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An expression is obtained for the dielectric constant of a medium consisting of a set of 
identical two-level quantum objects. The extreme cases of weak and strong fields are in­
vestigated in detail. The dependence of the dielectric constant on the amplitude of the 
electromagnetic field is found in the latter case. A general solution of the closed set of equa­
tions for the vector potential, polarization current and level overpopulation is obtained with­
out taking into account pumping and relaxation losses. The frequencies of the natural oscilla­
tions in a resonant medium in weak and strong fields are determined. 

FoR many physical applications it is very im­
portant to understand the kinetics of the emission 
and absorption of quanta by a system consisting of 
a very large number of identical two-level quan­
tum objects. Such objects may be, for example, a 
system of spins in an external field or gas mole­
cules with the two levels in question, or impurity 
atoms in the field of a crystal lattice. For the 
sake of brevity we shall refer to the identical two­
level objects simply as molecules. Such a prob­
lem was investigated from various points of view 
by many workers. We have narrowed down the 
formulation of the problem, excluding from con­
sideration the losses of quanta, relaxation proc­
esses, and pumping, in order to make the simpli­
fied problem amenable to a correct solution. In 
view of the great complexity of the calculations, 
certain physical simplifications were made from 
the very outset. For example, we have neglected 
the collision of the molecules in the gas of 
gaseous substances, the level spread broadening 
due to the Stark effect in the alternating field of 
the oscillating lattice, temperature effects, etc. 
We hope that allowance for these effects will not 
change the principal aspect of our results. We 
have thus arrived at a model problem involving 
the interaction of a radiation field with a system 
of two-level molecules within a bounded volume 
V with perfectly reflecting walls. The final results 
will apply equally well to an unbounded medium 
with a specified density of the molecules in ques­
tion. 

In an earlier paper [tJ we investigated in part 
the oscillations of photon density n ( t )/V in 
similar circumstances, under the condition that at 
the initial instant there are no quanta and the 
distribution of the molecules among the levels is 

fixed. In the present paper we consider the gen­
eral case, with an arbitrary number of quanta n0 
and an arbitrary distribution N of molecules 
among the levels specified at the initial instant of 
time. On the basis of the closed system of equa­
tions for the ver>tor potential, the polarization 
current, and the change in level overpopulation, 
we obtained a general expression for the dielec­
tric constant of a resonant medium and investi­
gated in detail some limiting cases. Knowledge 
of the dielectric constant makes it possible to ap­
proach the solution of the main problem by a dif­
ferent, phenomenological method. However, the 
use of the dielectric constant of a resonant med­
ium is apparently not always convenient (for ex­
ample, in a weak field, if the number of molecules 
in the excited state is large at the instant when 
the field is turned on, N~ » n0, N°2 » Ng). In 
such cases, the electromagnetic oscillations are 
best described directly by the system of equations 
proposed below for the vector potential, the 
polarization current, and the level overpopula­
tion. 

From the equation for the vector potential with 
the determined dielectric constant we have ob­
tained the frequencies of the natural oscillations 
of the field-intensity vector and the oscillations 
of the photon density in the resonant medium. It 
turned out that to each mode of photon-density 
oscillation there correspond oscillations of the 
field intensity vector with two frequencies in the 
case of weak fields, and with three frequencies in 
the case of strong fields. In the strong field one 
is the fundamental harmonic and the other two are 
satellites with small amplitude. Addition of elec­
tromagnetic oscillations at these frequencies 
leads to beats, which are manifest in the photon 
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density oscillation mode. In this connection, we 
also investigated the beats from a different point 
of view, using the procedure of the earlier 
paper [tJ. As expected, the equations obtained by 
the two methods for the photon-density oscilla­
tions coincide. In the case of sufficiently strong 
positive initial overpopulation ( N~ » n 0, N~2 

» N~) the photon-density oscillation is in the 
form of exponentially growing (in time) bursts, 
which coincide with those considered earlier in [1]. 

In weak and strong fields ( I n - n 0 I « I n 0 - N~ I ) 
each type of photon-density oscillation has a har­
monic character. At the same time, the usual 
balance equation [2], written out for our model 
problem, leads to a different law of oscillation of 
n ( t). This means that the balance equations can­
not be used here. Consequently, they are likewise 
not applicable in the general case when account is 
taken of pumping and of relaxation losses. 

The investigation carried out of the system of 
equations of the vector potential, the polarization, 
current, and the level overpopulation is of interest 
also in principle, since it leads to a definite con­
clusion concerning the limits of applicability of 
an analogous system of equations obtained in 
several papers (see, for example [3- 5]) by a semi­
classical method. In addition, the procedure here, 
and also the solution for our model problem, can 
serve as the basis for further investigations of 
more complicated equations for the vector poten­
tial, with allowance for the pumping and for relax­
ation losses. 

The Hamiltonian H of a system of N identical 
two-level molecules and a radiation field, con­
tained in a volume V, will be taken in the same 
form as in [!]. However, unlike in L:tJ, we retain 
all the terms of the Hamiltonian, writing them in 
the form 

the free radiation field, respectively, and the last 
term is the operator of their interaction energy; 
nwo-energy difference of the upper and lower 
levels of the isolated molecule; wL = 4rre2ZN/mV, 
where e and m-charge and mass of the electron, 
respectively, and V-number of electrons in the 
molecule. Further, Cki\ and cki\ are the opera­
tors of absorption and emission of a photon with 
momentum nk and polarization I~, respectively, 
with 

Ck).C+k'l/- c+k'i.'Cki. = {lkk'{ll.l.', 

'A = 1, 2, wk2 = k2c2. 

Finally, Xj-coordinate o~ the center of gravity of 
the j-th molecule, and MJ ( k )-matrix element of 
the transition of the j-th isolated molecule from 
the lower level to the upper level with simultan­
eous absorption of a photon of momentum nk. 

The Fourier component A ( k) of the operator 
of vector potential A ( x) 

A (k) = v-'!, ~ A (x) e-ikx dV, 

and the operator j ( k) are connected with the 
Fourier component of the polarization current 
j 1 ( k) by the relation 

j' (k) = j(k) - WL2A (k) / 4rtc, ( 4) 

which follows from the fact that in the absence of 
conduction or extraneous currents the operators 
A ( k) and j 1 ( k) should satisfy, in accordance with 
Maxwell's equations, the following equation: 

A(k) + wk 2A(k) = 4ncj'(k). 

In the case of dipole radiation of the molecules, 
the polarization current (4) is none other than the 
current due to the transition of atomic electrons 
in the presence of an "external" electromagnetic 
field with potential A. If the radiation is of mul­
tipole type, then the intuitive meaning of (4) dis-
appears. In addition, the polarization vector P, 
defined by the relation P = j 1 , does not reduce 

(I) 2 
-__!:__A (k) A(- k)), 

8rrc 
(1) here to a sum of the dipole moments of individual 

A (k) = (2rrJic2 fwk)'1' Lj ( ckl. lk' + c_k/ L/), 
), 

ia. (k) =- v-';, Lj (6a.fl- ka.kflfk 2 ) (:5)Mr/ (- k) 
jfl 

+ G_i,lJ fl•j (k)) C-ikXj' 

G J-. (1 0) 
z - 0 -1 ' 

. (0 1) G/ = 0 0 ' a_i = (0 0) 
1 0 , 

(2) 

(3) 

where the first and second terms in (1) are the 
energy operators of the isolated molecules and of 

molecules. 
We introduce the dielectric constant E of the 

medium in the usual way, using the equality 

a a , 
4nj'(t) + -E(t) =- (eE(t) ), at at ( 5) 

where E = -Ale and €-integral operator to be 
determined (we use throughout a gauge in which the 
scalar potential vanishes identically and 
div A(x, t) = 0). 

Thus, to determine the dielectric constant of 
the medium it is sufficient to find the connection 
( 5) between the polarization current and the vee-



DIELECTRIC CONSTANT OF A RESONANCE MEDIUM 1275 

tor potential. In order to establish this connec­
tion, we make use of the rule for the differentia­
tion of operators in quantum mechanics, and find 
the equations satisfied by the operators of the 
vector potential and of the current j. Simple cal­
culations for an isotropic medium yield 

.A .. (k) + (ffik2 + ffiL2) A .. (k) = 4~cj .. (k), 

~~ (k) + ffio2ia. (k) = - 4 ffio
2 

2 N _A .. (k) 
:rtc't'o 

- ~,Bka. k'o.'A .. ·(k'), 
' ' k'ct 

Bk .. , k'o.' = ;;~ ~ c.zi ( i'J,.13- kk:13 ) (M 13•; (k) M .. J (k') 

+ M/ (- k) M ... ·; (- k')) ei (k'-k) x;' 

1:'0- 2 = 2nc3Wjffi02 V, 

(6) 

(7) 

(8) 

where W-probability that a single isolated mole­
cule emits one quantum per unit time, and the 
prime at the summation sign denotes the condition 
k' ""k. 

We first determine E in the presence of a weak 
electromagnetic field 

n=~nk<N, 
k 

assuming that prior to application of the electric 
magnetic field all the molecules were in the 
ground state. Then, when taking the matrix ele­
ments of the operators in (7), we can confine our­
selves to the linear approximation in the number 
of photons, putting a- j = -1 ( see also [1] ) • Ex-

z 
panding the operator matrix elements of the vec-
tor potential A ( k, t) and current j ( k, t) in a 
Fourier integral with respect to the variable t, 
for example 

1 r A(k, t)= Zn J A(k, ffi)e-i"'tdffi, 

we obtain 

Only the principal terms with j = j' need be re­
tained in the resultant double sum over the indices 
j and j'. The discarded terms contain additional 
rapidly-oscillating factors of the type exp [ ik · 
( xj - xj' ) ] , and therefore make a negligible con­
tribution. In addition, we assume that the mole­
cule radiation is of the dipole type, the wavelength 
is small compared with the linear dimensions of 
the volume V, and wL2 « w%. Then the primed 
sum in (10) is equal to 

( roo cog W .,, dro' ) 
iroW +- · , j,.(k, ro), 

:n: o ro -ro 
(11) 

where W w'-probability of dipole emission of a 

photon of frequency w' by a single isolated mole­
cule, Ww 0 = W, and the integral is taken in the 
sense of the principal value. The second term in 
( 11) is the radiation level shift of the isolated mole­
cule, an account of which in (10) leads to an insig­
nificant change in the value of w%. The radiative 
level shifts will therefore not be written in ex­
plicit form in what follows. 

Thus, as was already noted in CtJ, the off­
diagonal terms of the operator (8) make a contri­
bution that is due to the radiative damping of the 
individual molecules (as if the latter were iso­
lated). 

Relations (10) and (11) enable us to express j 
in terms of A. If we now use formulas (4) and 
(5), we obtain the sought-for connection between 
the polarization current and the vector potential, 
which yields 

A 1 r 
sE(t)= Z:n: J s(ro)E(ro)e-i"'tdro, 

z 8:n:roo ~ I MJ 12 
s(ro) = 1- ffiL + J (12) 

ro2 3hro2V ( ro02 - ro2 - iro W) 

At high frequencies w, expression (12) coin­
cides with the known result [sJ. At low frequencies 

(ffik2 + ffiL2 - ffi 2)Aa(k, ffi) = 4ncj,.(k, ffi), 

(ro02 - ro2) j .. (k, ffi} = 4ro02~ A .. (k, ffi) 
ne-ro 

+ ~·B'kct,k'o.·A .. ·(k', ro), 
k'a.' 

where Bk' k' , differs from (8) in that it does a, a 

(9) w - 0, the contribution to the dielectric constant 
of the medium will be made not only by the virtual 
transitions of the molecule between the two levels 
in question, but also by virtual transitions to other 
levels. For example, in the case of dipole radia­
tion, neglecting attenuation, allowance for the 

(10) 

not contain a-~. 
It is easy to determine in (10) the contribution 

of the off-diagonal terms Bka k' a' with k' >" k. 
' 

To this end we express Aa in the primed sum of 
the right side of (10) in terms of ja with the aid 
of (9), and replace the quantities Bka,k'a' and 

ja by their sums in accordance with (3) and (8). 

other levels can be readily made bY. making in (12) 
the substitutions w~ - wfu. 0 and MJ - iewmoXmo 
with subsequent summation over the indices m, 
which number the levels of the j-th molecule. 
Then as w- 0 we obtain 

8 = 1 _ UlL2 + ffiL2 ~ Ulmo/mo = 1 + 4ne2N ~ /mo 
roz roz m romo2- ro2 mV m romoz ' 

which is likewise in agreement with the univer-
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sally known result (here fmo = 2mwmo x 
\ xmo \2/311 is the oscillator strength). If elec­
tromagnetic waves with frequencies w close to 
w0 propagate through the medium, then the largest 
contribution to the dielectric constant of the 
medium will be made by the transitions between 
the two resonant levels of the molecule in ques­
tion, and the dielectric constant (12) will then take 
on the form 

8 = 1 + :rt'f..o3WNIV . 
Wo-w-iWI2' 

(13) 

where 7t0 = c/w0• 

For further investigation of magnetic oscilla­
tions of arbitrary amplitude it is necessary to ob­
tain a closed system of equations for A ( k) and 
j (k). For simplicity we shall neglect in (6) and 
(7) the nondiagonal terms Bka ,k' a', which are 
proportional to W, and the small quantity wt 
« w~. To obtain a closed system of equations it 
is necessary to add to (6) and (7) an equation for 
the operator N_ of the level overpopulation 

. 2 ~ . 
N_ = -1i LJA(k)j(-k). 

Woe k 
(14) 

The solution of the resultant system of equa­
tions (6), (7), and (14) is made difficult by the 
large number of functions A ( k) with different 
values of k. We therefore consider a simplified 
problem, with only one arbitrary oscillation mode 
occurring in the volume V. Such a situation 
arises, for example, in a cylindrical cavity in 
which the active molecules are located near the 
axis. In this case the molecules interact intensely 
only with one mode determined by a zero-order 
Bessel function. 

In this connection we rewrite (6), (7), and (14) 
in such a way that they contain only the standing 
waves A1 = (A(k) + A(-k))/v'2 and iA2 = (A(k) 
- A (- k) )/.f2, which are characterized by the 
parameter wk_, and the corresponding polariza­
tion current 

h = (j(k) + j( -k)) I -y2, ih = (j(k) - i ( -k)) I {2, 
namely: 

(15) 

(16) 

(17) 

where s = 1, 2 and the quantity W, which enters 
in (16) via the parameter T~, denotes here the 
probability of not only dipole but of any arbitrary 
multipole radiation of the molecule. Equations 
(15)-(17) are valid for operators in either the 

Schrodinger or the Heisenberg representation. 
Inasmuch as the expansion used in quantizing 

the free electromagnetic field was in terms of 
plane waves, the standing waves are in this case 
harmonic. However, the conclusions that follow 
are general in character and hold also when the 
free electromagnetic field is expanded in arbi­
trary eigenfunctions Awk ( x) of the resonator, 
satisfying within the volume V the equation 

(18) 

with boundary conditions determined by the 
formulation of the concrete problem. This state­
ment follows from the fact that the final results 
depend only on the initial energy of the radiation 
field, on the initial distribution of the particles 
over the levels, and on wrc. 

Assume that at the initial instant t = 0 the 
number of molecules in the upper level was 
N2 ( 0) = Ng, and in the lower level N1 ( 0) = N~, 
while the number of photons n = nk + n_k with 
given wk. was then equal to n 0• Let us determine 
the frequencies of the field-intensity vector and 
the oscillation of the photon density n/V. 

According to [t], the overpopulation N _ ( t) and 
the number of photons n ( t) are slow functions of 
t. We shall therefore seek a solution of (15)-(17) 
in the form 

As - iwoA. = X. ( t) e-iw,t, 
ls- iwojs = Y.(t)e-iw,t, 

(19) 
(20) 

where Xs ( t) and Y s ( t )-slow functions of t. 
Then, leaving out the rapidly oscillating terms, 
and also terms of order \n 0 - N~ + %\ 112/w 0T 0 « 1, 
we obtain 

2iw0X8 =(wk2 -w02)X8 -4:rtcY., (21) 
• (1)2 

2iw0Y 8 = 4~N_X8 , (22) 
l1C1'o 

2i1iw02cN_ = ~ (X/Y.- Y/X.). (23) 
s 

Combining (21) with (23), and then (22) with 
(23), and finally (23) with (21) and (22), we obtain 
the respective integrals of motion 

(24) 

(25) 

~ (X.+Ys + Y /X.)+ 1iw0 (wk2 - w 02) c (N _- 13) = 0, (26) 
• 

where the constants I1, I2, and I 3 are determined 
from the initial conditions. Expressions (24)-
(26) represent essentially the adiabatic invariants 
of the fundamental problem (15)-(17). From (21)­
(26) we have 
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4To2fL- 3N_2 + 2(11 + 1)N-

+ 4To2(wk- (l)o) 2(N-- /3) + /z = 0. 

An analogous equation is obtained also for the 
number of photons n = nk + n_k with given wk, 
since it follows from (24) that 

2n + N_ =ft. (27) 

All the relations (19)-(27) are valid not only for 
the average quantities or matrix elements of the 
transition, but also for the corresponding Heisen­
berg operators 1). Therefore, in interpreting the 
integrals of motion (24)-(26), we shall make use 
of formulas (2) and ( 3), assuming that the sub­
systems (the molecules and the radiation field) did 
not interact at the initial instant of time and were 
described by their own wave functions. Taking 
into consideration the definition of the operators 
Xs and Ys 

Xs+Xs = A8 2 + Wo2As2 + iwo(A8A,- AsAs), 

Ys+Ys =· ]s2 + wo2]s2 + iwo(j;js- lds) 

(28) 

(29) 

dielectric constant of the resonant medium 

' 1 00 

eE(t) = Zn ~ dwe-iwt ~ em(w)E(w + mQ), 
m=-oo 

em(w) = bmo + Wo2Nm / w (w + mQ) (w2 - Wo2)To2• (33) 

The integral operator E is written in explicit 
form as 

t 

eE(t- to)== ~ e(t- t', t'- t0 )E(t'- t0 )dt', 
t, 

00 

~ eimll(t' -to) em ( w}, e(t- t', t'- t0 ) = 2~ ~ dwe-iw(t-t') 

m=-oo 

where t 0-instant when the magnetic field is turned 
on (in our problem t 0 = 0 ). Thus, the kernel 
E ( t 1, t 2 ) of the integral operator is expanded in a 
Fourier integral with respect to the variable t 1 

and in a Fourier series with respect to the variable 
t2. 

For concreteness, we consider the region of 
weak and strong fields at N~ = -N, for which the 
roots of the characteristic equation and the initial conditions, we find 

/1 = 2n0 + N_o, (N' - a1) (N' - az) (N' - a3) = 0 

(30) satisfy the inequality 

where N~ = N _ ( 0 )-initial overpopulation . 
Thus, the sought-for connection between the 

polarization current j and the vector potential A 
is determined in the general case by relation (16), 
in which the overpopulation N_ ( t) is a solution 
of the equation 

N' __ 3_ N'2 +(no -N_o + 1/2 +(!ilk- Wo}2) N' 
4To2 T02 

(31) 

where N' = N_ (t)- N~, and the initial condition 
(30) was taken into account. 

Solution (31) is expressed in terms of an 
elliptic function. Consequently, the overpopula­
tion N _ ( t) has a definite period T = 2rr /Q. It is 
consequently convenient to represent it in the 
form of a Fourier series 

00 

m=-oo 

Using (32), (16), and (5) we easily obtain the 

llBy definition, relations (19) and (20) for the operators are 
understood in the sense that the result is the same when the 
wave function of the system is acted upon from the left by both 
sides of the equation. 

where a~= 0, and a 1 and a 2 are respectively the 
following numbers: 

no+ N + (wk- wo) 2To2 

Then the solution of (31) takes the form 

N-(t) =-N+azsn2 (2Kt/T, (az!atfh). 

Here sn ( 2Kt/T, ( a 2/ a 1 )1/ 2 )-elliptic sine, and 
T-periodofthefunction N0 (t), equalto 

( 2 )'/, 
T = 4to -a;:- K, = [~ (~)'j,J K-F , , 

2 a1 

where K-complete elliptic integral of the first 
kind. 

(34) 

Relation (34) enables us to calculate the Fourier 
component Nm of the expansion (32), after which 
the general expression for the dielectric constant 
(33) assumes the concrete form 

eo(w)= 1 + wo2 [N-a1(1-E/K)] 
wz ( Woz- w2) Toz ' 

mn2qma1wo2 
e+m(w) = , (35) 
- ( 1 - q2m) KZw ( w + mQ) ( Woz - wZ) Toz 

where m = 1, 2, ... , and E and q are well known 
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E-E- -- [ "' ( az ·)''•] 
2 ' ' 

q = exp (- nK' / K) , 
Ui 

K' = F [ ; ' ( ai ~ Uz )"'] . 

If E ( t) is a superposition of waves with dif­
ferent u.k, then the dielectric constant (35) will, 
generally speaking, change. 

For example, in a weak field n 0 « N, the 
dielectric constant (35) in the first nonzero ap­
proximation in the parameter n0/N coincides with 
expression (13), provided we discard in the latter 
the imaginary component in the denominator. In 
the next approximation we have 

eo(ro) = 1 + f.,[1- no/ (N + (rok- roo)2-ro2)}, 
E±i{ro) = ronof., / 2(N + (rok- roo)2-ro2) (ro + Qk), 

Em{ro) = E-m{ro) = 0, m = 2, 3, ... , (36) 

where 

f.,= 2nc3WN I roZ(roo2- ro2) V. 

The numerical value of E±m ( w) with m = 2, 
3, ... , in a weak field is equal, in order of mag­
nitude, to (Eo - 1) ( n 0/N )m. 

In a strong field n 0 » N far from resonance 
I wk - w0 ) 2 T~ » N we obtain in the approximation 
that is linear in the parameter N/n0 

Eo{ro) = 1 + {rok- roo) 2f.,/ [ (rok- roo)2 + n0-r0- 2], (37) 

and the expression for E± ( w ) assumes the form 
(36), in which N in the denominator is replaced 
by n0, and Em ( w ) = E_m ( w) = 0 for m = 2, 3, ... 

The numerical value of E±m ( w ) for m = 2, 
3, . . . in a strong field is equal in order of mag­
nitude to ( E0 - 1 ) ( N/n0 )m. In a strong field n0 

» N the dielectric constant changes near reso­
nance N ~ ( U.'k - w0 ) 2 T~ » W2• For example, in 
place of ( 37) we have 

Eo{ro) = 1 + /ro[8{rok- roo)2-ro2- N] /8n0• (38) 

In all the presented formulas it is assumed 
that the strong field remains smaller than atomic, 
so as not to violate the applicability of the Hamil­
tonian (1). Under reasonable assumptions con­
cerning the molecule density N/V, the indicated 
region for the strong field takes place when 

e2V /lirooa4 ~no ~N, 

where a-Bohr radius. 
Knowing the dielectric constant (33) we obtain 

in the usual manner the natural frequencies of the 
oscillation and the Fourier components of the 
vector potential, with the aid of the equation 

00 

rok2Am-(ro+mQ) ~ fro+(m+m')Q] 
m'=-oo 

X Em· (ro + mQ) Am+m' = 0, (39) 

Am= A {ro + mQ), m = 0, ±1, ±2, .... 

If we now change over from the Fourier com­
ponents to the time domain and use the initial 
conditions, we obtain the time dependence of the 
vector potential A ( t). Its dependence on the 
coordinates is determined by the solution of (18). 

Let us consider the case of a single unpolarized 
standing wave, characterized by a parameter Wk. 
For a weak field n0 « N we have from (39), in the 
first nonvanishing approximation, 

A (t) = ai sin wit + az sin ro2t, 
Wi,2 = {rok +roo± Qk) /2, 

ai,2 = {2nlic2noroo-i)'"[1 ± (rok- roo)/ Qk], (40) 

where it becomes necessary in the expression 

Qk2 = {rok - roo)2 + (no + N)-ro-2 

to discard n0 in weak fields and N in strong 
fields (see below). 

In a strong field n0 » N, far from resonance 
( U:k - w0 )2 T ~ » N, we obtain from ( 37) and ( 39) 

A (t) = (ao - ai - az) sin rot + ai sin wit + a2 sin ro2t, 
roi,2 = ro ± Q, ao = (8nlic2nowo-i) 'I•, 

ai.2 = aonoN /8-ro4Qk2 ( Wi,2 - rok) ( ro1,2- roo), (41) 

where Q is equal in this approximation to Qk, and 
the frequency w is expressed in terms of wk by 
a relation that can be regarded as a dispersion 
equation for the strong field a 0 sin wt: 

2 2 _ Wo2N (rok- ro0)2 
rok -ro -(roo2-ro2)[(rok-roo)2To2+no]" (42 ) 

The frequency w of the fundamental harmonic 
of the strong field (41) coincides with great accu­
racy with the frequency Wk of the free field. The 
second root of Eq. (42) is not related to the elec­
tromagnetic oscillations of the vector A which 
are considered here, for in the limit as N- 0 
this root tends to a value w2 = w~, whereas for 
the free electromagnetic field we should have w2 

= Wk. In the next higher approximations the value 
of w2 is made more precise by adding terms con­
taining the small parameter N/n0 raised to the 
proper power. With this there appear in (41) 
harmonics with frequencies w ± mQ, m = 2, 3, ... , 
with amplitude of the order of a 0 ( N/n0 )m. 

Thus, far from resonance ( wk - w0 )2 T% » N 
the dielectric constant of the resonant medium, 
for a strong field a 0 sin wt, is equal, in the approxi­
mation considered here, to 
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( ) 1 rtl\o 3 ( Wo - W) W N fV 
ew=+( 2 2' Wo-w) + noTo 

which agrees with the results of Karplus and 
Schwinger [sJ, and also of Basov and Prokhorov LsJ, 
provided we set the relaxation time equal to in­
finity in the cited papers. However, near reso­
nance N ~ ( "'-k- w0 ) 2 T% » W2 the dielectric 
constant takes a different form: 

8 (w) = 1 + rtl\o3WN 8 (w- w0 ) 2 T 02 - N 
(wo-w) V 8n0 

According to (40) and (41) each type of elec­
tromagnetic oscillations, characterized by a 
parameter wk, is a superposition of two field­
intensity oscillations with nearly equal frequen­
cies in the case of weak fields, and three oscilla­
tions in strong fields. The superposition of these 
oscillations leads to beats which are manifest in 
a periodic variation of the average photon density 
n/V in time, with 

noN . Qkt 
n =n0 ---sm2--, 1 n-n0 1<1 no+N I· (43) 

To2Q~t2 2 

The result (43) can also be obtained directly 
from (34), using (27). Formula (43) together with 
the particle-number conservation law (27) yields 
the oscillation of the average number N2 ( t) of 
the molecules at the upper level in an external 
field of frequency w. In a strong field n 0 » N, 
the function N2 ( t) takes the form 

which coincides with the well known result [to]. In 
a weak field n 0 ;S N formula ( 44) is greatly modi­
fied. 

In order to obtain also the coordinate depend­
ence of the vector potential, it is necessary to 
multiply (40) and (41) by the eigenfunction of (18) 
corresponding to the parameter wk and normal­
ized to unity. The vector potential A ( x, t ), ob­
tained in this manner must be taken in the sense 
of classical electrodynamics, so that the quantity 

( 45) 

represents the distribution of the electromagnetic­
field energy density in the volume V at each in­
stant of time t. The quantity (45) divided by tiw 
is the photon distribution density as a function of 
x and t, whereas formula (43), like the formulas 
from [1], describe the oscillation of only the total 
number n ( t) of the photons in the volume V or 
the average density n ( t )/V. This circumstance 
may be useful in the construction of a theory of 
quantum generators and amplifiers, where the 

question of the spatial distribution of the photons 
is vi tal. 

If the parameter Wk corresponds to two har­
monic eigenfunctions of (18), then 

A (x, t) =A (t) -v-~;, (l1 cos kx + lz sin kx), 

where A(t) is given in (40) and (41), while the 
unit vectors 11 and 12 lie in a plane perpendicular 
to the vector k. Since the unit vectors are arbi­
trary, when A ( x, t) is substituted in (45) it is 
necessary to average (45) over the directions of 
the vectors 11 and 12• 

It is easy to obtain from ( 39) the weak har­
monics of the vector potential, with frequencies 
that differ from the fundamental frequency w by 
integer st. Upon addition, these harmonics give 
weak oscillations of the photon density with multi­
ple frequencies mst, m = 2, 3, ... , the amplitude 
of which is smaller than the amplitude of the 
fundamental oscillation of the photon density with 
frequency S1 ~ stk, by a factor ( N/n0 )m in the 
case of a strong field and ( n0/N )m in weak fields. 
The solution of (15)-(17) in the next higher ap­
proximations contains also harmonics of the vec­
tor potential, with frequencies that differ from the 
fundamental frequency w by an odd number of 
times. However, their amplitudes are quite small. 
For example, in a strong field the amplitude of the 
harmonic with frequency 3w is of the order of 
aoN/(woTo)2. 

In the general case, a given type of oscillation 
n(t) = nk(t) + n_k(t), characterized by a 
parameter wk, is described in accordance with 
(27) and (31) by the following equation ( n' = n 
-no) 

n'+~n'2+(no-N_o+t/2 +(w -w)2) 
2To2 . 't'o2 k o 

(46) 

which coincides when n 0 = 0 and N~ » 1 with the 
result of [tJ, if we recognize that in the derivation 
of (46) we took into consideration photons with 
k, A and - k, A ( A = 1, 2 ) • 

In the case of one particle in an electromag­
netic field ( N = 1, Ng = 0 ), Eq. (46) coincides 
with the analogous equation of Jaynes and 
Cummings [t(l. However, the deductions drawn 
in lt1J for a system of N molecules on the basis 
of the single-particle problem are in error. In 
particular, it is proved in [ttJ that when n 0 = 0 the 
presence of N excited molecules changes only the 
pre-exponential factor in the formula for the 
growth of the photon cascade obtained for N = 1. 
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Yet it follows from Eq. (46) with n0 = 0 and N~ 
= N that in the case of N excited molecules a 
significant change takes place also in the exponen­
tial factor itself, which determines the effective 
radiation time of the system of N molecules. 
This means that the radiation of a system of N 
molecules has a collective character (see also [1]). 

In addition, unlike in [11], we have used in the 
derivation of (46) a decomposition of the average 
quantum mechanical quantities 

(nn> = (n)(n) = n2, 

which are quadratic combinations of the operators 
CkA. and ckA.. When n is large this decomposition 
is valid with a high degree of accuracy. Yet the 
results of [11] are based on the substitution 

<N-A> = (N->(A), (Aj) = (A)<i), (47) 

where all angle brackets denote quantum-mechan­
ical averaging. 

It must be noted in this connection that in ac­
cordance with (28)-(31) and (46), the substitutions 
(47) in (15)-(17) do not lead to an error only if 
n0 » 1 and the particles at the initial instant of 
time are either overwhelmingly at the upper level 
Ng » N~, or mostly at the lower level Ng « N~. 
If Ng ~ n0N~, then the initial conditions are quan­
tum-mechanical and the problem cannot be solved 
on the basis of (15)-(17) with the substitution (47), 
since the substitution (47) essentially reduces the 
problem to a classical analysis. Indeed, let us 
take for example the case N2 ( 0) = Ng and n 0 = 0. 
According to classical theory we have j~ ( 0) 
=I Ys (0) !2 = 0, since the medium is isotropic 
and the average dipole moment of the molecule is 
equal to zero. Yet a quantum-mechanical analysis 
yields 

JY.(O) !2 = ftriJo3N2° / mo2, 

where s = 1, 2. This remark is of fundamental 
importance, because the operator relations (15)­
(17) lead upon making the substitution (47) to the 
same equations for the mean values of A and j as 
were obtained in many papers (see, for example 
[ 3- 5]) by a semiclassical method 2l. Consequently, 

2)In this case it is necessary to neglect pumping and the 
relaxation terms in the corresponding equations of[' - 5 ]. 

the semiclassical equations of [3- 5] are applicable 
only in the region where (47) is valid. 

Following [3- 5J, it is easy to introduce into Eqs. 
(15)-(17), with the substitution (47), terms that 
take into account relaxation processes, losses, 
and pumping. The equations obtained in this man­
ner have a phenomenological character and their 
value is determined by a comparison of the re­
sults of the solution with the experiment. We 
emphasize in this connection that the introduction 
of a relaxation term in (16), to take account of 
spontaneous radiation of molecules in weak fields, 
was justified by us rigorously [see (10)]. 

The authors are grateful to Yu. A. Vdovin for 
a discussion of this work. 
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