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A comparatively simple method is presented for calculation of the spontaneous magnetic 
moment of the two-dimensional Ising model. 

THE problem of calculating the partition function 
of a two-dimensional lattice in an external mag
netic field has hitherto not been solved. However, 
the size of the magnetic moment at a vanishingly 
small value of the field was found by Onsager. He 
did not publish his method of solution, and there
fore interest in the problem has not diminished. 
The second to solve this problem was Yang; [ t] 
despite the simplicity of the results, the solution 
was extraordinarily complicated. Subsequently a 
number of authors[ 2,3] succeeded in simplifying it. 
The present paper presents still another method 
of calculating the spontaneous magnetic moment; 
it makes use of the achievements of previous 
authors, but it is more accessible to the under
standing. 

We consider a plane dipole lattice (the Ising 
model). With each site ( k, l) of this lattice is 
associated a function O'k[. which can take on the 
two values ± 1; M is the mean value of this func
tion at a vanishingly small value of the magnetic 
field. As is known, [ 2, 4•5] the moment can be ex
pressed in terms of the correlation function for 
two sites separated a long distance from each 
other, 

To calculate ( a 11a 1t+t ), we use the identity 
(akz=1) 

We introduce the notation 

S {ahllh'l'la~>z} = IT (1 + Ukllh'l'ahlak•l•). 

hlh'l' 

For the Ising model 

(1) 

(2) 

{ x for k=k', l=l'+1andk=k'+1,l=l' 
Ukllh'l' = 0 otherwise 

Here x = tanh ( J /kT). Then according to the 
definition 

Substitution of (2) and (3) in (4) gives rise to 
products O'tkO'tk+t ( 1 + xa1kO"tk+ 1). These may be 
written in the form 

where g = 1/x - x. On substituting this expres
sion in (4), we get 

where 

~hllh'l' = Uk!lh'l' + gt\(kljk'l'), 

.1 ( kZJ k'l') 

k'= 1; l' = l+ 1, 

(7) 

{ 1 for k = 1; 
= 0 otherwise 

(8) 

We note that in the calculation of the partition 
function ( cf. [ 6] ), there is associated with the 
matrix akzJ k'l' a matrix ak Zjk'Z' (we denote it by 
A), which is obtained fro~ O!kljk'Z' by multiplying 
individual elements by e±m I 4. Further, we shall 
use the formula 

In the derivation of this formula it was supposed 
that O!kZjk'l' is different from zero only for near
est neighbors; but the values of O!kljk'l' can ac
tually be arbitrary. Therefore formula (9) is cor
rect not only for the denominator of (6) but also 
for the numerator. The matrix bkljk'Z' (we de
note it by B) is constructed from fJkZjk'Z' in the 
same way as is akljk'l' from O!kljk'l' ( cf. [ 6]) 

and has the form ( cf. [ 2] ) 

B=A +gD, 

where D comes from 6. in (7) and (8). 
We introduce the notation: E = ein/4, 

€ = e-in/4, v = 1, 2, 3, 4, an index connected with 
the direction of passage from site to site. In this 
notation, we get for the matrix elements 
(kZvjDjk'l'v') for 1:sl:st 
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If in the relation (1lviDI1l-1 1) = (1, 8, 0, e), 

(1lviDI1l + 13) = (0, e, 1, 8), ( 10) (klvl (1-A)-1Dik'l'v') = ~·(klvl (1-A),-tjk"l"v") 

and the remaining matrix elements vanish. Two 
types of supplementary term occur because of the 
two ways of passing over the chain of bonds, 1, 2, 
3, .•. t + 1. [ 6] We have 

(klv ID I k'l'v') = t'l~tt<'>h't ( aw•l'lz-t, z• + ~wt'lz+t,Z'), ( 10') 

where oij is the Kronecker symbol, a 11 = 1, a21 
= €, a41 = E, 132a = E, 13a3 = 1, 13 4a ="E, and there
maining a vv' 's and 13 vv' 's vanish. 

For M2 we get the expression 

Det'l• ( 1 - B) 
M2 =lim (O'uO'tt+t> =lim xt D ,1 (1 • ( 11) 

t-+OO 1-+oo et ' - A) 

This expression solves the problem of calcu
lating M2, since the infinite summation over okz 
has been accomplished and the matrices A and 
B resemble the ordinary operators of mathe
matical physics. 

If we substitute in (11) the following expressions 
for 1-B, 

(1-B) =1-A-gD= (1-A)[1-g(1-A)-tD], 

then instead of (11) we get 

M2 = lim.xt Det'/•(1- g(1-A)-tD]. (12) 
t-+oo 

The matrix A is a shift matrix with constant 
coefficients. As is known, such matrices are 
diagonalized by a finite Fourier transformation, a 
transition from the k, l- representation to a p, q
representation with the matrix exp{ 2rri ( kp + lq) /N} 
( N2 is the number of sites in the square lattice). 
To find the matrix ( 1 - A)-1, it is necessary to go 
over from the k, l- to the p, q-representation. 
We then get the matrix ( cf. [6]) 

1 - Aw' (p, q) 

(-~ - XB~q 0 

-~'''} = -XB~p 1-x~q - XBotp (13) 
0 -XB~q 1-X~p -XB~q 

-XB~p 0 -XB~p 1- X~q 

It is then necessary to find the matrix inverse to 
(13), and once more to go over to the k, Z-repre
sentation. We get 

(klv I (1- A)-1 1 k'l'v') 

k"l"v" 

X (k"l"v" 1 D .I k'l'v'> 

we substitute (14) and (10'), we get for the non
vanishing matrix elements 

<klvl (1-A)-1DI1l'1) 

= _1_ r r i[p(h-t)+q(l-!'-1)] dvt+e~+edv, dp dq, 
(2n)dJe d 

(klv I (1- A)-1DI1l'3) 

= __ 1_ \ \ i[p(h-1)+q(Z--:!'+1)] e£iv2 + dva + edvi d d 
(2n) 2 J J e d p q. 

(15) 

We introduce the matrices Pu, P 1a. P31• Paa 
with matrix elements 

Pw, = ( 1lv 11- g(1- A)-1D 11l'v'). 

The matrix 1 - g( 1 - A)-1D will have the form 
shown in the figure. In the crosshatched part the 
matrix elements are different from zero, but their 
form is unimportant, since they do not contribute 
to the determinant. 

On taking the expression (13) for the matrix 
( 1 - A) and calculating the integrand in (15), we 
get 

< ll p u ll') = l'lu· - ___{_ r • i eiq(!-!') eiq 
(2n)2 J J 

( 1-x2)- e-iqx [2 cos (2np/ N) + 1- x2] 
X d( ) dpdq, p,q 

X <ZI Paall') = l'lw- _g __ i i eiq(!-I'J e-iq 
(2n)2 J J 

(1- x2)- eiqx [2 cos (2np/N) + 1- x2] 
X d( ) dpdq, p, q 

For Pt3 and Pat• there are obtained under the 
integral sign expressions odd in p. After the in
tegration over p we get zero. The term Oll'• in 
this case is absent; therefore Pt3 = Pat = 0. 

Thus it is found that 

M 2 =lim xt Det'I•Pu Det'I•Pas. 
f-+00 

= _ 1 __ \ i ei[p(h-k'J-+q(Z-I'Jldvv• (p, q) dp dq. 
(2n)2 J J d(p, q) 

Now if in P 11 we replace q by -q and l by l', 
(14) we get P 33 . This means that their determinants 

are equal, and 
Here d ( p, q) is the determinant of the matrix 
(13), and dvv' (p, q) is a minor of the same 
matrix. where 

M2 = limx1 DetP11 = limDet(cw), 
t-+oo f....,oo 
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cu' = _!_ r eiro(l-l')j ( w) dw, 
2n J _, 

f(w)=-~ ~ dp[x -gxei"'{1-x2-ei"'x 
2:rt 

-:t 

( 17) 

On taking for f( w) the expression (19), we get 
for x* < x 

Kn = 2
1n [ ( x~ r- (xx*) n J = - K-n, 

and for x* > x 

(-1)n 
Kn=---

n 

"' ~ lnf(w)dw = 0. 
_, 

On substituting these expressions in (20), we 
get finally: for x* < x, 

{ 1 [ ( 1/ X- X )' J} M2 = exp 4 1n 1 - 2 

={ 1 _ ( 1/x2-x )if'; 

x [ 1- x2 + 2 cos 2'; ]} j d(p, q) J. (18) for x* > x, 

On substituting here g = 1/x - x and integrating 
over p, we get-introducing the notation 
x* = ( 1 - x)/( 1 + x)-

f(w) = [ (xx* ei"'- 1)(xei"'- x*) I (ei"'- xx*) (x*ei"'- x)] '''· 

(19) 

The elements czz1 depend only on the difference 
of the indices, czz' = c ( l - l'). Such matrices are 
called Toeplitz forms. From the theory of 
Toeplitz forms, the following theorem is known 
( cf. [2,3,7]). If czz' is given by formula (17), then 

~~~{Dt(cw) /[ exp{ 2~f lnf(w)dw }]t+1
} 

-1t 

= exp{ ~ nKnK-n }, (20) 
1 

where 

1 "' 
Kn =- i eiron lnf(w)dw, 

2nJ 
-1t 

Dt ( czz') is the Toeplitz determinant of order t. 

M2 = e-oo = 0. 

The point x = x* = .f2 - 1 is the phase-transition 
point. 
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