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where 

x1 = [x2 + 1 j'/, sin [ q ( ~ - tan-1 x) J , 
q ' 

is the solution of the equation 

x"- ux = o 
normalized by the condition x1 ( oo ) = 1. 

r 
X=Ji 

According to Eq. (5), the condition for existence 
of the level is given by the inequality 

p(ao/ R) 2 > 3l2. (7) 

Assuming as in [3] that R is approximately equal 
to the kinetic theory radius of the particle, and 
using the tabulated values of polarizability, we find 
that this inequality is not fulfilled in the case of 
argon (in agreement with the results of Paul and 
Saint-Pierre[!] where it is shown that for argon 
era I ern = 3 ) ; i.e., the resonance effect is absent in 
argon. The condition (7), however, is fulfilled for 
xenon. Therefore we can assume the existence of 
the resonance effect in xenon. 

For all the other molecules investigated by Paul 
and Saint-Pierre, the inequality (7) is fulfilled; 
i.e., the resonance effect exists for these mole
cules. For methane the value of the level given by 
formula (5) is E = 0.05 eV. Assuming for methane 
this value of the level, Eo= 0.6 eV (for F(q) 
= 1.5 ), the experimental value era I ern = 20, Zv = 8, 
and E = 0, we find from (3) the annihilation time 
Ta of the bound state in methane: Ta = 3.6 x 10-9 

sec. 
In conclusion it should be noted that a verifica

tion of the interpretations suggested would be the 
observation of elastic scattering of slow positrons 
( E ~ 0.1 e V) in the gases for which the increased 
annihilation rates have been observed. According 
to our suggestion, the cross section ere of the 
scattering process should considerably exceed the 
geometrical cross section of the molecule and 
should be given by the Wigner formula; 

ae = (2nn2 I m) I (E +e). 

The weakly bound state of the positron should be 
easily destroyed in a collision of the positron
molecule ion with another molecule. Therefore the 
scheme proposed could also be verified by obser
vation of the pressure effect, i.e., the disappear
ance of the Paul-Saint-Pierre effect on increasing 
the gas pressure or on dilution by a gas which does 
not form a bound state with a positron (for exam
ple, argon). 
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J. In investigating the incoherent inelastic scat
tering cross -section of slow neutrons in crystals 
a number of authors have observed the differen
tial cross-section to have a noticeable "tail" in 
a wide region of energy, which without any doubt 
lies above the upper end of the harmonic-approx
imation phonon spectrum Wmax· This was estab
lished with particular reliability in the case of 
vanadium by the work of Egelstaff and Turber
field[1J, who specifically investigated the tem
perature dependence of the cross -section in this 
energy region. At first glance it would seem that 
"tails" of this kind must be connected with two- or 
many-phonon processes accompanying the scatter
ing of the neutron from the crystal; however, even 
the most optimistic estimates (made, in particu
lar, in [i]) show that the calculated values lie well 
below the experimentally observed values of the 
cross section. Thus, the question of the origin of 
the tail in the incoherent inelastic cross -section 
has remained open. 

In this note we show that anharmonic effects in 
the crystal must necessarily produce a tail in the 
energy dependence of the cross section. Thus, to 
all appearances, the observed results are largely 
connected with anharmonicity. 

2. To first order in the ratio of the recoil en
ergy R from an individual nucleus to the charac
teristic energy w0 of the phonon spectrum, the 
expression for the differential scattering cross
section for scattering from an arbitrary crystal 
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has the form: 

d2cr (t:.E, x) = m2k'x2 _!__ ~ _0 e-wi 
de t:.Q 8n21i2k0 N i Mi 

~ (qvi (f, ot)) (qvi (f, ot')) Im Gf, acx' (t:.E) 
X r,7r.' [w(f,ot)w(f,ot')]'i• e-~LlE_1 ' 

(1) 

where Gr a a' ( 6.E) is the Fourier component of , 
the retarded Green function corresponding to the 
operators Af a(t) and A-f a'(t) (Af a= af a 

+ ' ' , ' 
+ a_f a). In formula (1) the notation is the follow-
ing: ~(f, a) is the frequency of a phonon with wave 
vector f and branch index a; Vj(f, a) is the po
larization vector corresponding to the j -th atom in 
the unit cell (with mass Mj ); Aj and Bj are the 
constants in the expression Vj (r) = (Aji + BjS • Kj )x 

where rf,aa and Ilf,aa are respectively the 
imaginary and real parts of the polarization oper
ator. 

If rf,aa and Ilf,aa tend to zero, (2) coincides 
with the usual expression for incoherent one-phonon 
scattering in a harmonic crystal. In this case the 
cross section is proportional to the frequency dis
tribution function of the phonon spectrum and has 
a sharp cut-off at 6.E = Wmax· 

However, if the anharmonicity constant is fi
nite, we are immediately struck by the fact that the 
cross-section (2) has a tail for 6.E > Wmax: if we 
consider only the cubic anharmonic terms, this tail 
should in principle extend to 2wmax· We can see 
this directly by using the explicit expression for 
rf,aa(6.E ): 

n 
rf,<X<X (t:.E) = 2n2 ~ IB-ra,f,a,f,a,[2{(nr,a,+nr,a,+1) 

fh a.l; f2, a.2 

X [6 (t:.E- w (f1, ot1)- w (f2, ot2))- 6 (t:.E + w (f1, ot1J 

+ w (f2, ot2))] +2(n f,a, - nr,a,) 6 (t:.E + w (f1, ot1) 

The scattering cross -section in the region 6.E 
> Wmax is of order 

(2Wo)2 <Do r r 
t:.E t:.E t:.E,...., t:..E 

(3) 

relative to its value in the main region of energy. 
For T ~ w0 this ratio may be ~ 10%. 

From equations (2) and (3) it follows that in the 
classical (high-temperature) limit r ~ T and 
d2u(6.E > Wmax )/dEdSl ~ T2• To this extent the 

o ( r - Rj) for the energy of interaction of the neu
tron with the j-th nucleus (which has spin Kj ); Wj 
is the De bye-Waller factor for the j -th nucleus in 
the unit cell; k0 ( k') is the wave vector of the neu
tron before (after) scattering; x = k' - k0 = qx; 
(3 = 1/kT. 

For simplicity we shall only consider a crystal 
with cubic symmetry and one atom per unit cell. It 
is easy to show that in this case the only contribu
tion to (1) comes from the Green functions diagonal 
in the branch indices (i.e., with a= a'). In view of 
the summation in (1) over the whole volume in 
phase space, the effects of degeneracy are in prac
tice negligible, and we can use for GfR the usual 

' a a 
form of solution (see, e.g., [2•3J). The result is 
(for 6.E > 0 ): 

cross -section (2) varies with temperature in the 
same way as that derived by taking two-phonon 
terms into account. However, it is important to 
notice that the cross section corresponding to two
phonon processes is proportional to ( R/ w0 ) 2 and 
thus contains the parameter (m/M) squared, 
whereas expression (2) contains only one power 
of this parameter. Thus in crystals where m/M 
« 1, anharmonic effects will evidently effectively 
outweigh the contribution from two -phonon proc
esses in the formation of the tail of the cross
section. 

We should note that as formula (2) contains the 
factor n(6.E) + 1, the transition to the classical 
limit takes place at a higher temperature for the 
tail than for the phonons in the main energy region 
and hence for the two-phonon processes. The ob
served temperature dependence [1] conforms to 
this general pattern. 

In conclusion we observe that once anharmonic 
effects are present the incoherent inelastic scatter
ing cross section is unfortunately no longer equiv
alent to the spectral density which defines uniquely 
the thermodynamic properties of the crystal. 
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