesis introduced in [t]. Accord
ing to this hypothesis, the complicated nature of 
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FIG. 3. Regions for the directions of the normals to the 
Fermi surfaces of tin, constructed according to the nearly free 
electron model. Crosses - • second band; 'II - third band; 
' 0 - fourth band; x; - the two sixth bands; the fifth band 
remains without any identifying marks. In the upper left hand 
corner, there is a figure showing the fourth "hole" band. 

the anisotropy of ~ is associated with the fact that 
electrons belonging to several bands of tin, with 
different gap widths, give a contribution to the 
tunneling current. In a given direction, the elec
trons with v = a E/apn, where Pn is the momentum 
normal to the plane of the transition, give the prin
cipal contribution. The relative contribution of two 
bands in a selected direction is proportional to the 
radius of curvature of the Fermi surface in each 
of the bands. 

For instance, let us consider what kind of re
sults would be expected if the Fermi surface of 
tin were to coincide exactly with the model of 
nearly free electrons. For this purpose, let us 
determine the value of a Ejapn in different bands, 
or, what is equivalent, the direction of the normals 
to the surfaces of constant energy in momentum 
space. This problem is easily solved by the 
geometrical construction method, [ 2] for which we 
assume a/c = 1.83 and a free electron sphere 
radius r 0 = 1.52(27T/a). The results of the construc
tion are shown in Fig. 3. The boundaries between 
bands are the intersections of the free electron 
spheres with a system of planes parallel to [001] 
and one of the two other principal axes, and of 
planes situated at angles of 61 o 22' and 39o 16' to 
the [ 001] direction (the trace from the latter plane 
is seen on Fig. 3 in the form of a nearly perfect 
circle). The Fermi surface of the metal, accord
ing to the free-electron model, is in fact construc
ted out of the regions of Fig. 3, as depicted in the 
upper corner of Fig. 3 for the hole surface of the 
fourth band. According to the stated hypothesis, 
the boundaries on which an abrupt change of ~ 
occurs should coincide with the boundaries shown 
in Fig. 3. 

Although some correlation was previously[!] 
noticed for cp > 15° in the location of the sixth and 
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FIG. 4. Reconstructed "hole" (a) and "electron" (b) sur

faces for (L'l) = 4.3. The upper figure is a projection of the re
gions with values of (L'l)- 4.3, from which the surface in the 
(001) plane is constructed; the lower figures represent several 
cross sections of the surface. The numbering of the regions is 
the same as in Fig. 2b. Distances along the axes are measured 
in units of (2rr /a). 

fifth bands and of the regions (~) = 3.4 and (~) 
~ 3. 75, it is obvious that complete matching of the 
regions represented in Figs. 2 and 3 does not occur. 
And what is more, regions with complicated char
acteristics are found, in clear contradiction with 
the nearly free-electron model. These discrepan
cies are apparently associated with a substantial 
distortion of the Fermi surfaces in a real crystal 
relative to those constructed geometrically accord
ing to the free-electron model. Before making a 
detailed comparison of the obtained data with ex
perimental studies of the Fermi surface of tin, it 
is clear that one should verify whether the results 
obtained are not in clear contradiction with the 
hypothesis stated above, that is, whether from the 
regions of Fig. 2 with close values of ~ one can 
construct closed surfaces, similar to the way in 
which bands are constructed out of the pieces of 
Fig. 3. (We recall that, according to theoretical 
calculations [3•4] , there is a very small probability 
for any substantial variation of ~ along one band.) 
Only after this has been done can we attempt to 
compare the obtained surfaces of constant ~k with 
data about the Fermi surfaces of tin. 

In order to construct each of the ~rfaces of 
constant ~k• we have available only information 
with regard to its angular dimensions, more pre
cisely, the angular dimensions, evidently, of its 
flattest sections. We shall assume that the radius 
of curvature of all of these sections is the same. 
This is an additional assumption since, according 
to the conditions of the experimental arrangement, 
it is impossible to determine the dependence of a 
change in the absolute depth of a minimum on crys-

tallographic direction"for a selected value of ~ k· 
For definiteness, let us assume that the radius of 
curvature of all the surfaces coincides with r 0-

the radius of the free electron sphere. It is ob
vious that, as in the case of bands constructed ac
cording to the nearly free-electron model, each of 
the closed surfaces consists either only of pieces 
of spheres with the radii directed inside the sur
face, or only of pieces with the radii directed out
ward. According to conventional terminology, in 
the first case we shall call the surface "electron," 
and in the second case-' 'hole.'' 

The results of constructions of two possible 
versions of the surface corresponding to (~) ~ 4.3 
are shown in Fig. 4. Although the experimental 
data are in better agreement with the "hole" sur
face version, there is not enough data to make a 
final selection. As is evident from Fig. 4, the sur
faces of both constructions do not differ substan
tially. In the first approximation they remind us of 
a lens, whose ratio of diameter to height is 3: 1. 

In the course of the construction, we neglected 
the angular regions in which the minimum for 
(~) ~ 4.3 is several times less than the principal 
minimum and appears only as a ''wing'' on the 
.9t (V) curve (Fig. 1, curve 2). In these regions of 
the surface (~) ~ 4.3, the radius of curvature is 
evidently several times smaller than for the sec
tions indicated on Fig. 2b. The linear dimensions 
of these regions are accordingly smaller by the 
same factor. According to estimates, the total 
contribution from all of these regions does not 
exceed the errors associated with the inexact de
termination of the br;mndaries on Fig. 2b. 

Constructions were also carried out for other 
values of ~k· The surface (~) ~ 3.1 is an "elec
tron" central surface, somewhat flattened along 
the {001} and {100} axes (Fig. 5a). It is possible 
to group the three regions of values of (~) ~ 3.4 
into only two closed surfaces. The two regions in
dicated by numerals on Fig. 2d form a small cen
tral surface. It is impossible to determine with 
certainty whether this is an "electron" or "hole" 
surface. A more probable version of the "electron" 
surface is shown in Fig. 5b. The large region in 
Fig. 2d which is not labelled with numerals, to
gether with the similar regions in the other quad
rants, form four elongated surfaces per unit cell. 
These surfaces are similar to the large surfaces 
of the sixth zone, constructed according to the 
free-electron model. Thus, for both of the sur
faces compared, the ratio of the major axis to the 
smallest is 3:1, the length of the major axis 
amounts to ~0.95(27r/a). However, the orientation 
of these surfaces to the lattice is somewhat differ
ent. Whereas the major axes of the surfaces for 
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FIG. 5. a -the surface(~)- 3.1; b - one of the surfaces 

(~)- 3.4; c - the surface (~)- 3.55. The numbering of the re
gions is the same as in Fig. 2; Distances along the axes are 
measured in units of (2rr /a). 

the nearly free electron model lie in the {100} 
planes, making an angle of 61 o 22' with the ( 001] 
axis, for the surfaces with (.6) ~ 3.4 they make an 
angle ~zoo with the {100} planes and an angle 
~ 50° with the [001] axis. 

Only the regions of largest dimensions (indica
ted by numerals in Fig. 2e) were used for the con
struction of the surface (.6) ~ 3.55. These regions 
are grouped together in two noncentral "hole" 
surfaces per unit cell. Several cross sections of 
the surface (.6) ~ 3.55 are shown in Fig. 5c. 

We turn, finally, to the regions of values (.6) 
= 3. 7 to 3.8. These regions occupy such an exten
sive angular interval that if we attempt to join 
them together into one surface, similar to what 
we did earlier, then its geometrical dimensions in 
all directions will considerably exceed the dimen
sions of the unit cell. This may signify that either 
the radius of curvature of the surface is less than 
r 0 or else these values of .6 correspond to several 
isolated surfaces, as in the case (.6) ~ 3.4. Since it 
is difficult to presuppose that one of the most ex
tended, very deep minima of the .Yl (V) curves is 
associated with the surface having the smallest 
curvature, the first assumption seems very un
likely to us. It is more probable that these values 
of .6 are related to several surfaces, perhaps those 
corresponding to the fifth and fourth ''hole'' bands 
of the free-electron model. Some correlation in 
the distribution of these bands on Fig. 3 and the 
regions of values (.6) = 3.7 to 3.8 on Fig. 2f testi
fies in favor of this supposition. And what is more, 
if it is assumed that regions 1 and 2 of Fig. 2f 
refer to the fourth band, but all other regions per
tain to the fifth band, then the constructed surfaces 

agree with the fourth and fifth bands of the free
electron model in all of its basic dimensions. It 
should be emphasized, however, that such a separ
ation of the regions into two surfaces is, to a con
siderable extent, arbitrary. 

Thus, although the regions corresponding to a 
definite value of .6 are, at first glance, randomly 
distributed, they are all joined together into closed 
surfaces of a basically simple geometrical shape. 
Some of these surfaces are similar to the Fermi 
surfaces of tin, constructed according to the nearly 
free electron model; however, other surfaces, for 
example, (.6) ~ 4.3 and (.6) ~ 3.1 differ markedly 
from this model. 

Now let us compare the obtained data with ex
perimental studies of the Fermi surface of tin. A 
large number of articles[5-9] have been devoted to 
this problem. The investigations [ 7- 9], in which 
direct measurements of the geometrical dimen
sions of the cross sections of the Fermi surfaces 
were made, are of most interest. 

First, let us turn to investigations carried out 
by the high-frequency method. [B, 9] In these studies 
it was reliably established that there exists a sur
face in tin which is identical, with respect to its 
own basic dimensions, with the fourth "hole" sur
face of the nearly free electron model. As already 
indicated above, it is possible that one of the 
(.6) ~ 3. 75 surfaces coincides with it. Further
more, in these studies it is shown that a surface 
similar to the third "hole" surface exists in tin. 
The geometry of this surface is similar to the 
surface (.6) = 3.55. Moreover, in this case there is 
even an astonishing agreement of the geometrical 
dimensions. Thus, the cross sectional area of the 
(.6) ~ 3.55 surface in the (001) plane amounts to 
0.01 to 0.02(2rr/a) 2, whereas the cross sectional 
area of the Fermi surface of tin, according to [ 5], 

is equal to 0.014(2rr/a) 2• Both the size of the sur
face (.6) = 3.55 as well as the size of the surface 
along [001] amount to ~0.5(2rr/a), according toC 8, 9J. 
Similar agreement of geometrical dimensions must 
indicate that the radius of curvature of the surface 
is actually close to r 0• Aside from this, in tin the 
presence of a surface differing substantially from 
all of the surfaces constructed according to the 
free-electron model has apparently been estab
lished. [ 9] It looks like the surface (.6) = 3.1. Its 
(001) cross section is identical to the cross sec
tion of the surface (.6) ~ 3.1, although it is more 
flattened along the [ 00 1] axis. It is extremely 
probable that the value (.6) ~ 3.1 pertains pre
cisely to this surface. Then, since the geometrical 
dimensions of the surface (.6) ~ 3.1 are larger than 
the dimensions of the Fermi surface, determined 
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by direct measurements, one would expect that the 
radius of curvature of the surface is less than r 0• 

Unfortunately, there is not enough reliable in
formation about the shape of the Fermi surfaces 
in the remaining Brillouin zones. And what is 
more, present high-frequency[9] and ultrasonic[ 7J 
studies in considerable measure have not been 
deciphered, and in a number of cases they do not 
agree. It would be easy to relate the averages of 
some of these undeciphered data to the surfaces 
(~) ~ 4.3 and (~) ~ 3.4; however, it is hardly ap
propriate to carry out a detailed comparison before 
completion of the experimental investigation of the 
Fermi surface of tin. 

Thus, the totality of experimental data, about 
the anisotropy of the tunnel effect as well as about 
the peculiarities of the Fermi surface of tin, does 
not contradict the above-stated earlier hypothesis 
about the existence in this metal of a direct con
nection between the anisotropies of ~ and special 
characteristics of the Fermi surface. It is of inter
est to note that here, on all surfaces which do not 
differ qualitatively from the nearly free electron 
model, the gap width is close to the theoretical 
value (~) ~ 3. 75. From a theoretical investigation 
of the simplest model of a superconductor with 
isotropic surfaces of two bands, [ 10] it follows that 
the gap width of the latter may differ only in the 
case when the electron-phonon interaction between 
bands differs from the electron-phonon interaction 
within the limits of one band. It is possible that 
precisely this case is realized in tin. 

The author thanks P. L. Kapitza for interest 
in the work and L. M. Shpel'ter for technical as
sistance. 
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