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This paper is devoted to a theoretical investigation of different scattering mechanisms for 
electrons and phonons in transverse transfer phenomena in metals in strong magnetic fields; 
we elucidate the role played by phonons in heat transfer. If WH T e » 1 ( T e is the electronic 
mean free flight time, wH the electronic Larmor frequency), one can write down transport 
equations for the electron and phonon distribution functions; an important feature of these 
equations is that they do not contain kinematic terms and that inhomogeneity gradients occur 
in the collision integrals. Using these equations we obtain general formulae for transport 
coefficients taking phonon-electron drag into account. We show that in sufficiently pure 
metals heat is basically transported by the phonons and not by the electrons. In the quantum 
mechanical case the phonon heat conductivity should show the same oscillations as the elec­
tron transport coefficients (the only difference consisting in a shift of the position of the 
maxima). We show that the relative amplitude of the quantum oscillations of all transport 
coefficients connected both with electron-impurity scattering and with electron-lattice vibra­
tion scattering may be of order unity. We show that the electron-phonon drag effect may 
appreciably affect the magnitude of the thermal emf. 

1. INTRODUCTION 

A number of papers [ 1•2] have dealt with a study 
of various aspects of galvanomagnetic effects in 
metals. Thermomagnetic effects have been 
studied less extensively than gal vanomagnetic 
effects. In particular, the role played by phonons 
in heat transfer in metals has not been elucidated. 
Usually, only one scattering mechanism for elec­
trons, the scattering by impurities, is taken into 
account in a study of galvano- and thermomagnetic 
effects. Electron-lattice vibration scattering plays 
an important role in sufficiently pure metals; this 
is well known to possibly lead to a drag of the 
phonons by the electrons. 1 l Since the phonon dis­
tribution is not an equilibrium one when there are 
electrical fields or gradients in the temperature 
or the chemical potential present, the conductivity 
and the thermal conductivity of pure metals must 
depend essentially upon the phonon scattering 
mechanism. 

The present paper is devoted to a study of the 
effect of various mechanisms for the scattering of 
electrons and phonons on the transverse transfer 
phenomena in metals in strong magnetic fields, 

1 )L. Gurevich and Efros [3 ] studied this effect for metals 
and the present authors [4 ] have studied it for a plasma. 

and we elucidate the roles played by electrons and 
phonons in heat transfer. We consider the case vf 
closed Fermi surfaces and assume that the condi­
tion wHT e » 1, where WH is the electron Larmor 
frequency and Te the mean free flight time of an 
electron when there is no magnetic field, is ful­
filled. If WHT e » 1 and if the electric field E, 
and the gradients of the temperature T and of the 
chemical potential ?; are at right angles to the 
magnetic field, we can write down transport equa­
tions for the electron and phonon distribution func­
tions; an important feature of these equations is 
that the electrical field and the inhomogeneities 
occur in the collision integrals. For weak electric 
fields and small inhomogeneities we can find solu­
tions of the transport equations and this enables us 
to obtain general formulae for transfer coefficients. 
It then turns out that the heat current transferred 
by the phonons in sufficiently pure metals is appre­
ciably larger than the heat current transferred by 
the electrons. 

The situation where the thermal conductivity of 
metals is determined not by the electrons but by 
the phonons is similar to the situation occurring 
in a high-temperature plasma in a strong magnetic 
field. The thermal conductivity of the plasma is in 
that case also not determined by the electrons but 
by the photons emitted by the electrons in the mag-
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netic field. If we consider only the electron-phonon 
interaction and neglect Umklapp processes, then 
the electrical current in the direction of the elec­
trical field vanishes because of the total drag of the 
phonon gas by the electrons. In contradistinction 
to the electrical current, the heat current in the 
direction of the temperature gradient is non­
vanishing, even when quasi-momentum is exactly 
conserved. We show that the phonon-electron drag 
can also appreciably affect the magnitude of the 
thermal emf. 

It is well known that in the quantum mechanical 
case, when WH » T, the transport coefficients dis­
play characteristic oscillations when the magnetic 
field is varied. We consider both oscillations con­
nected with electron-impurity scattering and oscil­
lations connected with the electron-phonon interac­
tion, and we show that the relative amplitude of the 
oscillations may be of order unity and that the os­
cillations should be displayed not only in quantities 
connected with transfer by electrons, i.e., in the 
electrical conductivity and in the electronic thermal 
conductivity, but also in the phonon thermal conduc­
tivity. 

2. PROBABILITIES FOR SCATTERING 
PROCESSES FOR ELECTRONS AND 
PHONONS 

We describe the state of an electron in the crys­
talline lattice by three quantum numbers: the os­
cillation quantum number n, which takes on values 
0, 1, 2, ... , the component p3 of the electron 
quasi-momentum along the magnetic field H, and 
the continuous quantum number p 2 determining the 
coordinate ~ 1 of the center of the electron 
"Larmor orbit" along the x1 axis [we assume 
the vector potential to be chosen in the form 
A=·( 0, Hx, 0) ]. One can show that ~ 1 = p2/eH 
+ Xn ( p2, p3), where Xn is a function of p2 and p3 

with period aeH (a is the lattice constant) in p2 

and the reciprocal lattice period in p3. In the 
case of a quadratic dispersion law Xn = 0; in the 
general case, however (but for closed Fermi sur­
faces), the quantity Xn is of the order of the elec­
tron Larmor radius. Assuming the Fermi surface 
to be closed, we shall neglect in the expression for 
~ 1 the bounded quantity xn in comparison with the 
quantity pdeH which can take on arbitrary values. 
We can assum~ the energy of an electron in the 
state ( n, p2, p3 ) to be independent of p2• 

We shall determine the probabilities for scat­
tering processes of electrons by impurities and by 
lattice vibrations. The electron-impurity scattering 
is elastic and the probability for it, i.e., the prob-

ability for the transition ( Kp2 ) - ( K'p2), per unit 
time, can be written in the form 

W.;(xp2, x'p{) = ~ w.;(xq; x')L\(p2 + q2- P2'), (1) 
q 

where 

Wei (xq; x') 

= 2n I Uq\ 2Vn;gnn'(q)L\ (Pa + qa- Pa') c5(e,.- e,.,), 

E K is the electron energy, K = ( n, p3 ), Uq the 
Fourier component of the interaction energy be­
tween the electron and the impurity atom, V the 
volume of the solid, ni _the impurity concentration, 
and gnn' (q) = I ( KP2I e1q1xtl K'p2) 12 (A (q) = 1, 
if q = 0 and A ( q) = 0, if q "# 0). In the case of a 
quadratic dispersion law, EK = wH(n + '/2) + pV2m 
and 

I OD 2 

gnn'(q) = ~ drJei"TJcpn(TJ)«pn'(TJ- ~) \ , 
-oo 

e-TJ'/2 q1 q2 
qln (TJ) = (2nn! in) 'i• Hn (TJ)' a= ieH ' ~ = ieH' (2) 

where the Hn ( 71) are the Hermite polynomials. 2> 

The main role in the electron-lattice vibration 
interaction is played by processes in which one 
phonon is absorbed or emitted by the electron. 
The probability for the transition per unit time of 
an electron from the state (Kp2) to a state (K'p2) 
accompanied by the absorption of a phonon with 
wave vector k and frequency w has the form 

Wep(XP2, k; x'p{) = ~ ~ wgnn'(k)L\(p2 + k2- P21 +K2) 
K,K, 

X L\(pa + ka- Pa' +.Ka)c5(ex + w- Ew), (3) 

where g 2 = 21r 2v0 p/p~ is the electron-phonon inter­
action coupling constant, v0 and Po the velocity 
and momentum on the Fermi surface, p ~ 0.2, 
and K a reciprocal lattice vector. We obtain the 
probability for the emission of a phonon from (3) 
by replacing k by - k and w by - w ( in the o­
function). We shall not distinguish between 
phonons of different polarizations for the sake of 
simplicity. 

If the Fermi surface lies entirely inside the 
Brillouin zone, the probability for Umklapp proc­
esses will be exponentially small ( ~ e-Eo/T, 
E 0 ~ I;). In that case we may neglect Umklapp 
processes in electron-phonon collisions. For 
more complex configurations the probability for 
Umklapp processes may be of the same order as 
for processes with exact quasi-momentum con­
servation. Unless we explicitly state the contrary, 

2)We use units in which 11 = c = 1. 
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we shall in the following neglect Umklapp processes 
in electron-phonon collisions (but we shall take 
them into account in phonon-phonon collisions, see 
below). 

Equations (1) and (3) determine the probabilities 
for electron transitions when there is no electrical 
field. If an electrical field E along the x 1 axis is 
applied to the solid, the energy of an electron in 
the state ( Kp2 ) becomes equal to ~ Kpz = EK - e~ 1E. 
Moreover, the form of the electron wave functions 
is changed. When studying transport equations we 
must know the probability for electron transitions 
when there is an electrical field E 1 H present. 
These probabilities are given by Eqs. (1) and (3) 
if we replace in the 6 -function EK by ~ Kpz· As far 
as the squares of the matrix elements gnn' are 
concerned, we may assume that they are the same 
as in the case where there is no electrical field. 

We consider now phonon scattering processes. 
The probability for the absorption or emission of 
a phonon by an electron is determined by Eq. (3). 
Apart from these processes we shall take into 
account the scattering of phonons from the boun­
daries of the solid and phonon-phonon interaction 
processes. We may assume the scattering of 
phonons by the boundaries of the solid to be 
elastic. If the solid has the form of an infinite 
plate along H with a thickness L 1 in the x 1 direc­
tion, the probability for the scattering of a phonon 
from the boundaries of the plate (i.e., the proba­
bility for the transition k- k') can schematically 
be written in the form 

Wpw(k, k') 

( 4) 

where s is the sound velocity. 
The phonon-phonon interaction leads to different 

processes of scattering, fusion, and splitting of 
phonons. Phonon interaction processes in which 
quasi-momentum is not conserved play a particu­
larly important role, since these processes may 
lead to the establishment of the equilibrium distri­
bution of the phonons. We shall take the phonon­
phonon interaction into account by introducing a 
phonon mean free flight time Tpp relating to these 
processes. At high temperatures ( T > ®, where 
® is the Debye temperature) this time is in­
versely proportional to T and at low temperatures 
1/Tpp ~ e-b®/T, b ~ 1 (the magnitude of 1/Tpp 
is appreciably larger than the probability for an 
Umklapp process in electron-phonon collisions 
for closed Fermi surfaces). 

We note that phonon-impurity scattering does 
not play an important role since their mean free 
flight time relating to this process 

~ ( ne/ni) ( s/a' )3w-4 ( ne is the electron density, 
a' the dimensions of the impurity center) is 
appreciably larger than the flight time of a phonon 
with respect to processes where it is absorbed or 
emitted by electrons, provided only that ni/ne 
< s/v0• 

3. TRANSPORT EQUATIONS FOR ELECTRONS 
AND PHONONS 

We denote by fK (~, t) the electron distribution 
function, i.e., the number of electrons at time t 
in a state K and with the center of their Larmor 
orbit near the point ~. The electron density is 
connected with the distribution function through 
the relation 

ne(s, t) = (;~2 t dp3 ~ fx(s, t). 

Assuming that WHTe » 1 and that the electron 
Larmor radius is appreciably smaller than the 
scale of the inhomogeneities (i.e., distances over 
which the distribution function changes appre­
ciably) we can write down the following expres­
sion for the change in the electron distribution 
function per unit time caused by the electron­
phonon interaction: 

f~(ep)(~, t) = ~ Wep(xk, x')Dp(x~, k; x'U 
x'k 

+ ~ Wep (x'k, x) Dp (x'L k; x~), (5) 
x'k 

where* 

Dp(X~, k; x'~+)=/x'(~+' t)[1-fx(~, t)][1+1Vk(~, t)] 

-/x(~, t)[1-/x'(~+' t)]Nk(~, t) 
' 

is the distribution function of phonons with wave 
vector k at the point ~ (one can introduce such a 
function provided the phonon wavelength is appre­
ciably shorter than the scale of the inhomogene­
ities). 

We draw attention to the fact that the particle 
distribution functions occur in the collision integral 
f( ep) at different points in space in contradistinc-

K 
tion to the Boltzmann classical collision integral. 
This is connected with the fact that the position of 
the center of the electron Larmor "orbit" is 

*[k n] = k x n. 
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changed when a phonon is emitted or absorbed 
(the change ~ is equal to ± k x n/eH). 

The change in the electron distribution function 
caused by electron-impurity scattering is of the 
form 

where 

t:<•il(6, t)= ~w.;(xq, x')Di(x6, q; x'6'), 
M'q 

(6) 

Di(x6, q; x'6') = f,,:(6', t)- 1"(6, t), 6' = 6- e~[qn]. 

Equating the sum of f~ep) and f~ei) to zero, we get 
a transport equation to determine the electron dis­
tribution function in the stationary case: 

(7) 

We note that this equation does not contain kine­
matic terms connected with the presence of an 
electrical field or of temperature and chemical­
potential gradients. The electrical field appears 
in the expression for the probabilities Wep and 
Wei• and the gradients implicitly in the distribution 
functions. 

We now write down the phonon transport equa­
tion. The change in the phonon distribution func­
tion caused by their interaction with the electrons 
has the form 

.N .. <P•> (s, t) = ~ wep (xk, x') D, (xs, k; x's+). (8) 
xx'pz' 

The change in the phonon distribution function 
caused by their scattering from the boundaries 
of the solid (which is assumed to have the form 
of an infinitely long parallelepiped with transverse 
dimensions L1 and L2) can schematically be 
written in the form 
. s 

N .. <pw> = Z£
2 

[N~<·(s, t)-N .. (s, t)] 

s + 2~ [N~<•(s, t)-N~<(S, t)], (9) 

where k' = (k1, -k2, kg), k" = ( -k1, k2, kg). 
Finally, the change in the phonon distribution 

function caused by the phonon-phonon interaction 
will be written in the form 

(10) 

where N~ ( ~) = [ eu;/T(~) - 1 r 1 is the equilibrium 
phonon distribution at the local temperature 
T(O. 

In the stationary case the sum of the collision 
integrals of the phonons equals s ( oN~/o~) k/k: 

· · · k aNk0 
N .. <P•> + N .. <Pw> + N .. <w> =sT---ar . (11) 

We now turn to solving the transport equations 
assuming the electrical field and the gradients of 
T and l; to be sufficiently small. The transport 
equation for the electrons (7) is satisfied up to 
linear terms in E, VT, and Vl; by the functions 

'"(6) = [ exp{-e.. ~~)(6) } + 1r1 

Nk(6) = Nk0 + Nk0 (1 + Nk0)Uk, 

Indeed, the quantities Dp and Di are for these 
functions up to linear terms in E, VT, and V~ 
equal to 

D, (x;, k; x's+) = -N1..o/x0 (1-/x·0) ~•P• 

Di (x;, q; x'S') = fxO (1 -/x·0) ~ei. 

E 1 a sx·-~m 
~ep = U k + HT k2 + eH [kn] af T {;) , 

(12) 

E 1 a sx-~m 
~ei = HT q2 + eH [qn] 8f 1' (S) • (12') 

Substituting these expressions into (5) and (6) and 
bearing in mind that ~ - ~+ = - k x n/eH, ~ - ~' 
= q x n/eH, one ':erifies ea.sily that the distribu­
tions (12) make f~ep) and f~ei) vanish. 

We note that since the braces in (5) and (6) (sic!) 
are proportional to E and to VT and V~, we may 
assume with the accuracy considered here that the 
electrical field vanishes (as mentioned in the pre­
ceding section) in the expressions for the proba­
bilities Wep and wei occurring in front of the o­
functions. 

Substituting ( 12') into ( 11) we find u and v: 

s2 i11 ~ 1il1 
u = -------- (vep(t)_ 'Vep(OJ) ----

'V2 ilx2 T eH 'V2 ilx1 T 

1 'Vep(O) a~ 1 'Vep(O) E 

+ eHT-----:;;- ilx1 - 1.'----:;;.-II' 

eHL1~ ~ ( e..• )' 
'\'ep(r) = Z:rt ~ Wep (X, k; X 1 ) -i' (f,.O - fx•O), 

xx' 1::1 

'Vet = 'Vep(O) + _1_ + _s_ • 
't'pp Let 

(14) 

We note that v~0~ is the reciprocal of the life­
time of a phonon wtth wave vector k with respect 
to the electron-phonon interaction. 
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4. ELECTRICAL CURRENT AND HEAT CURRENT 

We now determine the microscopic electrical 
current density j and the thermal current density 
q(e) transferred by the electrons. The circular 
component j+ of the current density is determined 
by the formula: 3 > 

. . + .. . E i (" - ) ]+=]I l/2=-leHne+fl vneB_L+ 

+ 2~Ls ~ w.p(xk; x')k+Dp(xs, k; x's+) 
xx'k 

+ 4~L3 ~ wei (xq; x') Di(xs, q; x';') q+; 
x><'q 

ne = ~ ~ j,.0, neeJ. = ~ ~.WH ( n + ~- )u. (15) 

" " 
A similar formula is valid for the circular com­
ponent qie) of the heat current 

E - - i -
q+<•> = q1(e) + iq2<•> =- i H ne(e + e.L) + eH(VneBB_L)+ 

+ 4:Ls ~ Wei (xq; x') Bx•q+Di(xs, q; x';'); 
xx'q 

- 1 ~ - 1 "" ( 1) nee = V .LJ e,.j,.0, neBB..L = V L.J. BxWH n + :f /x0• 

" " 
(16) 

The first two terms in (15) and (16) are of a 
"collisionless" nature, and the next two terms are 
caused by electron scattering processes: the first 
one by scattering by lattice vibrations and the 
second one by impurity scattering. One can give 
a simple physical interpretation of the "collision" 
terms. They are the sum over different states of 
the product of the quantities 

e(s- 6+) =- [kn] I H, e(s- 6') = [qn] I H, 

corresponding to the transfer of charge from the 
point ~ to the points ~+ and ~' (in the equation 
for j+) and the quantities 

8><S + oos- 8x'S+ = -e,.•[kn] I eH, 

BxS- Bx•s' = e,.[qn] I eH, 

corresponding to the transfer of energy from the 
point ~ to the points ~+ and ~' (in the equation 
for qie)) and the number of transitions per unit 
time. 

3 )Titeica ['] established this structure for the expression 
for j+ for the case of a uniform distribution. The derivation of 
Eqs. (15) and (16) was for the general case of non-uniform dis­
tributions given in[•]. 

We must add to the thermal current q{e) trans­
ferred by electrons the thermal current q(P) 
transferred by phonons: 

\ k dk 
q<P> = ~Nk <s> s Too (Z:rt)3. (17) 

Substituting (12) into (15) and (16) we find the 
transport coefficients, that is the coefficients of 
E, VT, and V~ in the expressions for the current 
j and the heat current q = q(e) + q(p): 

j = ~E- cr'V~ I e- ~VT, 

q-~jle=~E-~'V~Ie-yVT. (18) 

Each of these coefficients consists of two terms 
caused, respectively, by the electron-lattice vi­
brations and the electron-impurity scattering. 
We shall indicate these terms by superscripts 
( ep) and ( ei) (for instance, & = a-(ep) + a-(ei) ). 
The tensor y(ep) can be written as a sum y(ep) 
=y(ep)(e) +y(ep)(p), where y(ep)(e) and ,Y(ep)(p) 
are the contributions to ,Y(ep) from the electrons 
and the phonons. 

The transport coefficients defined by the elec­
trical current are of the form 

en6 
al2 = - a21 = H' 

~ 1 ( v(o)) 
(X(ep) = --- 'V k22Nko (1 + Nko) (v(l)_v(ol) 1 - ~ 

11 eH2T2 V L.J ep ep V ' 
k 2 

(X(eiJ = 2 H~2T2 Vi ..._, q22 (v<~>- v<~>) 
11 e ""'-J el e1 ' 

q 

1 f) - s2 1 v(o) 
a12 = H aT nee.L + HT2V ~k22Nk (1 + Nko) ~:, (19) 

k 

where v(r) is defined by Eq. (14) and 
ep 

eHL1L (e )r V~i) = ~~Wei (xq; x') T fx0 (1- f><O). 

xx' 
(20) 

(The expressions for a 22, a 22 , - a 21 are obtained 
from a 11 , a 11, a 12 by replacing k2 and q 2 by k1 

and q 1 and v2 by v1.) 

The transport coefficients defined by the heat 
current have the form 

j3<•P) = j3(ep)' = _1 _ _!_ 
u n eH2T V 
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wei) = w•i)' = --~- ___!__ ~ q2 2 ( v(l) - v<~>) 
u n 2eH2T V .::.J "' "' ' 

q 

n. - -
~12 = -~21= H (e.l + e-~), 

T a - s 2 1 v(O) 

~12' = H aT nee.l + HT V ~ k12Nk0 (1 + Nko) v:P, 
k 

'l'i~P> (e)= ( eJT r ~ ~k2Wk0 (1 + Nk0) 

x(v<2>- 2v<l) + v<0>- __.!_ (v<Il- v< 0>) 2 ) 
ep ep ep 'Vz ep ep 1 " 

r<•i) = ___!__ (-~ -)' ___!__ ~ q22 (v(2)- 2v(l) + v<q>) 
11 2 eH T V .::.J et et et ' 

q 

1 a - -
r12 = -r21 = eH aT n. (ee.1- ~e.l) 

( The expressions for f3 22 , y 22 , -{3 21 are obtained 
from {3 11 , y 11, and {3j 2 by replacing k2 and q 2 by 
k 1 and q 1 and v1 by v2.) 

The tensors a, S'. &, and y satisfy the sym­
metry relations for transport coefficients: 

~;n'(H) = Tan;(-H), O';n(H) = crn;(-H), 

'\'in (H) = '\'hi (-H). 

However, cr 11 ,; cr22 , y 11 "'y 22 . This is connected 
with the fact that the phonon mean free path in the 
general relations (19) (21) is assumed to be equal 
to the dimensions of the solid. Only when L 1 = L2 

will the diagonal components of the tensors & and 
y become the same. 

We note that the tensor (j' is not the same as 
the tensor (J and that the tensor S' is not the 
same as the tensor S. In other words, the Ein­
stein relations connecting the electrical conduc­
tivity and the diffusion coefficients are not satis­
fied for the microscopic current. However, if we 
introduce the macroscopic current occurring in the 
Maxwell equations, J = j -curl M ( M is the mag­
netization current) the Einstein relations will be 
satisfied for J since in J the quantities V'i; and 
E do not appear separately, but in the combination 
eE- V'i; .c 7,a] 

When deriving Eqs. (19) and (21) we neglected 
Umklapp processes in electron-phonon collisions. 
If we take those into account, the transport coeffi­
cients will be determined by the equations 

ai~Pl= ~ ~ ~Nk0 (1 +Nk0) ~ Wep(xp2, k; x'p2') 
k XK' 

P2Pz' 

( k v<o> ) X (/xo _ f><·o) ~ _ ~') _2 __!P + ~ _ ~' , 
eH v2 

><><' 
P2P/ 

( 
k v(o) ) 

X _2 ~+~-~· , 
eH v2 

X { ~. Wep (xp2, k; x' p2') (Jxn- f"·o) 

P2P:/ 

v~~ = ~ Wep (xp2, k; x'p2') (fxO- /x·0) Ct r (22) 

P2Pz' 

If in an infinite and perfectly pure metal the 
Umklapp processes are neglected both in phonon­
phonon and in electron-phonon collisions, then 
v<O> = v2 and k2 + eH ( ~ - ~') = 0. Therefore 
ep 

cr~Tp) and a~Tp) vanish. This is connected with the 

effect of the complete drag of the phonons by the 
electrons which occurs when the momentum con­
servation law is strictly observed. In contradis­
tinction to cr(ep) and a(ep) the quantity y(ep) does 

11 11 11 

not vanish when this law is strictly observed. 

5. CONNECTION BETWEEN IRREVERSIBLE 
CURRENTS AND ENTROPY CHANGE 

We show that the irreversible parts of the elec­
trical and the thermal currents determined by the 
diagonal parts of the transport tensors are con­
nected through simple relations with the rate of 
change of the entropy of the solid. The entropy is 
clearly the sum of the electron entropy s(e) and 
the phonon entropy s(p): 

(e) eH \ 
S =- 2n ~Jd~{/xlnfx+(1-/x)ln(1-/x)}, 

" 

Using the expressions for the change in the distri­
bution functions (5) and (6) we show easily that 
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S = S(e) + S(p) = - ~~ ~ d; 2J Wep (xk; x') {/x• (;+) 
xx'k 

x In fx (;) [1- fx· (t)] Nk (;) eH 
[1- /x {;)] /x• (;+) [1 + Nk (;)]- 4n 

X ~ d; "~ Wei (xq; x') {/x· (f)- /x (;)} 

fx(;)[1-/x•(f)J 1 (' { S 

xln [1-/x(s)l/x·(s')+ 2L1L2 ~ds~ 2L2(Nk-Nk·) 

Nk(1 + Nk·) s T Nk (1 + Nk")} 
Xln (1 + Nk) Nk' + 2L1 (Nk- N~o:·) In Nk" (1 + Nk) . 

(23) 

(Here we have omitted for the sake of simplicity 
the well-known expression for the change in the 
phonon entropy caused by the phonon-phonon inter­
action. [ 9] ) 

Substituting (12) into (23) and neglecting terms 
containing the field and the gradients in powers 
higher than the second, we get 

+ d1L2 ~ d; lJNko (1 + Nko) 
k 

(24) 

To find the irreversible parts of the currents, 
which we shall denote by j' and q' (they corre­
spond to the diagonal components of the transport 
tensors), we introduce generalized "forces": 

Then 

•I 1 as 
J = 2v ax ' 

I 1 as 
q = 2V aY . 

Using (23) we get for j' and q' expressions which 
are exactly the same as the expressions for the 
irreversible parts of the current and the thermal 
current in Eqs. (19) and (21). 

6. TRANSPORT COEFFICIENTS IN THE 
CLASSICAL CASE 

We determine first the transport coefficients 
in the classical case when WH « T. Since 
Eqs. (19) and (21) are valid for WHTe » 1, we 

must assume that the temperature is sufficiently 
low, T « @ (in the opposite case, Te ~ 1/T and 
the condition for classical behavior will be incom­
patible with the condition wH T e » 1). 

If WH « T, we may change in Eqs. (14) and 
(20), which determine the "collision frequencies" 
v(r) and v(~), from a summation over n to an in-
ep e1 

tegration over the transverse components p 1 of 
the electron. Moreover, we can put in the scatter­
ing probabilities wep and wei: H = 0. As a result 

the quantities v< r) and v(~) become 
ep e1 

"~~ (k) = g2w (2!)a ~ (ep t ro)' lfo (ep)- /o (ep + w)] 

x 6 (ep + ro- ep+k) dp, 

x 6 (ep- ep+q) dp. 

Bearing in mind that T « s, we find 

+ r 2 1 ~ G2 ( ~ ) } ' (25) 

V~~) = jUq[2n;m2 2! ~ dejO(e) (1-jO(e)) ( f r (26) 
q q'jBm 

where 

Substitution of (25) into (19) leads to the follow­
ing expression for 0" 11 : 

(27) 

where 

1 T )" p "" x 5dx 
"tep (a) = T ( e 2{2n )3 ~ --,-(e-X -1.,..,-)--:(--:-1-e--x-:--) -:-( 1c-+..,---A-=-a-X. ) 

(a=1,2) 

ne a 
'rei~--, 

n; Vo 

e = PoS. 

1 s -( 1 s )-1 
Aa=-p-T -+-

2 Vo Tpp La 

For a bulk solid ( Aa » 1) 4> 

4 )L. Gurevich and Efros ['] found the quantity r( 2 ) for A 
ep a 

>> 1. 
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In the case of a film ( Aa « 1) 

_1_:::::: 15~(5) r( !_)" 
't'ep(Z) 2n3 p e 

Since at low temperatures 1/Tpp R=~ e-b®/T 
when T « ® the quantity a(ep) will for a bulk 

11 
solid be exponentially small. This conclusion 
arrived at while neglecting Umklapp processes in 
electron-phonon collisions retains its validity also 
when the latter are taken into account, provided 
only that the Fermi surface lies completely inside 
the Brillouin zone. For more complicated config­
urations when the probability for electron-phonon 
collisions which do not conserve quasi-momentum 
may be of the same order as the probability for 
collisions with strict quasi-momentum conserva­
tion, the quantity a(ep) will for T « e vary not 

11 
exponentially with temperature but as a power of 
the temperature (proportional to Tn, where ac­
cording to (22) n ~ 3). 

We note that in the classical case the tensors 
a and a' are the same. 

We now give expressions for the components of 
the tensor a: 

< > ne T (T)' 2 r x4G1(x) 
au ep = pH WH 8 2n ~ (ex - 1) ( 1 + xAz) dx, 

2n2 ne T 
au<•il = -- ----

3 H ~ Wn't'ei 

n2 T ne ne ( T ) 3 

a,z=2Tn+n 8 

ee A2x5dx 
X ~ (28) 

0 (ex - 1) ( 1 - e-x) ( 1 + xA2) ' 

If A2 » 1, 

2 ne ( T )" Vo ( 1 s ) au<•Pl = (2n) - - -- --+-- , 
H e WHS 't'pp Lz 

a12 =- a21 = ~.!!!___{!_- S:rt2 (!_)3
} (29) 

2 n ~ 15 e · 
If A2 « 1, 

n. T2 s"" x4G1(x) au<•Pl = 2n2p ---- dx, 
H ())He 0 e"' -1 

:rt2 ne T 
a,z=2n~· (30) 

We note that the second term in the expression for 
01. 12 in (29) is caused by the phonon-electron drag 
effect. This term will be larger than the first one 
when T > %e..J (®/?; ). 

If the Fermi surface is such that the probability 
for electron-phonon conditions with non-conserva­
tion of quasi-momentum has the same order of 
magnitude as the probability for such collisions 
with quasi-momentum conservation, there is prac­
tically no drag of the phonons and the behavior of 
the tensor a will be different: there will not be a 
second term in the component 01. 12 . The phonon 
drag may thus be manifest in the off-diagonal 
components of the tensor a determining the 
thermal emf. 

Let us finally consider the tensors defined by 
the heat current. Since flik(H) =flik(H) 
= Taki (-H) it is sufficient to give only the com­
ponents of y. The diagonal components of y(ei) 
are connected with O"(ei) by the Wiedemann-Franz 
relations 11 

( .> < .> :rt2 T <. 
'YH "' = 'Y22 •• = - - cru "') 

3 e2 ' 
(31) 

and the diagonal elements of ,Y(ep) (e) and y(ep)(p) 
are determined by the formulae 

2 ( T )zn yu<•Pl (p) = - - __::__ 
p e m 

(32) 

We note that these quantities do not vanish as 
L- oo, T-1 = 0. The off-diagonal components of pp 
y are of the form 

1' ne T ne T ( T )a 
'Yi2= -y21 =-- ---(2:rt)2-- -

24:rt m WH m WH El 

F ( A, A2 ) x•G,(x) 
XJ + ~ 

0 1 + xA, 1 + xA2 ex- 1 · 
(33) 

In the limiting case Aa » 1 Eqs. ( 32) and (33) 
give 

ne ( T )2( T )" y11<•P>(e) = 2n2p- _ _ 
m WH El 

r x• [ G1z(x) J 
x J dx-- G2(x)- G , 

0 e"'- 1 0 (x) 

(e >( ) _ 12~(3) ne( T )2 'VIi p p ------ - ' 
p m e 
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1 ne T ne T ( T ) 3 
'\'12 =- '\'21 = -- ------ - 2(2n)2 

24n m WH m WH El 

~oo x4G1 (x)d 
X X. 

ex-1 
0 

n2 ne ( T ) 2 LwH '\'ll(epJ(p) =-- - ----' 
15 m WH Vo 

1 ne T 
'\'12 = - '\'21 = -- ---- -. 

24n m WH 

(34) 

(35) 

Let us compare the contributions to the heat 
current from the electrons and the phonons for the 
case of a bulk sample: 

'\'li(ep) (e) 2( T ) 2( T ) 2 Vo -'------,-,---'--'-- ~ p - - L ';:;>-
'\'li(ep) (p) EJ WH ' pT . 

This quantity is appreciably smaller than unity 
wh~n T ~ WH, provided wk « ® 2/ p 2• The quantity 
y(el) connected with the electron-impurity scat-

It 

tering can clearly be neglected if the impurity 
concentration is sufficiently small 

~<~ !'_(WH )2. 
ne P ~ El 

For T ~ 102 °K, H ~ 104 G, this gives ni /ne 
< 10-6 to 10-5• For sufficiently pure metals heat 
can thus basically be transferred by the phonons 
rather than by the electrons. 

7. TRANSPORT COEFFICIENTS IN THE 
QUANTUM-MECHANICAL CASE 

We turn to a consideration of the transport co­
efficients in the quantum mechanical case when 
wH » T (both cases T < ® and T > ® may then 
be realized). First of all we consider those parts 
of the transport coefficients which are connected 
with the electron-impurity scattering. Assuming 
a quadratic dispersion law we can according to ( 1) 
write the quantity v(:~·) in the form el 

m{ q32} p3=- WH(n-n')-- . 
q3 2m 

(36) 

It follows from the definition (2) that the func­
tion qnn' is appreciably non-vanishing when ql 
:S WH /v0• If the range R of the forces between 

the electron and the impurity atom is sufficiently 
small, so that R « v0/ WH, we can thus assume 
that Uq r:::; U0• 

Substituting (36) into (19) and (21) leads to the 
following equations for the transport coefficients 
caused by electron-impurity scattering: 5> 

au<ei) = e2m2wHI Uol2ni ~ dEf(EH1- fi(E)) 
4n3T 0 

N N 
x ~ 2n+1 ~-==1= 

n~o yE- B n'=O yE-e.l.' 

N N 
~2n+1~ 1 

X L...l L.J 
n~o yE- B.J.. n'~o yE- B.l.' 

(37) 

where El = WHI n + '/2 ) and the integer N is con­
nected with E by the relation E = WH ( N + 1/2) 
+ WHO, 0 ~ 6 < 1. 

These expressions diverge forE= WH(n +'';2); 
this is connected with the fact that the first Born 
approximation is inapplicable when p3 = 0. How­
ever, as the divergence is a logarithmic one, 
Eqs. (37) lead to the correct results when the 
temperature is not too low ( T ;:::, wH) and also far 
from resonances when s = WH ( N + '!2 ) + WI-JTI 
( 0 :::; T/ < 1) is not close to w H ( N + 1/ 2 ) (the tem­
perature can then be arbitrary). 

We give the expressions for the transport coef­
ficients referring to these cases 

"" (-1)r ( 2nr\; n )} 
X ~ -==- '¥( ar) cos ---- , 

r=l y2r WH 4 · 

oo ( -1) r , ( 2nr~ n ) } 
X ~ -=- '¥ ( ar) cos --+-- , 

r=l y2r WH 4 

5 >several authors ['] have obtained the expression for al7i). 
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X ~·( - 1) r '¥" (ar) cos ( 2nr~ _ _::t)}. 
r=i l'2r WH 4 

(38) 

Here w(x) = x/sinh X, a!r = 27T 2rT/wH. We see 
that the relative amplitude of the oscillations of 
o-(ei) and y(ei) is of the order ( WH//;) 1f2 

11 11 • 
If T « WH and the distance from a resonance 

sufficiently large ( 1 » TJ » WH/1;) we have 

nee2 ( 51/WH) cru<eO ~ 1 + -- y- , 
mwH'tei 4 ~TJ 

We consider, finally, the case of very low tem­
peratures T « SWH/Vo. When T « e phonons with 
wave vectors k ~ T /s play the main role. On the 
other hand, we can for large n and k « WH/v0 re­
place the function gnn' in Eq. (40) by <'inn'· If 
T « swHiv0, we have thus gnn' ~ Onn' and 

eHp w "' ( e,. + w )r 
Vep(r) (k) ~ 2-lk I LJ ~ {f(e,.)- !(e..+ w)}, 

Po 3 n 

Pa = __!!!____( w - ka2 ) . 
ka 2m, 

(42) 

The main part in that sum is played by only one 
term corresponding to the minimum value of 
I EK -!; 1. It is reached for a value of n = n0 de-

(39) termined by the condition 

The second term in the brackets determines the 
amplitude of the oscillations. When TJ ~ WH/1; the 
relative amplitude of the oscillations becomes 
thus of the order unity. The same situation also 
occurs when TJ < WH/1;. 

Let us now consider those parts of the trans­
port coefficients which are connected with the 
electron-phonon interaction. Substituting (3) into 
(14) and summing over p3 and Pa we write v(r) 

ep 
in the form 

. 1 eHp w ~ (e,.+w)' 'Vep(r) = -----2. gnn•(kJ...) ---, 
2 Po lkal , ~ nn 

XU(e,.)- /(e,. + w)], 

pa=: {wH(n-n') +w- ~~}. (40) 

The simplest is the high-temperature case, 
T ;::, e. Replacing in that case f (E) - f ( E + w) 

by wf( E) ( 1 - f( E)) /T and neglecting in the 
expression for p3 the quantity w ~ 8 as compared 
to kV2m ~!;,we get 

1 eHp w2 ( e,. )r 
'Vep(r) (k) ~- -----~ gnn'(kJ.) - /(1- /), 

2 Po Tl kal , ~ nn 

m{ k32} Pa=- WH(n-n')--- . 
ka ?m 

(41) 

Since the mean free flight time of the phonons 
for T ~ e is very small we may assume their 
distribution to be an equilibrium one and put in 
Eqs. (19) and (21) v1 = v2 = 00 • Using (41) we ob­
tain for o-(ep), a(ep), and y(ep) expressions which 
differ from those for o-(ei), a (ei), and y(ei) in that 
Tei is replaced by 4rr3/pT. At high temperatures 
the electron-phonon scattering behaves thus like 
electron-impurity scattering. 

~- pa2 I 2m= WH(no + 1) + Tq;, 

-WH/2 ~ Tq; < WH/2. 

The quantity <P is clearly a periodic function of 
!; - p~/2m with period WH and can be written as 
a Fourier series 

WH { 2 00 1 2nrz } q;(z)=- - ~ --sin--1 , 
2T 1t r=l r WH 

w p32 1 ( T ) eo z=~--=~+-sT 1--sx2 --, 
2m 2 8eo x2 s=y· 

Retaining in v(r) only the one term with n = n0 ep 
we get 

(43) 

Using this expression we can, in principle, de­
termine the quantities o-(ep), a(ep), and y(ep) (e). 
We restrict ourselves hJ}e to t~e evaluatilJn of the 
quantity y~~p) ( p) determined by the phonon 

thermal conductivity. To do this, we expand the 
function 1/ v~~ which is a periodic function of z 

( as is the function q; ( z) ) in a Fourier series: 

_1_ = 2vo I xI { 1 + ~ exp (2nirz/wH) } 
Vep<0> SWHP ,.:::_00 1 + 2nirT / WH · 

Substituting this expression into (21) we get 

< > ( ) 2voT3 1 r s~ds r d 1 2) 

'Yuep p = s2wHp (2n) 2~(e;-1)(1-e-;)~ xx( -x 

X { 1 + ~ exp (2nirz/wH) } . (44) 
r=-oo 1 + 2nirT / WH 

Assuming that Eo« WH, Eo« T we can in (44) 
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integrate over x. Using also the definition (43) of 
the function cp, we find 

voT { :n;2 :n;T 
"\'!1(ep)(p) = -- + --tpm 

WHs2p 15 6awH 

(44') 

where /; = NwH + 1JWH, 0 ~ TJ < 1, N a positive 
integer and a = rrTd8EoWH· When a « 1 the re­
gion of ~ for which 0 ~ z ~ wH gives the main 
contribution to the integral in ( 44'). In that inte­
gral cp ( z) = - z/T and 

Substituting this expression into (44') we get 
finally 

VoT { :rt2 1 r dz } "\'i!(ep)(p}=--- -+-- J ---- • 
WHs2p 30 2:rta erz - 1 

:'.ntj/0: 

(45) 

We note that y(ep) ( p) is a periodic function of 
11 

the chemical potential with period WH. The maxi­
mum value of y(ep) ( p) is reached for TJ = 1, i.e., 

11 

[ "\'i!(ep) (p}] max ~ 2po /3pT. (46) 

We recall that the maxima of (J(ei), a(ei), and 
11 11 

y(ei) are reached in the points /; = WH ( N + Y2). 
11 

The shift of the maxima of y(ep) (p) relative to 
11 

to the maxima of y(ei) is connected with the fact 
11 

that the quantity y(ep) ( p) is determined by the 
11 

function 1/v(O) while the quantities (J(ei), a(ei), 
ep 11 11 

and y~~i) are determined by v~0( 

When TJ ~ 1, the second term in (45) is expo­
nentially small so that 

:rt2 voT 
"\'H(ep) (p) ~ ----. 

30 WHS2p 

Since that quantity is appreciably less than 

(47) 

[ y(ep) ( p) l the amplitude of the oscillations 
11 max 

in y(ep) (p) is also determined by Eq. (46). The 
11 

interval in which y( ep) ( p) as function of the 
11 

chemical potential is close to its maximum value 
is of the order a ":'H /2rr. A comparison of 
y(ep) ( p) with y(et) gives 

11 11 

'\'ll(ei) I '\'H(ep) (p) ~ p (\; I WH) 2n; I ne. 

We see that, if n/ne < p-1 (wH/1;) 2 the phonons 
and not the electrons will play the main role in the 
heat transfer in the quantum case. 
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