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The magnetic moment of conduction electrons in strong magnetic fields is determined. It is 
found that the magnetic field strength dependence of the ground state energy and level density 
can be deduced from an experimental investigation of the magnetic susceptibility for an ar
bitrary dispersion law. It is shown that for a quadratic dispersion law in strong magnetic 
fields the total magnetic moment (diamagnetic or paramagnetic) approaches saturation. 

1. INTRODUCTION 

AT the present time, the oscillating part of the 
magnetic susceptibility (the de Haas-van Alphen 
effect) has been well studied theoretically and ex
perimentally (see, e.g., [t] ). The oscillations, as 
is well known, occur at low temperatures T ( T 
< ~H) in weak magnetic fields (t.tH < t 0, where t.t 
is the Bohr magneton for the conduction electron, 
and to is the limiting Fermi energy; the temper
ature will always be measured in energy units). 
The situation is much worse with respect to the 
investigation of the monotonic part x of the mag
netic susceptibility (which is all that remains in 
strong magnetic fields and high temperatures). 
Experimentally, this is because it is difficult to 
separate the monotonic susceptibility of the con
duction electrons from the susceptibility of the 
lattice. The theoretical determination of the sus
ceptibility for a non-quadratic dispersion law for 
the electrons cannot be made because, as it turns 
out, knowledge of the exact rules of quantization 
is required even in weak magnetic fields (see [2] ). 

In this connection Rumer's calculation [3] for a 
free electron gas 1) is essential for an understand
ing of the dependence. Of particular interest, 
naturally, is the region of strong magnetic fields 

JAH~T, ~o, (1) 

where the magnetic susceptibility of the electron 
gas depends on magnetic field (in zeroth approxi
mation x does not depend on H for ~H « to and 
~H « T). 

However, Rumer's treatment fails to give an 

1)Also of great interest is the calculation of magnetic sus
ceptibility for semiconductors with a loop of extrema in a per
pendicular loop of magnetic field, [4 ] which has been carried 
out on the basis of exact quantization rules. 

understanding of the situation for the general case 
in precisely the region of Eq. (1). To show this, 
let us turn to the simplest case of a dispersion 
law E = p2/2m* ( E is energy, p momentum), 
where the effective mass m* is not the same as 
the mass m 0 of a free electron. Then the energy 
levels have the form ( z is the magnetic field 
direction) 

En± = Pz2 I 2m" + (n + 1l2) 

x JAH ± JAoH I 2 = E ± JloH I 2 (2) 

(the last term is associated with the spin para
magnetism), so that the energy of the ground state 
equals 

Emin = e2Hii (__;- __!_ ~ = 21 (!1- !J.o)H. 
c m m0 1 

In magnetic fields of Eq. (1), when the separation 
between the levels is the greatest in energy, all 
the electrons accumulate near Em in. From· the 
expression for Emin it is clear that the case of 
free electrons, when m* = m 0, is a special one, 
for only in this case does the energy Emin equal 
zero at any field H, whereas when m* ~ m 0, the 
magnitude I Emin I - oo as H - 00• As a result, 
it is natural to expect in the general case a sub
stantially different dependence x ( T, H) than the 
one offered in [3]. 

The purpose of this paper is to elucidate the 
form of this dependence. First, in Sec. 2, we 
shall carry out the calculation of x ( H, T) for the 
case of Eq. (2) both with ~ ~ ~ 0 and with ~ » ~ 0 
(the case ~ « t-to• i.e., m* » m 0, is not met in 
real conductors) and estimate the magnetic fields 
that satisfy the condition (1). The basic problem 
of Sec. 2 is to obtain x ( H, T) in explicit form and 
to demonstrate the idea of the calculation. In Sec. 
3 we discuss the case when the t.tH that satisfies 
the inequality (1) is significantly less than all 
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characteristic energies associated with the form 
of the dispersion law, so that the dispersion law, 
although anisotropic, is quadratic. Finally, Sec. 4 
is devoted to an arbitrary dispersion law, when 
the quantization rule is in general unknown. In this 
case it is natural to change the statement of the 
problem and consider as given not the dispersion 
law in the absence of a magnetic field, but a ground 
state in a given magnetic field, and to study the 
dispersion law on the basis of experimental data. 
Equation (20), which allows this to be done, has an 
extremely simple form. 

In this work we shall consider only the most 
interesting case of one zone with a constant num
ber of electrons. As can readily be appreciated, 
when there are several zones the susceptibility in 
strong magnetic fields will still be determined 
only by the group with the greatest effective mass; 
all the other groups "freeze out." Also "frozen 
out" are the anomalously small sections of the 
large group which were considered by one of the 
authors.C5J In those cases where the number of 
conduction electrons is itself not a constant and 
tends to zero at T = 0, as happens in semicon
ductors, the basic dependence of the susceptibility 
on temperature and magnetic field is caused by the 
"freezing out" of electrons with increasing mag
netic field and is obviously an exponential one. 

2. MAGNETIC SUSCEPTIBILITY FOR THE CASE 
OF AN ISOTROPIC QUADRATIC DISPERSION 
LAW 

To find the total magnetic moment 

M =- (aF I aH)TvN, 

as is known, it is sufficient to know the free en
ergy of the system (see [s] ) 

2eHT "" "" 
F=N~+Q, Q= -~~ ~ dp, 

x { ln [ 1 + exp ( ~ - ;n + ) J 

+ In [ 1 + exp ( ~ /n-) ]} 

n=OO 

(3) 

(4) 

( E~ is given by Eq. (2), and the quantities F, N, 
and Q entering in Eq. (4) are defined per unit 
volume). The chemical potential t is found from 
the requirement that the number of particles be 
constant: 

ag 2eH ~r {[ ( sn+-~) ]-1 

N = - 'af = ch2 LJ J dpz exp T + 1 
n o 

+ [ exp ( Bn ~- ~) + 1 T}. (5) 

Since ~H » t 0, we shall make an assumption 
that is fundamental for the sequel, namely, that 
(accurate to an exponential in ~H/T) all the elec
trons are concentrated near the level n = 0-this 
is physically obvious and is easily verified (see 
also [T]). With this the problem becomes unidimen
sional (Eo= pV2m* + ~ (~- ~ 0 ) H), and by 
setting 

Pz = y2m*Tx, a±= g- 112{1J. =F p.o)H] IT, 

v = 4~'/• I 31J.HT'I•, A = NT I yH, 
(6) 

we obtain equations for the determination of a± 

and Q: 

r dx ( 1 + r1 )= v. 
0 ix exp(x- a+)+ 1 exp(x- 11-) + ·1 (7) 

""a 
Q=-AH~ : {ln[i+exp·(a+-x)] 

0 ix 

+ In [1 + exp (a-- x)]}. (8) 

We shall find first of all the susceptibility of a 
system of particles with masses m* that are a 
very great deal smaller than the mass of a free 
electron m 0, i.e., we shall consider the case 
~ » ~ 0 • Equation (7) can be solved in two limiting 
cases: 

1. Casey» 1 (i.e., to« ~H « t 0 (t0/T) 112 , 
so that in every case to » T ). Here a+ » 1, 
a j ( ~H/T) « 1 (this can be verified after de
termination of t and a+), so that ~H/T - a+ 
~ ~H/T and the terms in Eq. (5) of higher order 
of smallness in ~H/T are omitted (terms with 
n ""' 0 are exponentially small). Thus, only those 
electrons in the ground energy level n = 0 are 
actually important. 

In principle, the magnitude of a_ for a+ » 1 
can be arbitrary. If a_ » 1, then 

a;+ a_ 
fdX fdX - -v ~ r--=+ r--== 2(l'a++l'a-), 
0 l'x 0 ix 

(9) 

For this, in order to satisfy the inequality a_ » 1, 
it is necessary to fulfill the condition y/4 
± ~0H/yT » 1, or 

(IJ.H I so) 3 ~ 419fJ. I IJ.o (10) 

(which is possible only for ~ » ~ 0 ). Using (8) and 
(9), we find the thermodynamic potential 

Q ~ - 413AH(a/l•+a-'l•) =NT{'fl24+8(fJ.oHiyT)2} 

and then the magnetic moment 

M=-1/~!J.[i-~(~)3-~fJ.H ( ~-toH)2]. (11) 
27 ~-tH 2 so so 
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On the other hand, if a_ :.S 1, the second term 
in Eq. (7) can be eliminated. Then y = 2 (a+ )1/2• 

The requirement a_ < 1 is fulfilled under condi
tion that 

(12) 

In this case the chemical and thermodynamic po
tentials are determined as 

~ = 1l2!ili + Tv2 I 4 - t-toH I 2, 

Q = -~I~Ha+''' = - 1laNTv2, (13) 

hence we have for the magnetic moment 

M = - 112Nt-t{1- t-to It-t- 16I21('So I t-tH)3}. (14) 

2. In the other limiting case y « 1 (i.e., in the 
energy scale J.LH » so ( so/T) 112 ) it is necessary, 
as can be seen from Eq. (7), that -a± » 1, and 
near the level n = 0 the electron gas obeys Boltz
mann statistics (i.e., (eX+ 1)-1 ~e-X). Then 

oodx 
'V ~ ) --=(e-x+a+ + e-x+a_) = l"n(e"+ + e"-)' 

o yx 
t-tH 2-y'Ji t-toH 

~ = - 2-- Tln-Y-cosh 2T . (15) 

From this 

Q = -AHv =-NT, F = N~-NT, 

1 { 2T J.to J.toH) 
M=--NJ.t 1----tanh-f. 

. 2 J.tH J.t 2T 
(16) 

In case J.l ~ J.lo the calculation is completely 
analogous, except that the inequality (10) and, con
sequently, the dependence (11) for the magnetic 
moment cease to be fulfilled. 

Since J.LH » so. T and J.l ~ J.Lo, then in virtually 
all investigated field regions the same dependence 
M (H) is observed (below is written also the well 
known expression for M in weak field): 

N 
M =- 2 (t-t- t-to), t-tH>max(~o, T), (17a) 

t-tH ~max(~o, T). (17b) 

Thus the magnetic moment depends on magnetic 
field in the following way. If in the absence of a 
magnetic field the electron gas is not degener
ate, so < T, then the absolute magnitude of the 
magnetic moment initially, for ~-tH « T, grows 
linearly with field, according to (17b), being dia
magnetic if m* < m 0/(e) t/2 and paramagnetic if 

m* > m 0/(3) 112 ; then, when J.LH » T, it ap
proaches, in accordance with (17a), saturation, 
diamagnetic for m* < m 0 and paramagnetic for 
m* > m 0• In the intermediate field region J.LH 

~ T, there can be extrema; in particular if m 0 

> m * > m 0 ( 3)- 112, then surely there will be at 
least one maximum [since there must be a transi
tion from a growing paramagnetic moment (17b) 
to a diamagnetic moment that is growing in modu
lus (16)]. There is no temperature dependence of 
the moment in zeroth approximation, but in sub
sequent approximations in limiting strong fields 
J.LoH » T, J.LH »so. so( so/T) 112 , T, the moment 
has, according to (16), a universal character and 
is isotropic. 

If in the absence of a magnetic field the elec
tron gas is degenerate, so > T, then in the field 
regions J.LH » so and t.tH » 21r2T, everything 
goes as described above, and in the field region 
21r2T < J.LH ~ so de Haas-van Alphen oscillations 
of the magnetic susceptibility occur (see [2] ). 

Curiously, the saturation of the magnetic mo
ment in strong fields occurs as if each electron 
had an intrinsic moment (J.Lo- J.l )/2. 

From Eq. (17a) it is clear that Rumer's case 
J.l = J.lo is a special one, when (17a) gives M = 0; 
then we have to use the complete formulas (14) 
and ( 15), according to which 

M=8N'C,03 /27J.t2H3, ~o~t-tH~'C,oY~oiT, ~o>T; (18a) 
M =NT I H, t-tH>~o, ~oY~ol T, T. (18b) 

The essential difference between the dependences 
M ( T, H) in the cases m* = m 0 [Eqs. (18a) and 
(18b)] and m* # m 0 [Eq. (17a)] is obvious. 

We shall now ascertain how well the condition 
J.LH » so is fulfilled, and thereby find the limits 
of applicability of the equations obtained. In good 
metals so ~ 104oK, for the ground electronic 
groups m ~ m 0 ~ 10-27 g, and the required in
equality corresponds to H ~ 109 Oe. To decrease 
H small so are desirable (i.e., low densities of 
conduction electrons), as well as small electron 
masses m. Consequently, it is necessary to turn 
to semimetals, where J.LH » so does not by any 
means correspond to presently unattainable fields. 
Thus, for Bi the parameter s 0 ~ 100° K, i.e., 
H ~ 104 Oe. (However, this calculation is not 
directly applicable to metals like Bi with a sub
stantially nonquadratic dispersion law [BJ; it is 
necessary to use the results of Sec. 4.) 

The cases of semiconductors and of anomal
ously small zones in good metals, when (1) is ful
filled, will appear as the subject of a separate 
communication (see also Sec. 1). 
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3. ANISOTROPIC QUADRATIC DISPERSION LAW 

We turn now to the case of an arbitrary disper
sion law. In strong magnetic fields pH » to. as 
has already been mentioned, one needs to find the 
quantization rules for the first Landau levels be
fore he can determine the magnetic susceptibility. 
In all real magnetic fields the separation between 
the levels is small compared to the width of the 
conduction band ~E, so that even pH » to corre
sponds to an almost empty or almost completely 
filled band and the dispersion law can be con
sidered to be quadratic. Then the quantization has 
the form 

S ( e; Pz) = { n + '!) ehH I c, n==O, i, 2 ... (19) 

( S is the area of the section of the equal-energy 
surface by the plane Pz = const ). 

The quantization rule (19) can be derived rigor
ously, starting from the Hamiltonian in magnetic 
field (with no account taken of interzone transi
tions) given in [9] [Eq. (6.20)]. We remark in 
passing that this equation is approximately valid 
for arbitrary p, but is by no means exact; it is 
impossible to obtain an exact Schroedinger quan
tum operator from a classical dispersion law. 
Thus, for example, the two distinct operators 

cos p.,a"' cos p11a11 + cos p11a11 cos p".,ax, 
cos (p.,a., + p11a11 ) + cos (p".,ax- p11au) 

both satisfy all the general requirements co.n
sidered in [9]. In regions far from the classwal 
orbit (I and III in the figure), the usual quasi
classical solution can be found. In the narrow 
region II (pH « ~E), considering the smallness 
of py, we expand E in Py• transf~rm .to the 
Fourier representation, and, cons1dermg the 
smallness of Px ( Px and Py are canonical conju
gate operators to within a constant multiplier), 
we expand in Px· In this we arrive at the same 
formula that would be obtained by the replacement 
of p and p by the corresponding operators in 

X y 11 . the expansion E(Px• Py) for sma Px• Py• I.e., 
in quadratic form. Solving the resulting harmonic 
oscillator equation and joining it to the solutions 
in the regions I and III of the figure, we obtain Eq. 
(19). 

1 : B :m 
I 

We shall not dwell to any extent on the case of 
arbitrary quadratic dispersion. The "form of the 
dependence x (H) in this case is determined by 
the general formula (20) of Sec. 4 with account 
taken of the quantization rules (19). We mention 
only that since the value of the effective mass 
changes with a change in field direction, then the 
signs of the inequalities used can change, and 
thereby the character of the dependence x (H). 

Of course, the expansion in quadratic form and 
Eq. (19) are valid only in the absence of degener
acy (associated with high symmetry) or the pres
ence of any kind of additional parameter of the 
dimensions of energy comparable to or less than 
t 0• Thus, for example, for Bi, although to 
,..., 100° K, its Fermi surface is not ellipsoidal, and 
the susceptibility has a more complicated depend
ence on magnetic field (see [8] ). 

4. GENERAL CASE OF ARBITRARY DISPERSION 

We now obtain the equation for the magnetic 
moment in case the dispersion law at H = 0 for 
small p does not reduce to a quadratic law (see, 
for example,C4•8J). We are interested in fields so 
strong that the separation between the levels and 
the energy of the ground state (due both to the 
diamagnetism and the paramagnetism of the elec
trons) are large in comparison with T and to 
(but, of course, H « cli/ea2, where a is the 
lattice period). Such fields are attainable at 
present for semiconductors and metals like Bi, 
As, and Sb. Quantization in such fields is natu
rally not possible in the general case. 

However, considerations similar to those em
ployed in Sec. 2 (for pH» t;.o, to (t0/T)112 , T) 
show that the susceptibility is determined only by 
the ground state and lead to the following result: 

M = -N 880 +NT~lnvo, (20) 
8H 8H 

where N is the density of electrons, Eo (H) and 
v0 (H) are the energy and density of states for. the 
ground state, i.e., absolutely the lowest of all the 
quantum numbers of the level. It can be shown 
that, as in Sec. 2, the lowest approximation 
M = -NB€0/BH is valid already when pH » t 0, T. 

For a known quantization rule obtained, for 
example, in particular cases of metals of the Bi 
type by Abrikosov and Fal'kovskil [8] and of semi
conductors of the Te type by Firsov [to] and with 
a loop of extrema by Rashba, [4] the magnetic 
susceptibility can be determined from Eq. (20). 
Thus, for quadratic dispersion, we have from (19) 
and (20) 

M = - 1/?Jf(JJ.- JJ.o) +NT I H. (21) 
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For an unknown quantization law, Eq. (20) gives 
the possibility of finding from experimental data 
the dependence on the magnetic field for Eo ( H) in 
strong fields from the principal term of the sus
ceptibility, and v0 (H) in limiting strong magnetic 
fields from the weak temperature dependence. 

CONCLUSIONS 

A. In strong magnetic fields ( ~-tH » ?;0, T) the 
magnetic moment in lowest approximation is in
dependent of temperature and is determined only 
by the dependence of the ground state energy on 
magnetic field: 

M = -Noeo I oH. 

Fields like this can be attained, evidently, for 
poor metals ( Bi type). 

(22) 

B. In limiting strong magnetic fields (the form 
of the estimate depends on the character of the 
quantization for a given dispersion law) the mag
netic moment has a small addition, linearly de
pendent on temperature; the coefficient of pro
portionality is determined by the density of states 
in the ground state No ln v0/8H. 

C. For a quadratic dispersion law 

oeo I {)H = 1f2 (p, - J.to), {) lrn Vo I oH = 1 I H 

and the magnetic moment approaches saturation, 
corresponding to diamagnetism for m* < m 0 and 
to paramagnetism for m* > m 0• 

D. For an isotropic quadratic dispersion law 
there can be found small additions (Eqs. (11), (14), 
(16)) to the basic formula, Eq. (17a), that have a 
different form in the different regions into which 

the region of fields ~-tH » ?;0, T is divided (in 
weak fields ~-tH « max ( ?; 0, T) the well known 
formula, Eq. ( 17b) is valid). 

E. The case of a free electron gas studied by 
Rumer, [3] for which fJ. = fJ.o, is a special one. Here 
the magnetic moment approaches zero in accord
ance with Rumer's Eqs. (18a)-(18c). 
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