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Multiple scattering of particles or quanta from a plane layer of matter is considered for the 
case of anisotropic scattering by an individual force center. An explicit analytic solution of 
the transport equation is obtained for cases when the expansion of the cross section in 
Legendre polynomials has a finite number of terms and when the cross section has a sharp 
peak at small angles (Coulomb scattering). 

INTRODUCTION 

IN our earlier paperC1J we derived an equation 
for multiple scattering of particles passing through 
a body of finite dimensions. We used the approxi­
mation N0 I a 12 A. « 1, where N0 is the concentration 
of the scattering centers arranged randomly within 
the body, a the scattering amplitude, and A. the 
wavelength of the incident particle. The scattering 
was assumed to be purely elastic. All the inelastic 
processes were regarded as absorption. For the 
case when the scattering cross section is isotropic 
(for example, scattering of slow neutrons by nuclei) 
and the scattering body or target is spherical, the 
derived equation was solved and an explicit ex­
pression obtained for the distribution of the scat­
tered particles outside and inside the body. 

In this paper we consider the case when the 
cross section for the scattering by an individual 
force center is anisotropic, and the scattering body 
has the form of a flat layer. This case is of inter­
est to the solution of many problems in atomic and 
nuclear physics, astrophysics, and physics of tur­
bid bodies. 

Coulomb scattering, which usually plays the 
main role in problems involving the passage of 
charged particles to various bodies, is highly 
anisotropic. When light is scattered by atoms, 
molecules or dust particles the anisotropy is not 
so strongly pronounced, but noticeable errors can 
result if it is neglected. It is equally important to 
take into account the anisotropy in the case of mul­
tiple nuclear scattering of fast nucleons, etc. 

In this paper we derive an explicit expression 
for the distribution outside and inside a body of 
finite dimensions, for particles multiply and aniso­
tropically scattered by an individual force center. 
We use the same approximations as before[!]. It 

is assumed for concreteness that the scattering 
body-target has the form of a flat layer, although 
the equation itself and the method of its solution 
are valid for any geometry of the body. We note 
that the problem of multiple scattering with an 
anisotropic cross section was solved so far only 
by numerical means [ 2] • Approximate analytic ex­
pressions were obtained only for Coulomb scatter­
ing through small angles [ 3] • 

1. STATEMENT OF THE PROBLEM 

1. We consider a scatterer in the form of a flat 
layer, with infinite x andy dimensions, with thick­
ness 2L in the z direction. The coordinate plane 
(xy) coincides with the plane on which the particles 
are incident. The number of particles leaving a 
unit surface of the layer at an angle J. 1 to the z axis 
and striking a unit area located perpendicular to 
their momentum is equal to 

I (P!Po) = 2IoNoasK (n1, no; is~, iso) 

X I sec -&1! exp [ -1 s1l L -1 soIL]; 

s1 = a sec -&1, so = a sec 'fro, a = Noao, 

Po= Pono, 

K (n1n0; uw) = x(n!no)f(u- w) + :n-1ae ~ dnx(n1n) 

+co 
X ~ dp [a+ ip cos-&]-1 K(nn0; pw)f(u- p), 

(I) 

(2) 

f(u-p)=(u-p)-1 sin(u-p)L, e=crscro-1. (3) 

Here n2 is a unit vector along the z axis; Po and p 1 
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are the momenta of the incident and scattered 
particles. We put I p1 l = I Po I , since we are inter­
ested in particles passing through matter without a 
change in their energy. A particle losing part of its 
energy will be regarded as absorbed, a (n1 n0) is the 
differential scattering cross section and a 0 is the 
total cross section, including both elastic and in­
elastic processes; I0 is the number of particles 
incident on a unit surface of the layer. 

Equation (2) is a particular form of a more 
general equation, obtained earlier [t] and suitable 
for arbitrary geometry of the scattering body: 

K(n1n0; uw) = x(n1no)F(u- w) + (2n)-3 ae ~ dnx(n1n) 

X~ dp[a + ipn]-1 K(nn0; pw)F(u- p). (4) 

The dependence on the geometry is determined 
completely by the functions F (a - b). For a plane 
layer 

.F(a-b) = ro(a, b)f(az- bz}, 

Cil (a, b) = 8n21\ (ax- bx} {) (ay- by} exp [ibzL - iazL]. (5) 

Substituting (5) in (4) and putting 

K (ntno; uw) = ro (uw) K(ntno; UzWz), 

we obtain (2). Using then formulas (20), (24), (32), 
and (35) from [l], we can check the correctness of 
(1) and (2). 

2. If the scattering is from a sphere of radius R 
whose center is at the origin, then the number of 
particles scattered through an angle J to the direc­
tion of the incident beam is equal to 

I (PtPo) = loNocrsK (n1no; ian1ian0) e-2aR. 

In this case 

.F(a- b) = 4nRv-2 [ (vR)-1 sin vR- cos v R], 

v= la-bl. 

(6) 

(7) 

3. To describe multiple scattering of light pass­
ing through a plane layer of substance V. A. 
AmbartsumyanC4J, V. V. SobolevC5J, Chandrasek­
harC2J, and others used a kinetic equation in the 
form 

dl(-r:, 'fr) = [ -1(-r:, 'fr) + B(-r:, 'fr)] sec 'frd-r:, ( 8) 

where T is the optical thickness of the layer. The 
quantity B(T, J) satisfies an integral equation with 
a resolvent expressed in terms of two functions, 
which in turn are solutions of a system of two non­
linear integral equations of a single variable. 
These functions were found by numerical means 
and tabulated for many values of the argument. 

The quantity B(T, J) is connected with (2) by the 

simple relation 
2<XL 

K (DtDo; uw) = (2elo) -I ei(u-w)L ~ d-r:B (-r:, 'fr) e-iua-'T. (9) 
0 

An advantage of our Eq. (4) is not that it can be 
used directly for an arbitrary geometry of the 
scattering body, but primarily that it yields a solu­
tion in explicit analytic form, with sufficient ac­
curacy for most physical applications. We shall 
describe the method of solving (4), since it is not 
trivial and is of interest in itself, all the more be­
cause similar equations are encountered in many 
physical problems, for example in problems of 
wave diffraction by bodies of different shapes. 

4. We put K = K0 + K1• We choose for K0 the 
solution of an equation that differs from (4) only 
in that F(u- p) is replaced by (27r) 36(u- p) under 
the integral sign. K 0 is an exact solution of the 
equation for an unbounded medium: 

Ko(n1n0; uw) = .F(u- w)f(ntno; u), 

f(n1n0; u) = x(ntno) 

+ ae ~ dnx(n1n)[a + iun]-1 f(nn0; u). 

(10) 

(11) 

Substituting (10) in (4) we verify that the resolvent 
of the equation for K1 is the function K itself. We 
obtain for the equation 

K(n1n0; uw) = x(n1n0).F(u- w) 

+ (2n)-a e ~ dpF(u- p)F(p- w) g(n1n0; p)- (2n)-6 ae2 

X~ dn ~ dp(a+ipn)-1 K(n1n;up)~ dq[(2n) 3 l'J(p-q) 

- F(p- q)] g(nn0; q)F(q- w), (12) 

(13) 

The equation for a flat layer is obtained from (12) 
in which u and w are replaced by Uz and Wz, 
F(a- b) by f(az- b), (27r)-3E by 1r-1E, (27r) 36(a- b) 
by 1r6(a2 - bz), and jdp Jdq by jdpz Jdq2 • The 
subscript z will be left out from now on. 

We expand all the angle-dependent quantities in 
Legendre polynomials 

(14) 

etc, and confine ourselves only to the case when 
the particles are incident along the z axis, that is, 
n 2 = n0• Denoting the expansion coefficient 
K(n1 n 0; uw) by ( 47: )-1K z (u, w), we obtain for them 
the equation 

+oo 
K 1(u, w)=K/0l(u, w)+n-2e2 ~ [c;g1, 0]2 ~ dpGL(p)K1,(u,p) 

Lnl, 
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+co 
X ~ dq [f (p - q) - n6 (p - q)] g nl ( q) f ( q - w) ; (15) 

-co 

+co 

Kz0 (u, w) = xzf(u- w) + n-1e ~ dpgz(p)f(u- p)f(p- w), 
-oo 

(16) 

(17) 

where QL(x) is a Legendre polynomial of the sec­
ond kind and ck0°z 0 are Clebsch-Gordan coefficients. 
We have interchanged the vectors n 1 and n 0, since 
Eqs. (1) and (2) are invariant relative to such an 
interchange (reciprocity theorem). 

Analogously, the expansion of r(n1 n 0; u) yields 

2. SOLUTION OF THE EQUATION FOR MULTI­
PLE SCATTERING 

1. We consider first the case when we can 
neglect all the terms of the expansion (14) starting 
with some term, so that all the K[ ~ 0 when l :::: Z0• 

Then (18) is a finite system of algebraic equations. 
Its solution (for the imaginary u ---.. iu of interest to 
us) is 

rz(iu)= bz(u) +~~[1- ae h(u) ln a+u]-1 
~(u) 2u ~2 (u) 2u ~(u) a-u 

a+u 
X h1(u)ln--, 

a-u 

bz(u) = ~ XnAnz(u)Pn(DoDz), b(u) = ~ bz(u)Pz(a/u), 
n 

hz(u)= ~,xnAnz(u)Pn(a/u), h(u)= ~Jhz(u)Pz(a/u), 
n l 

(19) 

where ~(u) is the determinant of the algebraic sys­
tem, consisting of the elements 

L 

~nz(u) = bnz + ae Xn ~ [C~~zo]2 ~ _!:_pm-1(a) PL-m (-a), 
U L ~1m U \U 

and Anz (u) is the cofactor of the corresponding 
element of the determinant. The arguments of the 
Legendre polynomials a ju can be larger than unity. 

Since (19) has a logarithmic singularity at 
u = ± a, we represent it in the form of a Cauchy 
integral, choosing a contour consisting of a large 
circle with cuts from io to ioo and from -ia to 
- i00 , and two small circles around the poles at the 

points iu = ± i{3. Then rz(iu) is uniquely determined 
and can be written in the form 

fz(iu) = Xz- ~· {~+~a r dx 'i'JZJ.L(X) } , (20) 
J.L=±I ~lU - ~ 2 a X J.lU - X 

Here ~l. ± 1 is the residue of rz(iu) at the pole 
u = ± {3, where {3 is the root of the equation 

2~~(~) = aeh(~)[ln(a + ~) -ln(a- ~)]; 

SIJ.L = ~hz(~-t~>S(~-t~) = ~hz(J.t~) (a2 - ~2 ) 

X {[~2 + a2 (ebo(M - 1) + ~ (a2 - ~2)b1 (~)] h(~)~(~) }-1 

(21) 

6 0(x) = h(x) [~(x)r 1 ; 61({3) is the derivative of 6 0(x) 
at the point x = {3, divided by 60( {3); 111 ± 1 (x) is the 
discontinuity of rz(ix) on the x-plane cuts from 
± iG to ± i 00 : 

'I'JZ±I(x) == ~ 111~1(x) = hz(±x) ~ hk(±x)[~(x)]-28(x), 
k k (22) 

8 (x) = [( 1 + ae h(x) ln x- a )2 + ( aneh(x) )2rl. 
2x ~(x) x +a 2x~(x) J 

2. We substitute (16)-(22) in (15), calculate the 
integrals, and replace u and w by iu and iw, since 
(1) contains K for imaginary values of u and w. We 
obtain 

"" dx 
K1(iu,iw)=Kz0(iu,iw)-ae ~ ~ -Kn(iu,i~-tx) 

J.L=±I, n a X 

co 

X [ NJ.L(x, ~. w)r1"<nl(x)+ i ~ dyNJ.L(x, y, w)S1"<nl(x, y) J; 
a 

NJ.L(x, y, z) = (x + y)-1 e-<x+y)L f(iy + i~-tz), (23) 

rz"<AJ(y) = ~[c;~ko]2 6~~"PL ( 1-l.'l ). 
Ln Y 

Sr"<kl(x, y) = .~ ~[C~~~to]2 TJ~-J.L(Y)PL ( 1-l ~). (24) 
y Ln X 

If the scattering from the individual force center 
is isotropic, then Kz differs from zero only when 
l = 0, with 

SoJ.L(x, y) = ay-1 8(y). 

3. Let us explain the physical meaning of the 
different terms of (23). To this end we imagine an 
infinite medium and pass through it the surfaces 
corresponding to the boundaries of our layer. On 
the layer boundary z = 0 we specify the flux of the 
incident particles. Scattering and absorption in the 
layer and in the surrounding medium results in a 
definite particle distribution. From each point of 
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the medium, the particles can enter the layer either 
directly, without being scattered, or after a certain 
number of collisions, that is, as a result of diffu­
sion. The free term Kf determines the number of 
particles that cross the boundary of the layer in 
the n 1 direction. In order to describe the scatter­
ing by a layer of matter situated in vacuum, it is 
necessary to subtract from K£ the contribution due 

to the particles coming from the medium. The 
first term in the integral of (23) compensates for 
the contribution from diffusion. This term contains 
a degenerate kernel and will be evaluated exactly. 
The second term compensates for the contribution 
from the particles entering the layer without being 
scattered, and will be evaluated by successive 
approximations. It turns out that high accuracy is 
attained even in the first approximation. The 
terms with JJ. = + 1 and JJ. = -1 in (23) are connec­
ted with the particles crossing the surfaces z = 0 
and z = 2L, respectively. 

4. Regarding the free term K£ and the term with 
the nondegenerate kernel as a new free term, we 
can solve (23) formally. The obtained "solution" 
will again be an equation in Kz, but it will be 
easier to solve than the initial equation. We thus 
obtain 

K1(iu, iw) = K1(iu, iw) 

The quantity Kz differs from the exact solution in 
that it contains an additional contribution from the 
particles entering the layer from the surrounding 
medium without being scattered. This contribution 
is compensated for by the integral term in (25): 

K1(iu, iw)= pa(u, w)r!(iu) + ~ {-;AlJ.L(u, w) 
J.L=±1 

where D[~ is the determinant of the system of alge­

braic equations obtained in the solution of (23) as 
an equation with degenerate kernel, while nk~ is 
the corresponding cofactor: JJ. 

X(l)- ~X ln 
"'"- LJ: "'" . 

n 

(30) 

The quantities xtA.' Rj~. and AzJJ. cannot be ex­

pressed in terms of elementary functions, and we 
shall therefore represent them henceforth in the 
form of rapidly converging series: 

R (n)(. !J.L !X, 

00 

iw)=~(x+y)-ie-(x+y)Ls}~l(x, Y)Pl-J.L(Y, w), (31) 
Gt 

oo dX e(J.LU-X)L 
AlJ.L(u, w) =a~ ---TJIJ.L(x)plJ.L(x, w). (32) 

ct X f.tU- X 

Solving (26) by the method of successive approxi­
mations, we can easily verify that when E :-s 0. 7 
the integral term does not exceed 0.3 (E/2) 2 of the 
first term. The small numerical factor is a result 
of the fact that the integrand decreases like y-3 

with increasing y. On the other hand, if E - 1, 
then we see directly from (28) that the quantities 
pzJJ. and Rf~) decrease because of the increase of 

the diffusion terms. In this case an estimate of the 
integral term (26) yields :S 0.1 (E/2) 2• We see that 
in every case we can neglect with good accuracy 
the integral term (25). This makes (25)' not an 
equation, but an expression for Kz (iu, iw). This 
solves our problem and yields an expression for 
Kz in terms of quadratures. Multiplying Kz (iu, iw) 
by Pz (n1 n 0), summing over l, putting w = a sec J 1 

and u = a sec Jo = a, and substituting in (1) we ob­
tain the sought-for expression for the intensity of 
scattering by a plane layer. 

3. INTENSITY OF MULTIPLE SCATTERING IN 
THE CASE OF A WEAKLY ANISOTROPIC 

+ D1, ~. SnJ.LH~~ (~, W}[f.tU- ~]-1e(;tu-~)L }, (27) CROSS SECTION 
n 

(I!) 
H1J.L (~, w) 

= f(i~- iw)D!:~-1(~) + f(i~ + iw)D!~i(~), 

1. The general course of the solution is quite 
complicated. We shall therefore consider two im­
portant cases: a) when the expansion of the cross 

(28) section in Legendre polynomials contains not too 
many terms; b) when the scattering from an indi­
vidual force center has a sharp maximum at small 
angles. Case a) covers a large group of problems 

(29) involving the scattering of light by atoms and elec-
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trons, the scattering of neutrons by nuclei, etc. 
Case b) is characteristic of the scattering of 
charged particles. 

To simplify the final expressions even more, 
we consider separately the cases of small ( E ~ 1) 
and large (E « 1) absorption, and replace the single 
formula (25) by two much simpler ones. It turns 
out that these two formulas cover the entire region 
of values of E, and can be joined together with good 
accuracy at E ~ 0. 7. 

2. We consider first the case a) with E < 0. 7. 
Discarding in (2.5) terms smaller than E2/4, we 
obtain 

+ ~. { ~ [Az~t(s!, a)- exzBz~t(s1 , a)] 
!!=±1 

+ f(i~t~ - ia)[ ( f!Si- ~)-1 sz~t e(~tsd)L- exzX-~~ ( s1)]}, 

(33) 

where 

00 dx 
Bz~t(s~, a) =a~;;f(iflS!-x)Rz~t(ix, ia). (34) 

a; 

The explicit form of the quantities contained in 
(33) also simplifies appreciably. We note that when 
E < 0. 7 the quantity a - {3 is of the order of 
a exp(- 2E-1 ). Inasmuch as the x(Z) are propor-

A.JJ. 
tional to a - {3, we can replace p z J.1. (y, w) by 

f(i!J.Y- iw). With the same accuracy, 
{3 =a tanh [ ( Ei5 0t 1]. Expressions (31) and (32) 
contain under the integral sign the function B(x), 
which is equal to unity when x is large and to zero 
when x = ex, and which has a sharp maximum of 
the order of 47T- 2 E- 2 o(i2 at the point Xo = ex 2 {3- 1. Using 
the sharpness of B(x) - 1, we can take out the ex­
pressions outside the integral sign at the point x 0• 

This cannot be done if (Oi - {3) L » 1, for then in 
(31) pz 1(x, w) becomes sharper than B(x)- 1. In 
this case, however, we can discard in general the 
terms containing TJz 1, since they are smaller by a 
factor exp[(/3 -a)L] than the terms with t,z 1• The 
final formulas will contain the function 

00 d 
cV(eoo)= ~ ;re(x)-1] 

a; 

e 2(a2-~2) 
=----

1 - e eoo [~2 + a2 ( eoo - 1) ]' (35) 

In this approximation 

n 

(36) 

where dzn is the coefficient of expansion of 2z in 
powers of x-1: 

n 

The functions <Pn are expressed in terms of the 
integral exponential functions Ei: 

n 

<I>n (x, y) = (- ax-1) n<I>o(x, y)- ~ ( -ax-1) n-m+! Ulm (0; y), 
m=l 

-<I>o (x, y) = ax-1 {ln 11 + a-1x I 

+ e-ZyL [Ei(-2aL)- e2xL Ei(-2aL- 2xL)]}; 

00 

<I>m-1 (0; Y) = m-1- e-2yL ~ x-m-1 e-2axL dx. (38) 
1 

The quantities x~1{ can also be expressed in terms 
of <Pn: 

n 

( 2n - 1) ! ! [ n ( n - 1) 
Xn(p,k)= n! <I>n(p,k)- 2(Zn- 1) <Dn-z(p,k) 

n(n-1)(n-2)(n-3)<I> ( k)- J 
+ 2·4·(2n-1)(2n-3) n-4 p, ··· ' 

Cnz(x) = ~[C~gzo]2 hL(x). (39) 
L 

Inasmuch as the X~)-JJ. (s 1) contained in (33) make a 

noticeable contribution only when a sj"1 = cos ,J f'<! 0, 
we can replace Xn(f3, s 1) and Xn(A.s 1, s 1) by 
Xn(f3, oo) and Xn(A.s 1, 00 ). In addition, in the case 
when 0 ::= ,J ::= 1r /2 it is sufficient to retain X_ 11 

and discard X 1 _ 1, and vice versa in the case when 
0 2: ,J 2: JT/2. 

The integral in (20) can also be evaluated: 

e[ a u+a ~ 'V rz(iu) = xz + .2 .. 2z(u) -In---- LJ L..J n-lfln-1 
u u-a 

n=1!!=±1 

( a \m-n+l J 
X~ /u-} dzm 

m=n 

+a~ [ (rw+~)-1 hz(-fl~)S(-fl~) 
[1=±1 

+i (flu+xo)-1 9'(e6o)2z(-flxo) J. (40) 

With the same accuracy, the quantity (34) can be 
written in the form 
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Bzp.(n, w) =aff(e60)b(-~x0)[Ll(x0)]-2 ~ ~a[(1-e)e-1 (3-ex1 )]''', 

X [6(-~xo)]-tX~J(u, xo)f(i~xo + iw). (41) h1 = Xt[(1- e)e(3- EXt)J'", 

The sum over L in (39) is determined by the num­
ber of the hL that differ from zero, while the sum 
over n in (39) is determined by the requirement 
L + l 2: n 2: I L - Zl, with n + L + l of necessity 
even. The sums over n in (36) and (40) are boun­
ded as a result of the rapid decrease in dzn with 
increasing n. 

3. We present the explicit form of hL, dzn in 
(19) for the important case when 

x(tl') == cr(lt)cr.-1 = 1 + xtPt(coslt) + xzP2 (coslt). 

In this case 

ho=1, ht=ZXt(1-e), 

hz = - 1/ 2xz[1- z2(1- e) (3- EXt)], 

Ll = 1 + ez2{xt(1- e)- 0.75x2[1- z2 (1- e) (3- ext)]}, 

~0 = 1- 0.5Xz, ~1 = 'Xt (1- e) 1 ~1, n+l = Xt (1- e) ~On, 

~z = 0.5xz(1- e) (3- ext), 

~. n = O.Sx2[ (1- e) (3- EXt) ~o. n-2- ~on], 

'\'o = 1, '\'2 = -2e(xt(1- e) - 0.75x2], 

'\'4 = -1.5e(1- e) (3- EXt)X2. (42) 

The remaining !;zk and Yn-k are small and can be 
discarded. 

4. If 2(a - {3)L 2: 1, E < 0. 7, and 0 < J. < rr/2, 
further simplification of (33) is possible: 

e(rz-13)L [ Sll e<s-13)L J 
Kz(ia, is)~ 2 - ex1X_11<Z>(s) (43) 

(a-~) s-~ ' 

and when ns-1 =cos J. ~ 1, we can neglect EKzX_11 • 

5. We now consider the case a) with 1- E « 1 
and 2(n - {3) L ~ 1. Discarding in (25) the terms 
smaller than 0.1 (E/2) 2, we obtain 

Kz(ia, is)= ~za(a)pza(a, lsi) 

~ta(s) = Xz + ~ ~ + 1 a~ il_~ TJt-a(x) 
P. ~ - ~s 2 "" x I s I + x' 

(44) 

where u = 1 or -1 respectively for sec J. > 0 or 
< 0. In this case, accurate to terms ~ 1 - E, we 
obtain 

ho = 1, hz = -0.5xz(1- e) 

etc. 

(45) 

The quantities ~ OiJ. and Dz~ are proportional to 

(1 - Er112• They enter in (44) only in a combination 
of~ OiJ. and Dz 0 which, in the limit as E = 1, becomes 
equal to 

= 1/2ahz (0) {[1 + 2wz, (aLto! (0)- to2 (0)) ]To (0) 

X [1- 2xt(3(3- xt) )-'l•w1,T1 (0)]}-1• (46) 

In analogous fashion, the calculation of Pl 1-L and 
H(n) for E = 1 yields 

ljJ. 

~IP.PZ~>(a, s) = ~tp.f(i~s- ia) 

- Az, ~ ~np.(-A.~)k T n(O)hk(O)Hz~~.(O; s), 
hnk 

sHop.<0> (0; s) = sh sL{ 1 + 2wz, [aLlot (0) - t02 (0)]} 

- 2~wz,T0 (0) [ aL ch sL- ~sh sL J, (47)* 

where sh1 (0)Hi~ is obtained by multiplying by 

2~1+1xt [3 (3- Xt) ]-'!.wz,Tt-1 (0) 

the first term in (47) with l = 1 and the second 
with l = 0; sh~ 01 is obtained by multiplying the 
second term in the curly brackets by 

-2XtWz,(3 (3- Xt) ]-'hTo(O) sh sL, 

wz 0 is a number the value of which for l :5 z0 is 
equal to 

wz=(3-xtP{ g( 1--:2r[ 2-x~-~ (3-xt) 

( 3 ( x2 ))( x2 \-z]}-1 X 'Xt - 2 Xz 1 - -8- 1 - T ) ; 
co 

T1(s) = a2 ~ dxx-2 (x + s)-1 e-xL P1( a/x) sh (x + s)L; 

"" 

(48) 

(49) 

tz 1(s) is obtained by replacing sinh (x + s)L in (49) 
by cosh (x + s) L, and tz 2(s) is obtained by replacing 
(x +sr1 by a(x + s)-2• The quantity 

Vz =}; (~s- ~)-1 6z"' 
p. 

in (44) makes a contribution in the case of E = 1 
only if l = 0 or 1: 

'\'o = 2wz, as-1 [ xt( 3 - xt) -1 + as-t], 

* ch = cosh, sh = sinh 

(50) 
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6. In the case when 2(a- {3)L « 1, and (44) is 
not applicable, we obtain for large-angle scatter­
ing 

Kz(ia, is)= 'imza(a)f(is- ia). (51) 

Single scattering through small angles occurs when 
2(a- {3)L « 1. 

From (25) and (27) follows an expression for 
single scattering, which differs from (51) only in 
that ro~ lu is replaced by Kz. 

4. INTENSITY IN THE CASE OF COULOMB 
SCATTERING 

1. We now consider the case when the scatter­
ing from the force center has a sharp maximum at 
small angles. For example, for the screened 
Coulomb field of the atom we have 

x(n1no) =A [1 + 11- cos tt]-2 = (4n}-1 ~ x1P1(cos tt), 
l 

4:rtA = 11(11 + 2) ('I]+ 1)-1; xz = (2l + i)bz; 

bz = -4:rrAQz'(1 + 11); (52) 

' Qz (1 + 17) is the derivative of the Legendre poly-
nomial of the second kind; 17 is a screening param­
eter whose magnitude is usually very small: 

11 = a1Z'I'[ a2 + asZ2], a1 = 8.25 ·10-·3, 

a3 = 2·10-4 (T + 1)2T-1(T + 2)-1; (53) 

T is the kinetic energy of the particle in elec­
tron mec2 units. 

We begin the solution of (12) with a determina­
tion of ( 11), and consider normal incidence of a 
particle beam on the surface of the layer. We make 
use of the sharpness of (52) and take (a + ip. nr1 

outside the integral sign at the point n = n0• In this 
approximation we can solve (11) exactly: 

1 ~ (2Z+1)b1(a+ip) 
f(nrno;p)=-4 L: +. b Pz(costt). (54) 

:rt 1 a zp- ae 1 

Substituting (54) in (12), we can easily verify that 
when E2(1 + 17 - cos J)a L « 1 the integral term in 
(12) can be omitted. Then 

K(nrno; is, ia)=(4:rt)-1 ~ (2l+ 1)b1eaeb,L 

l 

X f [ia(sectt -1 + ebt)]Pz(cos tt). (55) 

Multiple scattering of charged particles is 
usually described by the Goudsmit and Saunderson 
formula[ 6], which is valid for small angles in 

purely elastic scattering, and is obtained by solv­
ing ( 8) in which sec J is replaced by unity. This 
formula follows also from (1), if we substitute in 
it (55) and put E = 1 and sec J = 1. In addition, it 
is necessary to add the transmitted beam 
I0[exp(-2aL)] (cos J- 1), since it is not included 
in (1). Our approximation, which is connected with 
taking (a + ipn · n0)-1 outside the integral sign in 
(12), is valid if E(1 + TJ - cos J)a L « 1 up to thick­
nesses L ~ (GTJ)-1• At large thicknesses this ap­
proximation is not valid, since the particle distri­
bution comes close to isotropic, and K and r are 
no longer sharp functions. With increasing angle, 
the degree of multiplicity of the scattering, taken 
into account by formula (55), decreases. The inter­
val of angles and thicknesses for ·which (55) is 
valid is much wider than for the Goudsmit­
Saunderson formula. In addition, (55) takes into 
account inelastic collisions (absorption). Further 
refinement of (55) and increase of the intervals of 
J and of L can be attained by successive approxi­
mations, choosing (54) as the initial equation. 

2. The expansion (55) converges slowly, since 
terms with large l play an important role. How­
ever, if we confine ourselves to small angles 
J ~ TJ 112, then the summation over l can be replaced 
by integration. Using the asymptotic expression 
Pz (cos J) - J 0[(1 + 1/2),9-], which is valid for large l 
and small J, and the analogous expression 

Q{(1 + 'IJ)-+ (11 + 1) [(2Z + 1}11(2 + 11)]-1 

X exp [ - 1/2'1] (l + 1/2)2], 

and then substituting in (55) and integrating with 
respect to l, we obtain .. 
K(n1no; is, ia) = (2n}-1 ~ dx exp [-1/z11x2 + aee-Tix'/2] 

0 

(56) 

This formula can be obtained by other means. To 
this end it is necessary to replace (52) by 

x(n1no)-+ [:rt'l](2 + 'IJ)]-1e-6 '12TI, (57) 

Substitute (57) in (11), take (a + ipn · n 0r 1 outside 
the integral sign at n = n 0, and solve the obtained 
equation for r. After substituting the solutions in 
(12) we obtain (56). 

From (56) we can obtain a rapidly converging 
series in powers of 2EC\'L: 

K(n1n0; is, ia) = (2:rt'I])-1 L exp[- a(sectt -1)£] 

X~. (2ae{)n[2aL(sectt-1)]mexp[- {}2 J. 
L (n+1)!m!(n+m+1) 211(n+1) 
mn 

(58) 
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On the other hand, if EaL > 1, then we obtain from 
(56) 

K(n1n0; is, ia) = [4:n:1']ea2L(2e + 1'}2)]-t 

X{1- (2eaL)-1[1- 82 + 1/28& 

+ 1/2(1- 82)1'}2(2e + -fr2)-1} 

Xexp [aL(2e +sec-& -1)- 82], 

82""' (41']eaL)-1-&2. 

Substituting (59) in (1) we obtain for E = 1 and 

(59) 

a L - oo a Gaussian angular distribution which co­
incides with the well known results [ 3]. 

E, aL, and {3L for terms that depend on the branch 
points. 

In the case of Coulomb scattering, an additional 
parameter appears, connected with the sharp aniso­
tropy of the transverse cross section. This leads 
to an increase in the role of the pole terms and 
makes it possible to obtain an expression which is 
more accurate than th.e well-known expression of 
Goudsmit and Saunderson. 

It is seen from the resultant formulas that with 
increasing thickness of the layer the relative con­
tribution of the particles scattered backwards in­
creases, and the difference between the cases of 
anisotropic and isotropic scattering from an indi-

5. PARTICLE DISTRIBUTION INSIDE THE LAYER vidual force center becomes smoother and 

In many cases it is of interest to determine the 
number of particles at some arbitrary point inside 
the layer. To this end, it is necessary to find the 
mean square of the wave function (II/! (z) 12 ) at the 
point z. A similar problem was solved earlier for 
the case of a spherical body and an isotropic cross 
section [ t]. The entire calculation procedure re­
mains in force also in the case of a plane layer, 
with the exception of the fact that in place of (7) we 
must take (5). As a result we obtain 

+co 

<I 'Y (z) 12) = e-az + :n:-1ct.e ~ dQn ~ dpeipz (ct. + ipnn0t 1 

-co 

XK (nn0 ; p, ict.) exp [-(a+ ip)L]. (60) 

CONCLUSION 

The theory of multiple scattering contains as 
dimensionless parameters E, n L, and {3L, where E 
determines the inelasticity of the scattering, a L 
the mean multiplicity of scattering with account of 
absorption, and {3L the ratio of the thickness of the 
layer to the mean path covered prior to absorption. 
The solution of the transport equation contains 
terms which are due to poles of the integral kernel, 
to its branch points, as well as to crossing terms 
that depend on both. We evaluated the pole terms 
exactly and considered various approximations in 

smoother, especially as E- 1. This can be readily 
seen from (27), since the diffusion (pole) terms, 
which make the main contribution when a: L is 
large, decrease with increasing l and E. 

The approximations used to solve the transport 
equation do not lead to errors larger than several 
per cent. In many cases this accuracy is of the same 
order as the accuracy of the equation itself, in the 
derivation of which it was assumed that recoil can 
be neglected, that the Doppler shift is insignificant, 
that the scattered particles have a random distri­
bution, etc. 
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