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The region of reflection of radio waves propagating in an inhomogeneous plasma is consid
ered by taking into account the effect of the alternating electric field of the wave on the die
lectric constant of the plasma. It is demonstrated that the reflection point shifts into the 
interior of the plasma with increasing wave-field amplitude. The magnitude of this shift is 
calculated. The change in the critical frequency of transversal of the plasma by the radio 
waves is determined as a function of the amplitude of the wave field. 

WE consider the region N ( z ) of reflection of 
radio waves propagating in a layered-inhomogen
eous plasma normally to the layers (k II z ), with 
account of the influence of the variable electric 
field of the wave on the dielectric constant of the 
plasma. We assume that the frequency w of the 
wave is much larger than the electron collision 
frequency v. Then the point z0 of wave reflection 
is defined in the linear approximation by the well 
known condition (see, for example, [1]) 

e(zo) = 1-,-4:rte2N(zo) / mw2 = 0, N(z0) = mw2 ! 4:rte2• 

(1) 
The electron concentration N ( z) usually de

creases under the influence of the alternating 
electric field of the wave1). This leads to a shift 
of the point of reflection of the wave towards 
values of z larger than z0. A very important fact 
is that the amplitude of the wave field increases 
strongly in the reflection region (see [1], Sees. 17 
and 35), and this should lead to an intensification 
of the nonlinear effect in the vicinity of the point 
of reflection. The present article is devoted to an 
analysis of these questions. 

We consider here thermal nonlinear effects, 
connected with the heating of an electron gas in 
the alternating electric field of the wave. As 
shown in [2], these effects play a principal role 
under the condition that the amplitude of the al
ternating electric field changes little over the 
mean free path of the electrons. We assume also, 
for simplicity, that the plasma is weakly ionized, 

1 ~nder certain conditions the electron concentration can 
also increase with increasing amplitude of the wave field 
(see[2l). 

so that the principal role is played by collisions 
between the electrons and neutral atoms. When 
w » v we can usually neglect the absorption of 
the wave in the vicinity of the reflection point2 ). 

The propagation of the wave in the reflection re
gion, with allowance for the thermal nonlinear ef
fects, is then described simultaneously by the 
wave equation and the equation for the electron 
temperature: 

d2E co~ 
dz2 + C2e(z, 8)E = 0, (2) 

e + 2kT e + 1 d [ 8 de J 
3m6 ve(8) dz v.(e) (8 + 1) dz 

e(z, 8) = 1- 4:rte2N~_2_ 
mco2 e + 1 

(3) 

(4) 

Here ® ""Te/T, where Te is the temperature 
of the electrons in the wave field and T is the 
temperature of the unperturbed plasma, Eo ( z) 

2)When account is taken of nonlinear effects, we CBil neglect 
the absorption of the wave in the reflection region, if the follow
ing condition is satisfied 

__ v_ ( Eo)''' ~ t, 
c(de/dz)o Ep 

where vis the electron collision frequency, c the velocity of 
light, E(z) the dielectric constant of the unperturbed plasma, 
E0 the wave amplitude, and Ep the characteristic field (5). 
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the dielectric constant of the unperturbed plasma, 
j.Je = (2kTe )112!rn112l the frequency of the collisions 
between the electrons and the neutral atoms, l the 
mean free path of the electrons, and o the average 
fraction of the energy transferred by the electron 
to the atoms in one collision ( o = 2m/M for 
elastic collisions). In Eq. (3) for the electron 
temperature it is assumed that the amplitude of 
the wave field changes appreciably in a plane 
orthogonal to the propagation direction, only over 
sufficiently large distances p » z;..f6; because of 
this, only the derivatives with respect to the di
rection z are significant in the term describing 
the thermal conductivity (see [2] ). 

Let us consider here the case of a weak field 

(5) 

i.e., we assume that the electron-temperature 
perturbations are small, ® - 1 « 1. Equation (3) 
can then be linearized and its solution takes the 
form ® = 1 + .6., where 

Jf3a Y85zJI 
L\ =2lE 2 {e- Y85zJI ~ E2 (z') e Yasz'JZ dz' + e Yasz/Z 

P -oo 
00 

X. ~ E2 (z') e- 'Y8Sz'fldz'} • 
'Yii&zJI 

It then follows from (4) that 
A 

s{z, 8) = so(z)+ 2 l1- so(z)] 

(6) 

(7) 

and the system (2)-(4) reduces to a single integra
differential equation 

d2E 002{ A} 
dz2 +~ so(z)+ 2 E = 0, (8) 

where the integral term .6. is determined by the 
expression (6). We have neglected here Eo ( z) 
compared with unity in the nonlinear term (taking 
into account the fact that this term becomes es
sential only in the region where Eo ( z) ~ .6. « 1 ). 

In the reflection region, a standing wave is 
produced as a result of the superposition of the 
incident and reflected waves. If its length is not 
very large 

(9) 

then the presence of regions with periodic in
creases and decreases of field amplitude in the 
standing wave has little effect on the electron 
temperature. The dielectric constant then changes 
little over the length of the wave, and we can use 
the geometrical-optics approximation to solve Eq. 

(2): l4E 2 ( oo C - ) 
E 2 (z) = Y~ sin2 c ~ Ysdz , z;;;;;.O, 

0 , z <O, 
(10) 

where we assume that z = 0 is the wave reflection 
point (i.e., that E( 0) = 0 ), and E0 is its ampli
tude on the plasma boundary, i.e , in the region 
where E = 1. Substituting the formal solution of 
(10) in (6) and (7), and taking into account the fact 
that the periodic terms in formula (6) average out 
when condition (9) is satisfied, we obtain in place 
of (7) the following expression for E ( z) 

s (z) = s0 (z) 

( Yasztz co \e.. \e-.. I e- Y85zJZ ~ __ d-r: + e YaszJl J __ d-r:, z ;;;;;. 0, 
+ Eo2 ~ o 'JI s 'YS&z/Z Y s 

Ep2 oo I \ e-.. 
e'Yii&zJt ~ --d-r:, z <O, 

l 0 y s (11) 

where T = ..f3oz/l, and Eo ( z) is the dielectric 
constant of the plasma in the linear approxima
tion, Eo ( z) = 1 - 47fe2N/mw2. 

The shift of the wave reflection point due to the 
nonlinearity .6.z can be readily determined from 
(11 ). In fact, the reflection point z = 0 is defined 
by the condition E ( 0 ) = 0. Consequently 

Eo2 (' e-~ 
eo(O)= --J -=d-r:. 

Ep2 o is 
(12) 

Thus, the point of reflection of the wave z = 0, 
with allowance for the nonlinearity, fs determined 
not by the usual condition (1), but by the condition 
(12). It shifts into the plasma. In the linear ap
proximation as E0 - 0 the condition (12) coin
cides of course with (1). 

In order to calculate the shift of the reflection 
point it is necessary to know the function E ( T) 

= E (..f3oz/l) in (12), that is, the solution of (11). 
In the region z < 0 the solution of (11) is obvious: 

s(z) = so(z)- s0 {0) exp (}'36z/l). (13) 

In the region z > 0 it is necessary to solve the 
integral equation (11). It is natural to change over 
in this equation to the dimensionless variables 

t = zj36/l, x(t) = s(Eo I Ep)-'1•, 

xo(t) = s0 (Eo/l!.:p)-•ts (14) 

We then obtain in lieu of (11) 

~ e~dr: r e-'<dr: 
x(t) = x0 (t)+ e-t J-= + et J ----. 

o 'Yx t 'Yx 
(15) 

Far away from the reflection point, at 
z » l/.f3{;, that is, when t » 1, (15) reduces to 
the algebraic equation 

2 
x(t)=x0(t)+-=· (16) 

'Yxo(t) 

Figure 1 shows a plot of x ( t) vs. x0 ( t) as de-
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fined by (16) (dashed curve). We see from the 
figure that x ( t) R:: x0 ( t) at large values x0 ( t) 
» 1. In other words, E(z, E) R:: E0 (z) with 
Eo ( z ) » ( E0/Ep )4 13 . On the other hand, if x0 ( t) 
;S 1, then the function x ( t) differs strongly from 
x0 ( t). 

Inasmuch as E ( z) differs significantly from 
Eo ( z) only in the region of small values Eo 
;S ( E0/Ep )413 , it is natural to use for Eo ( z) the 
linear approximation 

eo{z)=e0 (0)+(~:)0 z=eo(O)+(! ~~ )/ (17) 

or 

where 

xo(t) =- Xo +at, 

.., e-t 
Xo = -eo(O) (EoiEp)-'1• = S -=dt, 

0 l'x(t) 

a= l(de I dz)o(Eo I Ep)-'1•(311)-'" 

= l(dN / dz)oN-1 (0) (Eo/ Ep)-'ls(36)-'i•. 

Then Eq. (15) can be rewritten in the form 

(18) 

(19) 

t e..: t e-..: 
x(t) = x0 (et -1') +at+ e-t S -=d-r:- et S -----=.d-r:. (20) 

0 l'x 0 1/x 
It follows therefore that for small t « 1 

8 
x(t)~(a+x0)t- t'l•+ ... 

31/a+xo 
(21) 

When t » 1/ a we have 

x(t) ~ x 0 (t) = at; (22) 

The form of the function x ( t) depends signifi
cantly on the magnitude of the parameter a, that 
is, on the electron concentration gradient in the 

FIG. 1. Dielectric constant of a plasma, with 
account of the nonlinearity of E as a function of 
E0 for different values of the parameter 9- indi
cated in the figure. 

unperturbed plasma. If 

a~ 1, (23) 

then we can approximately put x ( t) R:: at in the 
integral terms of (20), and obtain 

... 
x0 = S e-tx-'1, dt = "Ynl a, (2'± J 

0 

x(t) =at-"Yn/a +"Ynlaet[1-tt>("Yt)] 

+ l'n I a e-1j({t), 

where 2 • 
It> (z) =-= S e-Y' dy, 

"Yn 0 

(25) 

Thus, when condition (23) is satisfied, the dielec
tric constant of the unperturbed plasma at the re
flection point is equal to 

eo(O) = -"Ynl a(Eol Ep)'l•. (26) 

Recognizing that Eo ( 0 ) = - (dE/ dz )0.6.z we find 
that in the case in question the point of wave re
flection has shifted into the plasma, as a result of 
the nonlinearity, by an amount 

( Eo ) 2 [· n"V311 J 'I, 
~z = Ep l(deldz) 03 • 

(27) 

With increasing (dE/dz )0, the shift of the point of 
reflection increases. By virtue of condition (23), 
however, .6.z remains smaller than Z/..f6. 

If the electron concentration gradient in the 
unperturbed plasma is small, then a condition op
posite to (23) is satisfied: 

a~1. (28) 

Let us rewrite for convenience (20) in differ-
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FIG. 2. Dielectric constant E = (E0/Ep)4 f3 x of the plasma 
as a function of the distance z = tl/(38)'/2 from the point of 
reflection of the wave for a= 0. 

ential form. Differentiating the function x ( t) 
twice, we get 

d}x I dt2 = X+ Xo- 2 I yx- at. (29) 

The boundary conditions take the form 

x(O)=O, dxldtit-+o=a+xo, dxldtit .... oo=a, (30) 

where the constant x0 is defined, as before, by 
(18). 

When condition (28) is satisfied, the last term 
in (29) can be neglected. Then the equation is 
simple to integrate and we obtain 

dx I dt = ([x + x0]2- 8-.fx) 'I•. (31) 

From the last condition of (30) it follows that if 
a = 0 the function x ( t) tends to a constant value 
xoo as t-+ oo. Consequently, as x - Xoo the right 
side of (31) should vanish in proportion to 
x - x 00 • This leads to two algebraic equations 

[xoo + Xo)2- 8l"xoo === 0, Xoo'f, + XofXoo- 2 = 0, 

from which we can easily determine the constants 
x0 and xoo: 

Xo = 1.89, Xoo = 0.63. (32) 

Knowing the constant x0, we can readily inte
grate (31). The corresponding function x ( t) is 
shown in Fig. 2. The variation of the function x ( t) 
= E( E0/Ep )- 4 /3 with x0 (t) = -x0 +at= Eo ( z) x 

( Eo/Ep)-413 is shown in Fig. 1 for different values 
of the parameter a. It is seen from the figure 
that the shift of the point of reflection increases 
with decreasing a and is largest as a - 0, when 
x 0 = 1.89, that is, 

eo(O) = -1.89(Eol Ep) 413 • 

Consequently, the point of reflection shifts in this 
case by a distance 

Llz = 1.89 (Eo I Ep) ' 1• I (de/ dz)o. (33) 

By virtue of condition (28), we always have here 
.6.z » l/-/6. 

It is very important that the point of reflection 
is shifted by large amount as (dE/dz )0 - 0. This 
case is realized, in particular, when a radio wave 
propagates in a plasma layer and the wave fre
quency is close to the critical frequency "-'c of 
the layer, where we = ..J 47Te2Nmax/m is the Lang
muir frequency for the maximum electron con
centration in the layer. In the linear approxima
tion, the condition for the wave to pass through 
the layer· of plasma has, naturally, the form 
w ~ we. Taking the nonlinearity into account, this 
condition should be written in the form 

ro ;2:;roe[1 + 1.89(Eo I Ep)'1•]-'f, ~ roc[1- 0.95(Eol .l!:p) 41']. 

Thus, the frequency of the waves that can pass 
through a plasma layer is reduced by the non
linearity by an amount 

1 
Llro = 0.95ro0 (Eo/Ep)'l• = 0.95(e2Eo2/3kTm{))'f•-,1 • (34) 

roc 3 

The frequency shift .6.w increases like E 0413 with 
increasing field amplitude E 0• 

The above-mentioned passage of a wave with 
frequency w < we through the layer is due to the 
heating of the plasma in the region perturbed by 
the electric field of the wave. The concentration 
of the electrons in the heated region decreases, 
and the wave passes through the layer. It is clear 
that large-amplitude waves will greatly disturb 
the electron concentration, forming "holes" in 
the uniform distribution of the electrons in the 
layer. 

We note also that a solution of Eq. (8) was ob
tained above only for the case when the length X 
of the standing wave is not very large, so that 
condition (9) is satisfied. When the inverse condi
tion is satisfied 

(35) 

the averaging in formula (6) does not play an ap
preciable role, and the expression for .6., accurate 
to small terms of order Z/..{6, assumes the sim
ple form .6. = E2/Eb. Consequently, we obtain here 
in place of (8) 

d2E + ro2 {eo(z)+ E2 }E = 0. (36) 
dz2 c2 2Ep2 

In dimensionless variables, taking into account the 
linear approximation (17) for the function Eo ( z ), 
Eq. (36) takes the form 

d2y 1 dtz + (t + y2)y = o. (37) 

The same dimensionless equation describes 
also the propagation in a plasma, near the reflec-
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tion point, of narrow beams with transverse 
dimension p « l, when the nonlinearity is due not 
to thermal but to striction effects (see, for ex
ample,C3J). Therefore numerical integration of (37) 
with boundary conditions corresponding to a stand
ing wave (see, for example, [1J, Sec. 17), would be 
of appreciable interest. 

The author is grateful to V. L. Ginzburg for a 
useful discussion. 
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